链接:

https://vjudge.net/problem/CodeForces-449B

题意:

Jzzhu is the president of country A. There are n cities numbered from 1 to n in his country. City 1 is the capital of A. Also there are m roads connecting the cities. One can go from city ui to vi (and vise versa) using the i-th road, the length of this road is xi. Finally, there are k train routes in the country. One can use the i-th train route to go from capital of the country to city si (and vise versa), the length of this route is yi.

Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change.

思路:

先求到每个点的最短路,同时记录到每个点的最短路有几条.

最后比较每条火车道,是否可以删除.

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
//#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
#include <string>
#include <assert.h>
#define MINF 0x3f3f3f3f
using namespace std;
typedef long long LL; const int MAXN = 1e6+10;
const long long INF = 1e15; struct Edge
{
int to;
LL v;
}; struct HeapNode
{
int to;
LL dis;
bool operator < (const HeapNode& that) const
{
return this->dis > that.dis;
}
}; vector<Edge> G[MAXN];
int In[MAXN], Vis[MAXN];
LL Dis[MAXN];
int To[MAXN], Va[MAXN];
int n, m, k; void Dij()
{
memset(Vis, 0, sizeof(Vis));
memset(In, 0, sizeof(In));
In[1] = 1;
for (int i = 1;i <= n;i++)
Dis[i] = INF;
Dis[1] = 0;
priority_queue<HeapNode> que;
que.push(HeapNode{1, 0LL});
while (!que.empty())
{
HeapNode node = que.top();
que.pop();
if (Vis[node.to])
continue;
Vis[node.to] = 1;
for (int i = 0;i < G[node.to].size();i++)
{
int ne = G[node.to][i].to;
if (Vis[ne])
continue;
LL va = G[node.to][i].v;
if (Dis[ne] == Dis[node.to]+va)
In[ne]++;
if (Dis[ne] > Dis[node.to]+va)
{
In[ne]=1;
Dis[ne] = Dis[node.to]+va;
}
que.push(HeapNode{ne, Dis[ne]});
}
}
} int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int u, v, w;
cin >> n >> m >> k;
for (int i = 1;i <= m;i++)
{
cin >> u >> v >> w;
G[u].push_back(Edge{v, w});
G[v].push_back(Edge{u, w});
}
for (int i = 1;i <= k;i++)
{
cin >> v >> w;
To[i] = v, Va[i] = w;
G[1].push_back(Edge{v, w});
}
Dij();
// for (int i = 1;i <= n;i++)
// cout << Dis[i] << ' ' ;
// cout << endl;
int num = 0;
for (int i = 1;i <= k;i++)
{
if (Dis[To[i]] < Va[i])
num++;
else if (Dis[To[i]] == Va[i] && In[To[i]] > 1)
num++, In[To[i]]--;
}
cout << num << endl; return 0;
}

CodeForces-449B(单源最短路,思维)的更多相关文章

  1. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  2. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

  3. 用scheme语言实现SPFA算法(单源最短路)

    最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...

  4. 单源最短路_SPFA_C++

    当我们需要求一个点到其它所有点的最短路时,我们可以采用SPFA算法 代码特别好写,而且可以有环,但是不能有负权环,时间复杂度是O(α(n)n),n为边数,α(n)为n的反阿克曼函数,一般小于等于4 模 ...

  5. 【UVA1416】(LA4080) Warfare And Logistics (单源最短路)

    题目: Sample Input4 6 10001 3 21 4 42 1 32 3 33 4 14 2 2Sample Output28 38 题意: 给出n个节点m条无向边的图,每条边权都为正.令 ...

  6. 【算法系列学习】Dijkstra单源最短路 [kuangbin带你飞]专题四 最短路练习 A - Til the Cows Come Home

    https://vjudge.net/contest/66569#problem/A http://blog.csdn.net/wangjian8006/article/details/7871889 ...

  7. 模板C++ 03图论算法 1最短路之单源最短路(SPFA)

    3.1最短路之单源最短路(SPFA) 松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离. 邻接表:表示与一个点联通的所有路. 如果从一个点沿着某条路径出发,又回到了自己,而且所经过 ...

  8. 2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结

    刚刚AC的pj普及组第四题就是一种单源最短路. 我们知道当一个图存在负权边时像Dijkstra等算法便无法实现: 而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了. ...

  9. PAT All Roads Lead to Rome 单源最短路

    思路:单源最短路末班就好了,字符串映射成数字处理. AC代码 //#define LOCAL #include <stdio.h> #include <string.h> #i ...

随机推荐

  1. harbor仓库安装

    https://6xyun.cn/article/50 环境: 192.168.0.65 harbor .docker 一.安装相关依赖 .安装Docker Docker 使用离线版docker-ce ...

  2. java:IO流(File,字节流/输入输出流(InputStream(FileInputStream),OutputStream(FileOutStream)),字符流(Reader,Writer))

    File: * java.io.File类:代表一个文件或目录. * 常用的构造方法: * File(String pathname)通过将给定路径名字符串转换为抽象路径名来创建一个新 File 实例 ...

  3. JS中document对象 && window对象

    所有的全局函数和对象都属于Window对象的属性和方法. 区别: 1.window 指窗体.Window 对象表示浏览器中打开的窗口. document指页面.document是window的一个子对 ...

  4. mysql用sql语句创建表和数据 设置字符编码为utf-8

    简而言之 CREATE DATABASE xx CHARACTER SET utf8 COLLATE utf8_general_ci; USE xx; ),qname ) ) ) ) )); ) ,t ...

  5. Docker面试题(二)

    什么是虚拟化? 虚拟化允许您在相同的硬件上运行两个完全不同的操作系统.每个客户操作系统都经历了引导,加载内核等所有过程.您可以拥有非常严格的安全性,例如,客户操作系统无法完全访问主机操作系统或其他客户 ...

  6. 爬虫4之pyquery

    pyquery 初始化 字符串初始化 from pyquery import PyQuery as pq doc = pq(html)#html为需要处理的内容 #方法与CSS选择器相同 print( ...

  7. 从“int中提取高八位”开始的学习

    今天有个学弟问了一个问题,怎么提取int中的高八位. 这个是个非常基础的问题,随便用位运算瞎搞几下就出来了. 看到这个问题的时候,也不知道我当初想了些啥,想了个骚操作,用memcpy把int放到字符串 ...

  8. TCP端口扫描

    # TCP三次握手 第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: 第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1 ...

  9. No repository found containing: …错误解决

    由于我安装的是Eclipse ForJava Development,无JAVA EE,查找资料后发现可以自己在已有软件的基础上配置,总结如下: >>>>>点开之后,找到 ...

  10. 微信小程序--catchtap&bindtap

    转自:https://www.cnblogs.com/heron-yu/p/7244481.html 转自:http://blog.csdn.net/xiaochun365/article/detai ...