前言

本人在此题有一种不是题解的方法,但无法证明也找不到反例。

如果各位大神有反例或证明请发至

邮箱:qq1350742779@163.com

Description

Alice和Bob有一棵树(无根、无向),在第i个点上有ai个巧克力。首先,两人个选择一个起点(不同的),获得点上的巧克力;接着两人轮流操作(Alice先),操作的定义是:在树上找一个两人都没选过的点并获得点上的巧克力,并且这个点要与自己上一次选的点相邻。当有一人无法操作 时,另一个人可以继续操作,直到不能操作为止。因为Alice和Bob是好朋友,所以他们希望两人得到的巧克力总和尽量大,请输出最大总和。

Input

第一行一个整数n,表示树的点数

第二行有n个整数,表示每个点上的巧克力数量ai

接下来n-1行,每行两个整数u、v,表示u和v之间有一条边。

Output

输出一个整数,表示两人能获得得巧克力的最大总和。

Sample Input

9

1 2 3 4 5 6 7 8 9

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

Sample Output

25

Data Constraint

对于20%的数据,n<=15

对于40%的数据,n<=100

对于60%的数据,n<=5000

对于100%的数据,n<=200000,0<=ai<=1000000000(1e9)

我的方法

首先随便找一条直径,然后删掉这些的,在剩下的森林中再找一条最长的链,输出总和。

或者,

首先随便找一条直径,枚举这条直径上的两个点,从这两个点出发分别找到最长链,答案就是这条直径加上从枚举的两个点找到的最长链再减去枚举的两个点在直径之间的路径。

将两者去最大值输出。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
const long long mo=1000000007;
const long long N=200005;
using namespace std;
long long n,v[N],next[N*2],last[N*2],to[N*2],tot,ans,mxp,pos,bz[N],s,t,st[N],ts[N],num,ans1,ans2,ans3,ans4,ans5,vv;
long long bj(long long x,long long y)
{
next[++tot]=last[x];
last[x]=tot;
to[tot]=y;
}
long long dg(long long x,long long fa,long long sum)
{
if(sum>ans) ans=sum,mxp=x;
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa && bz[j]==0) dg(j,x,sum+v[j]);
}
}
long long dg1(long long x,long long fa)
{
if(mxp==x && !bz[x]) bz[x]=vv;
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa && bz[j]==0)
{
dg1(j,x);
if(bz[j])
{
bz[x]=vv;
break;
}
}
}
}
long long dg2(long long x,long long fa,long long sum)
{
ans=0;
dg(x,fa,0);
st[++tot]=ans+sum;
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa && bz[j]==vv)
{
dg2(j,x,sum+v[j]);
}
}
}
long long dg3(long long x,long long fa,long long sum)
{
ans=0;
dg(x,fa,0);
ts[tot--]=ans+sum;
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa && bz[j]==vv)
{
dg3(j,x,sum+v[j]);
}
}
}
int main()
{
scanf("%lld",&n);
for(long long i=1;i<=n;i++) scanf("%lld",&v[i]);
for(long long i=1;i<=n-1;i++)
{
long long x,y;
scanf("%lld%lld",&x,&y);
bj(x,y);
bj(y,x);
}
vv++;
dg(1,0,v[1]);
pos=mxp;
ans=0;
dg(pos,0,v[pos]);
dg1(pos,0);
s=mxp;
ans=0;
dg(pos,0,v[pos]);
dg1(pos,0);
t=mxp;
tot=0;
dg2(s,0,v[s]);
num=tot;
dg3(t,0,v[t]);
ans1=st[num];
for(int i=1;i<=num;i++) st[i]=max(st[i],st[i-1]);
for(int i=num;i>=1;i--) ts[i]=max(ts[i],ts[i+1]);
ans=0;
for(int i=1;i<=num-1;i++) ans=max(ans,st[i]+ts[i+1]);
ans5=ans;
for(int k=1;k<=n;k++)
if(!bz[k])
{
vv++;
tot=0;
num=0;
ans=0;
dg(k,0,v[k]);
pos=mxp;
ans=0;
dg(pos,0,v[pos]);
dg1(pos,0);
s=mxp;
ans=0;
dg(pos,0,v[pos]);
dg1(pos,0);
t=mxp;
tot=0;
dg2(s,0,v[s]);
num=tot;
ans3=max(ans3,st[num]);
}
printf("%lld",max(ans5,ans1+ans3));
}

求hack or 证明(【JZOJ 4923】 【NOIP2017提高组模拟12.17】巧克力狂欢)的更多相关文章

  1. 【JZOJ4922】【NOIP2017提高组模拟12.17】环

    题目描述 小A有一个环,环上有n个正整数.他有特殊的能力,能将环切成k段,每段包含一个或者多个数字.对于一个切分方案,小A将以如下方式计算优美程度: 首先对于每一段,求出他们的数字和.然后对于每段的和 ...

  2. 【NOIP2017提高组模拟12.17】环

    题目 小A有一个环,环上有n个正整数.他有特殊的能力,能将环切成k段,每段包含一个或者多个数字.对于一个切分方案,小A将以如下方式计算优美程度: 首先对于每一段,求出他们的数字和.然后对于每段的和,求 ...

  3. 【JZOJ4923】【NOIP2017提高组模拟12.17】巧克力狂欢

    题目描述 Alice和Bob有一棵树(无根.无向),在第i个点上有ai个巧克力.首先,两人个选择一个起点(不同的),获得点上的巧克力:接着两人轮流操作(Alice先),操作的定义是:在树上找一个两人都 ...

  4. 【JZOJ4924】【NOIP2017提高组模拟12.17】向再见说再见

    题目描述 数据范围 =w= 设h[i]表示,甲队得到i分的方案数. 那么h[(n+k)/2]和h[(n−k)/2]就是答案. 设g[i]表示,甲队得到至少i分的方案数. 那么h[i]=g[i]−∑j& ...

  5. [jzoj 5178] [NOIP2017提高组模拟6.28] So many prefix? 解题报告(KMP+DP)

    题目链接: https://jzoj.net/senior/#main/show/5178 题目: 题解: 我们定义$f[pos]$表示以位置pos为后缀的字符串对答案的贡献,答案就是$\sum_{i ...

  6. [jzoj 5177] [NOIP2017提高组模拟6.28] TRAVEL 解题报告 (二分)

    题目链接: https://jzoj.net/senior/#main/show/5177 题目: 题解: 首先选出的泡泡怪一定是连续的一段 L,R 然后 L 一定属于虫洞左边界中的某一个 R 也同样 ...

  7. 【JZOJ4919】【NOIP2017提高组模拟12.10】神炎皇

    题目描述 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 数据范围 对于100%的数 ...

  8. 【NOIP2017提高组模拟12.10】幻魔皇

    题目 幻魔皇拉比艾尔很喜欢斐波那契树,他想找到神奇的节点对. 所谓斐波那契树,根是一个白色节点,每个白色节点都有一个黑色节点儿子,而每个黑色节点则有一个白色和一个黑色节点儿子.神奇的节点对则是指白色节 ...

  9. 【NOIP2017提高组模拟12.10】神炎皇

    题目 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 分析 设\(gcd(a,b)= ...

随机推荐

  1. cocos2dx基础篇(28) 布景层Layer的三个子类

    [3.x]     (1)去掉 "CC" [CCLayerColor] 颜色布景层CCLayerColor有两个父类:CCLayerRGBA.CCBlendProtocol.相信有 ...

  2. 【神经网络与深度学习】【CUDA开发】【VS开发】Microsoft官方移植了Caffe配置过程说明

    想在Windows平台使用Caffe,吭哧吭哧下载了半天第三方库,后来忽然发现Microsoft官方移植了Caffe,配置起来简直太省心了- 1. 从Microsoft官方Github上下载Caffe ...

  3. 注解@Slf4j的作用

    lombok.extern.slf4j 代码: @Slf4j public class LogExample { } 产生以下代码: public class LogExample { private ...

  4. CentOS7之ssh-Xshell密钥认证登陆

    操作系统版本:CentOS Linux release 7.2.1511 (Core)   SSH版本:OpenSSH_6.6.1p1, OpenSSL 1.0.1e-fips 1.打开Xshell工 ...

  5. [转帖]黑客通过 Rootkit 恶意软件感染超 5 万台 MS-SQL 和 PHPMyAdmin 服务器

    黑客通过 Rootkit 恶意软件感染超 5 万台 MS-SQL 和 PHPMyAdmin 服务器 https://www.cnbeta.com/articles/tech/852141.htm 病毒 ...

  6. gcc数据结构对齐之:why.

    gcc 支持 aligned 和 packed 属性指定数据对齐,那么在了解对齐规则之前,需要解决第一个以为,我们为什么需要数据对齐?请看下图: 相信学过汇编的朋友都很熟悉这张图,这张图就是CPU与内 ...

  7. mysql 加密 解密函数

    select   HEX(AES_ENCRYPT('你好世界','ABC123456')) select   AES_DECRYPT(UNHEX('E85A104B6142A7375E53C0545C ...

  8. Python进阶编程 面向对象

    一.面向对象 1.1面向对象的基本格式 class 类名: def 方法名(self): print(123) return 123 def 方法名(self): print(123) return ...

  9. 12、MA图的计算过程

    为了简化问题,假设有3张芯片,每组数有9个探针: Data: 2,4,6,7,9,10,4,7,8,3 9,5,3,2,5,7,9,10,3,12 6,4,3,2,7,8,1,2,6,9 一.给3组数 ...

  10. luogu P4382 [九省联考2018]劈配

    luogu 我记得我第一次做这道题的时候屁都不会qwq 先考虑第一问,暴力是依次枚举每个人,然后从高到低枚举志愿,枚举导师,能选就选.但是可以发现前面的人选的导师可能会导致后面的人本来可以选到这个志愿 ...