题目描述

众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则。他将声音分成 n 个音阶,并将音乐分成若干个片段。音乐的每个片段都是由 1 到 n 个音阶构成的和声,即从 n 个音阶中挑选若干个音阶同时演奏出来。为了强调与卡农的不同,他规定任意两个片段所包含的音阶集合都不同。同时为了保持音乐的规律性,他还规定在一段音乐中每个音阶被奏响的次数为偶数。现在的问题是:小余想知道包含 m 个片段的音乐一共有多少种。两段音乐 a 和 b 同种当且仅当将 a 的片段重新排列后可以得到 b。例如:假设 a

为{{1,2},{2,3}},b 为{{3,2},{2,1}},那么 a 与 b 就是同种音乐。由于种数很多,你只需要

输出答案模 100000007(质数)的结果。

输入格式

从文件input.txt中读入数据,输入文件仅一行,具体是用空格隔开的两个正整数n和m,分别表示音阶的数量和音乐中的片段数。20%的数据满足n,m≤5,50%的数据满足n,m≤3000,100%

的数据满足n,m≤1000000。

输出格式

输出文件 output.txt 仅包含一个非负整数,表示音乐的种数模 100000007 的结果。

很强的容斥题。

首先将题意化简一下:从集合$S={1,2,3,...,n}$中选出$m$个子集,满足非空选出的子集不能相同保证${1,2,3...n}$每个元素出现次数为偶数

题目里给出的同种音乐的定义很令人烦躁,所以我们化无序为有序,先使用排列数计算,算出最后结果再除以$m!$(当然直接用组合也可以?)。

然后考虑转移。定义$f[i]$为转移到第$i$个子集,满足所有条件的方案数。如果前$i-1$个子集已经确定,那么根据每个元素出现次数为偶数这条性质,我们就可以确定第$i$个子集(只能选前$i-1$个里出现奇数次的元素)。总的方案数为$A_{2^n-1}^{i-1}$。

这里面包括了许多不满足非空和不相同这两个条件的集合。考虑容斥掉,如果第$i$个子集为空,那么前$i-1$个子集也是一个合法的方案。所以这部分方案数为$f[i-1]$。

还需要去掉存在相同子集的情况。如果第$i$个子集和第$j$个子集重复,那么去掉第$i$个和第$j$个,剩下$i-2$个也是合法方案,数量为$f[i-2]$。此时第$i$个子集有$2^n-1-(i-2)$种方案,和$i$相同的那个子集的位置有$i-1$个,所以这部分的方案数为$f[i-2]\times (i-1)\times (2^n-1-(i-2))$。

$f[i]=A_{2^n-1}^{i-1}-f[i-1]-f[i-2]\times (i-1)\times (2^n-1-(i-2))$

初始化$f[0]=1$。

//实名diss某川 明明当年做题的时候跟我说了题解 还不上去讲
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
#define re register
const int mod=1e8+,N=;
ll f[N],fac,a[N],side,n,m;
ll qpow(ll x,ll y)
{
ll res=;
while(y)
{
if(y&)res=res*x%mod;
x=x*x%mod;
y>>=;
}
return res;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
cin>>n>>m;
fac=a[]=f[]=;
for(re int i=;i<=m;i++)fac=fac*i%mod;
fac=qpow(fac,mod-);
side=qpow(,n)-;
for(re int i=;i<=m;i++)a[i]=a[i-]*(side-i+)%mod;
for(re int i=;i<=m;i++)
{
f[i]=a[i-]-f[i-];
f[i]-=(f[i-]*(i-)%mod*(side-i+))%mod;
f[i]=(f[i]%mod+mod)%mod;
}
cout<<f[m]*fac%mod<<endl;
return ;
}

[HNOI2011]卡农 题解的更多相关文章

  1. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  2. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

  3. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  4. BZOJ2339[HNOI2011]卡农——递推+组合数

    题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...

  5. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  6. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

  7. [HNOI2011]卡农

    题目描述 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则.他将声音分成 n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 到 n 个音阶构成的 ...

  8. 【bzoj2339】[HNOI2011]卡农 dp+容斥原理

    题目描述 题解 dp+容斥原理 先考虑有序数列的个数,然后除以$m!$即为集合的个数. 设$f[i]$表示选出$i$个集合作为满足条件的有序数列的方案数. 直接求$f[i]$较为困难,考虑容斥,满足条 ...

  9. bzoj 2339: [HNOI2011]卡农

    Description Solution 比较难想.... 我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可 设 \(f[i]\) 表示前\(i\)个合法集合的方案数 明确一点: 如 ...

随机推荐

  1. 探索Redis设计与实现9:数据库redisDb与键过期删除策略

    本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...

  2. 埋坑一: vue中子组件调用兄弟组件方法

    小计: 开发中遇到子组件需要调用兄弟组件中的方法,如下写个小demo记录下心得,如果你有好的方法,请到评论区域指教 父组件示例代码: 组件功能解析: 通过$emit获取子组件事件,通过$ref调用子组 ...

  3. 跨站请求伪造(CSRF)与跨域问题

    1.CSRF定义 伪装来自受信任用户的请求来访问受信任的网站,(攻击者盗用了你的身份,以你的名义发送恶意请求) 产生条件 1.用户要登录受信任的网站,并在本地生成cookie 2.在不退出安全网站的情 ...

  4. UE格式化XML文件

    在UE中如何格式化xml:如果xml文件不是格式化的,应该“试图”-->“查看方式”-->“xml”:然后再“格式”-->“xml转换到回车符”.具体再要的属性,自己去摸索

  5. T1317:【例5.2】组合的输出

    [题目描述] 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r≤n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你用递归的方法输出所有组 ...

  6. PAT甲级——A1144 TheMissingNumber【20】

    Given N integers, you are supposed to find the smallest positive integer that is NOT in the given li ...

  7. 爬虫(五)—— selenium模块启动浏览器自动化测试

    目录 selenium模块 一.selenium介绍 二.环境搭建 三.使用selenium模块 1.使用chrome并设置为无GUI模式 2.使用chrome有GUI模式 3.查找元素 4.获取标签 ...

  8. apache2.2.25+tomcat7.0.47集群方案

    因为公司项目在线人数的增加,随着现在硬件成本越来越低,大多数的生产环境内存大多都已经达到 16G,尤其最新的阿里云,客户的机器都是配置超高的java主机,但是Java的运行环境,内存使用有限 ,这样就 ...

  9. 一,Jetty启动

    一,Jetty安装 从官网download.eclipse.org/jetty/ 下载需要的版本,在指定目录解压即可,下面用$JETTY_HOME表示Jetty的解压目录,也就是安装目录.我用的版本是 ...

  10. CTU OPEN 2017 Punching Power /// 最大独立集

    题目大意: 给定n 给定n个机器的位置 要求任意两个机器间的距离至少为1.3米 求最多能选择多少个机器 至少为1.3米 说明若是位于上下左右一步的得放就不行 将机器编号 将不能同时存在的机器连边 此时 ...