【BZOJ1016】【Luogu P4208】 [JSOI2008]最小生成树计数 最小生成树,矩阵树定理
蛮不错的一道题,遗憾就遗憾在数据范围会导致暴力轻松跑过。
最小生成树的两个性质:
不同的最小生成树,相同权值使用的边数一定相同。
不同的最小生成树,将其都去掉同一个权值的所有边,其连通性一致。
这样我们随便跑一个\(MST\),就可以知道所有\(MST\)边的构造情况。由于性质二,我们可以考虑枚举每一种权值的所有边,保留所有非此权值的树边,看可以连出来多少种不同的最小生成树。也就是按照权值构造最小生成树,这个过程满足乘法原理。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 100 + 5;
const int M = 1000 + 5;
const int Mod = 31011;
struct Len {
int u, v, w;
bool operator < (Len rhs) const {
return w < rhs.w;
}
}l[M];
vector <Len> v;
int n, m, S[N];
int find (int x) {
return S[x] == x ? x : S[x] = find (S[x]);
}
vector <int> val, use, tot;
vector <int> :: iterator it;
void kruskal () {
sort (l + 1, l + 1 + m);
for (int i = 0; i <= n; ++i) S[i] = i;
for (int i = 1; i <= m; ++i) {
int fu = find (l[i].u);
int fv = find (l[i].v);
it = lower_bound (val.begin (), val.end (), l[i].w);
if (it == val.end ()) {
val.push_back (l[i].w);
use.push_back (0);
tot.push_back (1);
} else {
tot[it - val.begin ()]++;
}
if (fu != fv) {
S[fu] = fv;
it = lower_bound (val.begin (), val.end (), l[i].w);
use[it - val.begin ()]++;
v.push_back (l[i]);
}
}
}
int mat[N][N];
int gauss (int n) {
int ret = 1;
for (int i = 1; i <= n; ++i) {
for (int k = i + 1; k <= n; ++k) {
while (mat[k][i]) {
int d = mat[i][i] / mat[k][i];
for (int j = i; j <= n; ++j) {
(((mat[i][j] -= d * mat[k][j]) %= Mod) += Mod) %= Mod;
}
swap (mat[i], mat[k]); ret = -ret;
}
}
(((ret *= mat[i][i]) %= Mod) += Mod) %= Mod;
}
return abs (ret);
}
void add_edge (int u, int v) {
mat[u][u]++;
mat[v][v]++;
mat[u][v]--;
mat[v][u]--;
}
int sep[N];
int solve () {
kruskal ();
if (v.size () < n - 1) return 0;
int ans = 1;
for (int i = 0; i < val.size (); ++i) {
memset (mat, 0, sizeof (mat));
if (use[i] == 0 || tot[i] == use[i]) continue;
for (int j = 0; j <= n; ++j) S[j] = j;
for (int j = 0; j < v.size (); ++j) {
if (v[j].w != val[i]) {
S[find (v[j].u)] = find (v[j].v);
}
}
int cnt = 0;
for (int i = 1; i <= n; ++i) {
sep[++cnt] = find (i);
}
sort (sep + 1, sep + 1 + cnt);
cnt = unique (sep + 1, sep + 1 + cnt) - sep - 1;
for (int j = 1; j <= m; ++j) {
if (l[j].w == val[i]) {
int fu = find (l[j].u);
int fv = find (l[j].v);
fu = lower_bound (sep + 1, sep + 1 + cnt, fu) - sep;
fv = lower_bound (sep + 1, sep + 1 + cnt, fv) - sep;
add_edge (fu, fv);
}
}
(ans *= gauss (use[i])) %= Mod;
}
return ans;
}
signed main () {
// freopen ("data.in", "r", stdin);
cin >> n >> m;
for (int i = 1; i <= m; ++i) {
static int u, v, w;
cin >> u >> v >> w;
l[i] = (Len) {u, v, w};
}
cout << solve () << endl;
}
【BZOJ1016】【Luogu P4208】 [JSOI2008]最小生成树计数 最小生成树,矩阵树定理的更多相关文章
- bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...
- BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...
- 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- spoj104 highways 生成树计数(矩阵树定理)
https://blog.csdn.net/zhaoruixiang1111/article/details/79185927 为了学一个矩阵树定理 从行列式开始学(就当提前学线代了.. 论文生成树的 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- 【Luogu】P3317重建(高斯消元+矩阵树定理)
题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...
- Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理
真是菜到爆炸....容斥写反(反正第一次写qwq) 题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数. 矩阵树定理+容斥原理(注意到$n$不是很大) 枚举公司参与与否的 ...
- 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥
同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...
随机推荐
- python 将视频转换成音频
安装库 sudo pip install moviepy 代码 index.py from moviepy.editor import * video = VideoFileClip('test.mp ...
- 【DSP开发】【Linux开发】IIC设备驱动程序
IIC设备是一种通过IIC总线连接的设备,由于其简单性,被广泛引用于电子系统中.在现代电子系统中,有很多的IIC设备需要进行相互之间通信 IIC总线是由PHILIPS公司开发的两线式串行总线,用于连接 ...
- 【Linux开发】linux设备驱动归纳总结(八):3.设备管理的分层与面向对象思想
linux设备驱动归纳总结(八):3.设备管理的分层与面向对象思想 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ...
- sublime text 修改侧边栏字体大小
ctrl+shift_p 安装PackageResourceViewer,通过**PackageResourceViewer **这个插件来实现. 打开这个插件,选择Open Resource 输入T ...
- run.sh
1.run.sh 文件 ./run.sh start启动 ./run.sh stop 停止 ./run.sh restart重启 ./run.sh install安装 ...
- python 爬虫 基于requests模块的get请求
需求:爬取搜狗首页的页面数据 import requests # 1.指定url url = 'https://www.sogou.com/' # 2.发起get请求:get方法会返回请求成功的响应对 ...
- supervisor管理superset
参考: https://blog.51cto.com/qiangsh/2153185 安装supervisor: pip install supervisor 停止supervisor管理的服务: [ ...
- VMware Workstation改动存储位置之后,软件变成全英文,修改成中文的方法
今天想改动一下VMware Workstation的位置 改动之后打开软件,本来的中文改成了英文,整了很长时候,最后发现是因为改动一下位置之后,虽然zh_CN语言包还在,但是Vmware找不到本来的 ...
- CNN中feature map、卷积核、卷积核的个数、filter、channel的概念解释
CNN中feature map.卷积核.卷积核的个数.filter.channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/detai ...
- excel库中数据下载
PHP实现EXCEL下载数据 <?php include("Classes/PHPExcel.php"); $exce=new PHPExcel(); $exce->s ...