Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 41885    Accepted Submission(s): 15095

Problem Description
Now
I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a
brave ACMer, we always challenge ourselves to more difficult problems.
Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But
I`m lazy, I don't want to write a special-judge module, so you don't
have to output m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
 
题意:输入有多个样例,每个样例输入只有一行m,n,接下来在同一行给定n个数。输出就是把这n个数分成m个不相交的子段,输出使这m个子段的 和 的最大值。
 
题解:用动态规划,dp[i][j]表示把数组a的前j个数分成i个子段的和。对于于每一个数a[j]要考虑两个状态:即a[j]要么加入与它相邻的前一个子段,要么自己单独成为一个子段,
据此列出动态转移方程为dp[i][j]=max(dp[i][j-1]+a[j],dp[i-1][x]+a[j]),i-1<=x<=j-1,dp[i-1][x]表示把数组a的前x个数分成i-1个子段的和的最大值。
因为n给的范围比较大,直接三层for循环显然会超时。
 

TLE的代码

#include<iostream>
#include<math.h>
#define ll long long
using namespace std;
ll dp[][],a[];//dp[i][j]表示将数组a中前j个数分成 i组的最大和
int main()
{
ll n,m;
while(~scanf("%lld%lld",&m,&n))
{
for(int i=;i<=n;i++)
cin>>a[i];
for(int i=;i<=m;i++)
{
for(int j=i;j<=n;j++)
{
ll temp=-;
for(int x=i-;x<=j-;x++)
{
temp=dp[i-][x]>temp?dp[i-][x]:temp;
}
dp[i][j]=dp[i][j-]+a[j]>temp+a[j]?dp[i][j-]+a[j]:temp+a[j];
} }
cout<<dp[m][n]<<endl;
}
return ;
}

滚动DP优化

对动态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],dp[i-1][x]+a[j]),i-1<=x<=j-1,dp[i-1][x]表示把数组a的前x个数分成i-1个子段的和的最大值。通过转移方程我们可以看出,对于求下一个dp[i][j]我们

只用到它的前两个状态dp[i][j-1]和dp[i-1][x],dp[i][j-1]在上一层循环中已经求出来了,因此我们只要再开一个滚动数组mx[j]来取代dp[i-1][x],随着j的改变不断更新mx数组就可以降低一层循环。

这样动态转移方程就变为:dp[i][j]=max(dp[i][j-1]+a[j],mx[j-1]+a[j]);

滚动数组mx[j]表示把数组a的前x个数分成i-1个子段的和的最大值

#include<iostream>
#include<string.h>
#define ll long long
using namespace std;
ll dp[],mx[],a[];
//dp[j]是将数组前j个数分成i组的最大和,mx[j]是将数组a中前j个数分成任意组的最大和的最大值
ll max(ll a,ll b)
{
return a>b?a:b;
}
int main()
{
ll n,m,sum;
while(~scanf("%lld%lld",&m,&n))
{
memset(dp,,sizeof(dp));
memset(mx,,sizeof(mx));
for(int i=;i<=n;i++)
scanf("%lld",&a[i]); for(int i=;i<=m;i++)
{
sum=-;
for(int j=i;j<=n;j++)
{
dp[j]=max(dp[j-]+a[j],mx[j-]+a[j]);
mx[j-]=sum;//sum是将数组a的前j-1个数分成i组的最大和
sum=max(dp[j],sum);//更新sum,为下一次更新mx[j]准备
}
}
cout<<sum<<endl;
}
return ;
}
 

hdu1024 Max Sum Plus Plus 滚动dp的更多相关文章

  1. HDU1024 Max Sum Plus Plus 【DP】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU1024 Max Sum Plus Plus(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 #include<iostream> #include<vector> #i ...

  3. HDU1024 Max Sum Plus Plus —— DP + 滚动数组

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS ...

  4. HDU1024 Max Sum Plus Plus (优化线性dp)

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  5. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  6. HDU 1024:Max Sum Plus Plus(DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Problem Description Now I think you ...

  7. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  8. Max Sum—hdu1003(简单DP) 标签: dp 2016-05-05 20:51 92人阅读 评论(0)

    Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  9. HDU 1024:Max Sum Plus Plus(DP,最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. Java程序设计11——异常处理

    1 概述 异常机制已经成为判断一门编程语言是否成熟的标准,除了传统的像C语言没有提供异常机制之外,目前主流的编程语言如Java.Ruby.Python都提供了成熟的异常机制.异常机制可以使程序中异常处 ...

  2. chorme 浏览器记住密码后input黄色背景处理方法(两种)

    使用chrome浏览器选择记住密码的账号,输入框会自动加上黄色的背景,有些设计输入框是透明背景的,需要去除掉这个黄色的背景: 方法1:阴影覆盖 input:-webkit-autofill {   - ...

  3. [转]【流媒體】H264—MP4格式及在MP4文件中提取H264的SPS、PPS及码流

    [流媒體]H264—MP4格式及在MP4文件中提取H264的SPS.PPS及码流 SkySeraph Apr 1st 2012  Email:skyseraph00@163.com 一.MP4格式基本 ...

  4. VS2010下连接Oracle数据库的方法

    在vs2010下使用OleDB连接Oracle数据库 ——此方法不需要配置数据源. 1. 在“服务器资源管理器”中,选择“数据库连接”,右击,选择“添加连接”. 2. 出现下面的界面,并按图中选择“用 ...

  5. 23 DesignPatterns学习笔记:C++语言实现 --- 2.4 Composite

    23 DesignPatterns学习笔记:C++语言实现 --- 2.4 Composite 2016-07-22 (www.cnblogs.com/icmzn) 模式理解

  6. OpenGl中的Nurbs B样条曲面的封装的GLU的NURBS的接口

    OpenGl中的Nurbs B样条曲面的封装的GLU的NURBS的接口 创建一个NURBS对象: GLUnurbs* gluNewNurbsRenderer (void); //创建一个NURBS对象 ...

  7. 数据集和JSON相互转换

    使用DELPHI原生类实现数据集和JSON相互转换  JSON二要素:数组和对象.对象可以包含数组,数组可以包含对象.无层数限制.OLEVARIANT也类似,OLEVARIANT的一个元素又可以是OL ...

  8. 个人项目-词频统计(语言:C++)

    词频统计 (个人项目) 要求 (1). 实现一个控制台程序,给定一段英文字符串,统计其中各个英文单词(4字符以上含4字符)的出现频率. 附加要求:读入一段文本文件,统计该文本文件中单词的频率. (2) ...

  9. Python学习-12.Python的输入输出

    在Python中,输出使用print函数,之前用过了. 输入的话,则使用input函数. var = input() print('you input is' + var) 输入haha则将输出you ...

  10. Python学习-6.Python的分支语句

    Python的分支语句比较简单,只有if.else.elif三个关键字,也就是说,Python没有switch语句,而且,Python中并没有?:这个三目运算符. 例子: age = 18 if ag ...