新鲜热乎的题 Codeforce 1175 D

题意:给出一个长度为$n$的序列$a$,你需要把它划分为$k$段,每一个元素都需要刚好在其中一段中。分好之后,要计算$\sum_{i=1}^{n} (a_i \centerdot f(i))$,使这个值最大。其中$f(i)$代表第$i$个元素被分在第几段中。简单来说,就是每个元素被分在第几段中就需要乘上几,使序列的和最大。

假设$sum$是$a$的前缀和,$k$个分割点分别为$l_j$,将序列分割为$[1, l_1],[l_1 + 1, l_2]......[l_{k-1} + 1, l_k]$,那么第$j$段对总和的贡献是$(sum_{l_j} - sum_{l_{j-1}}) * j$。

由此,总和应该为$sum_{l_1} + (sum_{l_2} - sum_{l_1}) * 2 + (sum_{l_3} - sum_{l_2}) * 3+……+(sum_{l_k} - sum_{l_{k-1}}) * k$,很显然,相邻两项之间存在可以抵消的部分,同时$l_k$一定为$n$。将其化简:$sum_n \centerdot k - sum_{l_1} - sum_{l_2} -……-sum_{l_{k-1}}$,那么我们只需要在前$n-1$项的前缀和中找出最小的$k-1$个就可以得到最大的总和了。

int n, k;
int a;
ll sum[maxn];
int main() {
scanf("%d %d", &n, &k);
priority_queue<ll, vector<ll>, greater<> > q;
for(int i = ; i <= n; ++i) {
scanf("%d", &a);
sum[i] = sum[i - ] + a;
if(i != n)
q.push(sum[i]);
}
ll ans = sum[n] * k;
for(int i = ; i <= k - ; ++i) {//找出最小的k-1个前缀和
ans -= q.top();
q.pop();
}
printf("%lld\n", ans);
}

Codeforce 1175 D. Array Splitting的更多相关文章

  1. Codeforces 754A Lesha and array splitting(简单贪心)

    A. Lesha and array splitting time limit per test:2 seconds memory limit per test:256 megabytes input ...

  2. Codeforces 754A Lesha and array splitting (搜索)

    题目链接 Lesha and array splitting 设s[i][j]为序列i到j的和,当s[i][j]≠0时,即可从i跳到j+1.目标为从1跳到n+1,所以按照题意暴力即可. #includ ...

  3. Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting 水题

    C. Array Splitting You are given a sorted array

  4. 【codeforces 754A】Lesha and array splitting

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  5. CodeForces - 1175D Array Splitting(数组划分+后缀和+贪心)

    You are given an array a1,a2,…,ana1,a2,…,an and an integer kk. You are asked to divide this array in ...

  6. D. Array Splitting(后缀数组)

    You are given an array

  7. Codeforce 1155D Beautiful Array(DP)

    D. Beautiful Array You are given an array aa consisting of nn integers. Beauty of array is the maxim ...

  8. codeforce 121E - Lucky Array

    10^4以内只由4和7构成的数字只有31种,那么做法就很简单了,求出每个数字与其最接近的幸运数的差值,然后建立线段树,线段树维护区间最小值和最小值个数,如果操作过程中最小值<0,那么就去对差值进 ...

  9. cf754 A. Lesha and array splitting

    应该是做麻烦了,一开始还没A(幸好上一次比赛水惨了) #include<bits/stdc++.h> #define lowbit(x) x&(-x) #define LL lon ...

随机推荐

  1. 遍历并读取指定目录下的所有文件内容,写入Map集合然后输出在控制台和本地文件

    public class FileWrite { public static void main(String[] args) throws Exception { //封装数据源目录 File sr ...

  2. 2019-8-31-dotnet-core-集成到-Mattermost-聊天工具

    title author date CreateTime categories dotnet core 集成到 Mattermost 聊天工具 lindexi 2019-08-31 16:55:58 ...

  3. linux 验证 NFS 是否成功

    服务器端----->>客户端 1. 服务器端 [root@allentuns ~]# ifconfig |grep "Bcast" inet addr:192.168. ...

  4. 解决SVN异常 cleanup failed

    winndows上偶尔使用SVN的时候就会整出一些有的没的问题,比如"cleanup failed to process the following paths previous opera ...

  5. Ubuntu apt-get install E: 无法定位软件包Ubuntu apt-get install E: 无法定位软件包

    sudo cp /etc/apt/sources.list /etc/apt/sources.list-bak #先将之前的source-list备份 sudo vi /etc/apt/sources ...

  6. CF dp 题(1500-2000难度)

    前言 从后往前刷 update 新增 \(\text{\color{red}{Mark}}\) 标记功能,有一定难度的题标记为 \(\text{\color{red}{红}}\) 色. 题单 (刷过的 ...

  7. bzoj4940 [Ynoi2016]这是我自己的发明 莫队+dfs序

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4940 题解 对于换根操作,处理方法就很套路了. 首先先假定以 \(1\) 为根做一遍 dfs, ...

  8. Java类加载器初识

    类加载器基本概念 类加载器(class loader)用来加载 Java 类到 Java 虚拟机中.一般来说,Java虚拟机使用Java类的方式如下:Java 源程序(.java 文件)在经过 Jav ...

  9. 00.斐波那契数列第n项

    # 斐波那契数列第n项 # 1 1 2 3 5 8 def fib(n): if n <= 2: return 1 else: return fib(n-2)+fib(n-1) def fib2 ...

  10. nginx主配置文件学习,以及nginx的反向代理和负载均衡

    1.nginx.conf主配置文件学习 worker_processes : 表示nginx的进程数,根据CPU的核数来定义,起到优化的作用.通过cat /proc/cpuinfo来查看核数 even ...