一、简介

  GDI是通过设备句柄(Device Context以下简称"DC")来绘图,而OpenGL则需要绘制环境(Rendering Context,以下简称"RC")。每一个GDI命令需要传给它一个DC,但与GDI不同,OpenGL使用当前绘制环境(RC)。一旦在一个线程中指定了一个当前RC,在此线程中其后所有的OpenGL命令都使用相同的当前RC。虽然在单一窗口中可以使用多个RC,但在单一线程中只有一个当前RC。下面我将首先产生一个OpenGL RC并使之成为当前RC,这将分为三个步骤:设置窗口像素格式;产生RC;设置为当前RC。

二、MFC中的OpenGL基本框架

  1、首先创建工程

  用AppWizard产生一个MFC EXE项目,其他默认即可。

  2、将此工程所需的OpenGL文件和库加入到工程中

  在工程菜单中,选择"Build"下的"Settings"项。单击"Link"标签,选择"General"目录,在Object/Library Modules的编辑框中输入"opengl32.lib glu32.lib glut.lib glaux.lib"(注意,输入双引号中的内容,各个库用空格分开;否则会出现链接错误),选择"OK"结束。然后打开文件"stdafx.h",加入下列头文件:

#include <gl\gl.h>
#include <gl\glu.h>

3、改写OnPreCreate函数并给视图类添加成员函数和成员变量

  OpenGL需要窗口加上WS_CLIPCHILDREN(创建父窗口使用的Windows风格,用于重绘时裁剪子窗口所覆盖的区域)和 WS_CLIPSIBLINGS(创建子窗口使用的Windows风格,用于重绘时剪裁其他子窗口所覆盖的区域)风格。把OnPreCreate改写成如下所示:

BOOL COpenGLDemoView::PreCreateWindow(CREATESTRUCT& cs)
{
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS);
return CView::PreCreateWindow(cs);
}  

产生一个RC的第一步是定义窗口的像素格式。像素格式决定窗口着所显示的图形在内存中是如何表示的。由像素格式控制的参数包括:颜色深度、缓冲模式和所支持的绘画接口。在下面将有对这些参数的设置。我们先在COpenGLDemoView的类中添加一个保护型的成员函数BOOL SetWindowPixelFormat(HDC hDC)(用鼠标右键添加)和保护型的成员变量:int m_GLPixelIndex;并编辑其中的代码如下:

BOOL COpenGLDemoView::SetWindowPixelFormat(HDC hDC)
{//定义窗口的像素格式
PIXELFORMATDESCRIPTOR pixelDesc=
{
sizeof(PIXELFORMATDESCRIPTOR),
,
PFD_DRAW_TO_WINDOW|PFD_SUPPORT_OPENGL|
PFD_DOUBLEBUFFER|PFD_SUPPORT_GDI,
PFD_TYPE_RGBA,
,
,,,,,,
,
,
,
,,,,
,
,
,
PFD_MAIN_PLANE,
,
,,
}; this->m_GLPixelIndex = ChoosePixelFormat(hDC,&pixelDesc);
if(this->m_GLPixelIndex==)
{
this->m_GLPixelIndex = ;
if(DescribePixelFormat(hDC,this->m_GLPixelIndex,sizeof(PIXELFORMATDESCRIPTOR),&pixelDesc)==)
{
return FALSE;
}
} if(SetPixelFormat(hDC,this->m_GLPixelIndex,&pixelDesc)==FALSE)
{
return FALSE;
}
return TRUE;
}

4、用ClassWizard添加WM_CREATE的消息处理函数OnCreate

   至此,OpenGL工程的基本框架就建好了。但如果你现在运行此工程,则它与一般的MFC程序看起来没有什么两样。

5、代码解释

  现在我们可以看一看Describe-PixelFormat提供有哪几种像素格式,并对代码进行一些解释:

  PIXELFORMATDESCRIPTOR包括了定义像素格式的全部信息。

   DWFlags定义了与像素格式兼容的设备和接口。

  通常的OpenGL发行版本并不包括所有的标志(flag)。wFlags能接收以下标志:

  PFD_DRAW_TO_WINDOW 使之能在窗口或者其他设备窗口画图;

  PFD_DRAW_TO_BITMAP 使之能在内存中的位图画图;

  PFD_SUPPORT_GDI 使之能调用GDI函数(注:如果指定了PFD_DOUBLEBUFFER,这个选项将无效);

  PFD_SUPPORT_OpenGL 使之能调用OpenGL函数;

  PFD_GENERIC_FORMAT 假如这种象素格式由Windows GDI函数库或由第三方硬件设备驱动程序支持,则需指定这一项;

  PFD_NEED_PALETTE 告诉缓冲区是否需要调色板,本程序假设颜色是使用24或 32位色,并且不会覆盖调色板;

  PFD_NEED_SYSTEM_PALETTE 这个标志指明缓冲区是否把系统调色板当作它自身调色板的一部分;

  PFD_DOUBLEBUFFER 指明使用了双缓冲区(注:GDI不能在使用了双缓冲区的窗口中画图);

  PFD_STEREO 指明左、右缓冲区是否按立体图像来组织。

  PixelType定义显示颜色的方法。PFD_TYPE_RGBA意味着每一位(bit)组代表着红、绿、蓝各分量的值。PFD_TYPE_COLORINDEX 意味着每一位组代表着在彩色查找表中的索引值。本例都是采用了PFD_TYPE_RGBA方式。

  ● cColorBits定义了指定一个颜色的位数。对RGBA来说,位数是在颜色中红、绿、蓝各分量所占的位数。对颜色的索引值来说,指的是表中的颜色数。

  ● cRedBits、cGreenBits、cBlue-Bits、cAlphaBits用来表明各相应分量所使用的位数。

  ● cRedShift、cGreenShift、cBlue-Shift、cAlphaShift用来表明各分量从颜色开始的偏移量所占的位数。

  一旦初始化完我们的结构,我们就想知道与要求最相近的系统象素格式。我们可以这样做:

  m_hGLPixelIndex = ChoosePixelFormat(hDC, &pixelDesc);

  ChoosePixelFormat接受两个参数:一个是hDc,另一个是一个指向PIXELFORMATDESCRIPTOR结构的指针& pixelDesc;该函数返回此像素格式的索引值。如果返回0则表示失败。假如函数失败,我们只是把索引值设为1并用 DescribePixelFormat得到像素格式描述。假如你申请一个没得到支持的像素格式,则Choose-PixelFormat将会返回与你要求的像素格式最接近的一个值。一旦我们得到一个像素格式的索引值和相应的描述,我们就可以调用SetPixelFormat设置像素格式,并且只需设置一次。

  现在像素格式已经设定,我们下一步工作是产生绘制环境(RC)并使之成为当前绘制环境。在COpenGLDemoView中加入一个保护型的成员函数BOOL CreateViewGLContext(HDC hDC),并加入一个保护型的成员变量HGLRC m_hGLContext;HGLRC是一个指向rendering context的句柄。

BOOL COpenGLDemoView::CreateViewGLContext(HDC hDC)
{
this->m_hGLContext = wglCreateContext(hDC);
if(this->m_hGLContext==NULL)
{//创建失败
return FALSE;
} if(wglMakeCurrent(hDC,this->m_hGLContext)==FALSE)
{//选为当前RC失败
return FALSE;
} return TRUE; }

 在OnCreate函数中调用此函数:

int COpenGLDemoView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
if (CView::OnCreate(lpCreateStruct) == -)
return -; // TODO: Add your specialized creation code here
HWND hWnd = this->GetSafeHwnd();
HDC hDC = ::GetDC(hWnd);
if(this->SetWindowPixelFormat(hDC)==FALSE)
{
return ;
}
if(this->CreateViewGLContext(hDC)==FALSE)
{
return ;
}
return ;
}  

添加WM_DESTROY的消息处理函数Ondestroy( ),使之如下所示:

void COpenGLDemoView::OnDestroy()
{
CView::OnDestroy(); // TODO: Add your message handler code here
if(wglGetCurrentContext()!=NULL)
{
wglMakeCurrent(NULL,NULL);
}
if(this->m_hGLContext!=NULL)
{
wglDeleteContext(this->m_hGLContext);
this->m_hGLContext = NULL;
}
}  

最后,编辑COpenGLDemoView的构造函数,使之如下所示:

COpenGLDemoView::COpenGLDemoView()
{
// TODO: add construction code here
this->m_GLPixelIndex = ;
this->m_hGLContext = NULL;
}

至此,我们已经构造好了框架,使程序可以利用OpenGL进行画图了。你可能已经注意到了,我们在程序开头产生了一个RC,自始自终都使用它。这与大多数GDI程序不同。在GDI程序中,DC在需要时才产生,并且是画完立刻释放掉。实际上,RC也可以这样做;但要记住,产生一个RC需要很多处理器时间。因此,要想获得高性能流畅的图像和图形,最好只产生RC一次,并始终用它,直到程序结束。

  CreateViewGLContex产生RC并使之成为当前RC。WglCreateContext返回一个RC的句柄。在你调用 CreateViewGLContex之前,你必须用SetWindowPixelFormat(hDC)将与设备相关的像素格式设置好。 wglMakeCurrent将RC设置成当前RC。传入此函数的DC不一定就是你产生RC的那个DC,但二者的设备句柄(Device Context)和像素格式必须一致。假如你在调用wglMakeforCurrent之前已经有另外一个RC存在,wglMakeforCurrent 就会把旧的RC冲掉,并将新RC设置为当前RC。另外你可以用wglMakeCurrent(NULL, NULL)来消除当前RC。

  我们要在OnDestroy中把绘制环境删除掉。但在删除RC之前,必须确定它不是当前句柄。我们是通过wglGetCurrentContext来了解是否存在一个当前绘制环境的。假如存在,那么用wglMakeCurrent(NULL, NULL)来把它去掉。然后就可以通过wglDelete-Context来删除RC了。这时允许视类删除DC才是安全的。注:一般来说,使用的都是单线程的程序,产生的RC就是线程当前的RC,不需要关注上述这一点。但如果使用的是多线程的程序,那我们就特别需要注意这一点了,否则会出现意想不到的后果。

  三、画图实例

  下面给出一个简单的二维图形的例子(这个例子都是以上述框架为基础的)。

  用Classwizard为COpenGLDemoView添加WMSIZE的消息处理函数OnSize,代码如下:

void COpenGLDemoView::OnSize(UINT nType, int cx, int cy)
{
CView::OnSize(nType, cx, cy); // TODO: Add your message handler code here
GLsizei width,height;
GLdouble aspect;
width = cx;
height = cy;
if(cy==)
{
aspect = (GLdouble)width;
}
else
{
aspect = (GLdouble)width/(GLdouble)height;
}
glViewport(,,width,height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0,500.0*aspect,0.0,500.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}  

用Classwizard为COpenGLDemoView添加WM_PAINT的消息处理函数OnPaint,代码如下:

void COpenGLDemoView::OnPaint()
{
CPaintDC dc(this); // device context for painting // TODO: Add your message handler code here // Do not call CView::OnPaint() for painting messages glLoadIdentity();
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POLYGON);
glColor4f(1.0f,0.0f,0.0f,1.0f);
glVertex2f(100.0f,50.0f);
glColor4f(0.0f,1.0f,0.0f,1.0f);
glVertex2f(450.0f,400.0f);
glColor4f(0.0f,0.0f,1.0f,1.0f);
glVertex2f(450.0f,50.0f);
glEnd();
glFlush();
}

这个程序的运行结果是黑色背景下的一个绚丽多彩的三角形。

这里你可以看到用OpenGL绘制图形非常容易,只需要几条简单的语句就能实现强大的功能。如果你缩放窗口,三角形也会跟着缩放。这是因为OnSize通过glViewport(0, 0, width, height)定义了视口和视口坐标。glViewport的第一、二个参数是视口左下角的像素坐标,第三、四个参数是视口的宽度和高度。

  OnSize中的glMatrixMode是用来设置矩阵模式的,它有三个选项:GL_MODELVIEW、GL_PROJECTION、 GL_TEXTURE。GL_MODELVIEW表示从实体坐标系转到人眼坐标系。GL_PROJECTION表示从人眼坐标系转到剪裁坐标系。 GL_TEXTURE表示从定义纹理的坐标系到粘贴纹理的坐标系的变换。

  glLoadIdentity初始化工程矩阵(project matrix);gluOrtho2D把工程矩阵设置成显示一个二维直角显示区域。

  这里我们有必要说一下OpenGL命令的命名原则。大多数OpenGL命令都是以"gl"开头的。也有一些是以"glu"开头的,它们来自OpenGL Utility。大多数"gl"命令在名字中定义了变量的类型并执行相应的操作。例如:glVertex2f就是定义了一个顶点,参数变量为两个浮点数,分别代表这个顶点的x、y坐标。类似的还有glVertex2d、glVertex2f、glVertex3I、glVertex3s、 glVertex2sv、glVertex3dv……等函数。

  那么,怎样画三角形呢?我们首先调用glColor4f(1.0f, 0.0f, 0.0f, 1.0f),把红、绿、蓝分量分别指定为1、0、0。然后我们用glVertex2f(100.0f, 50.0f)在(100,50)处定义一个点。依次,我们在(450,400)处定义绿点,在(450,50)处定义蓝点。然后我们用glEnd结束画三角形。但此时三角形还没画出来,这些命令还只是在缓冲区里,直到你调用glFlush函数,由glFlush触发这些命令的执行。OpenGL自动改变三角形顶点间的颜色值,使之绚丽多彩。

  还可通过glBegin再产生新的图形。glBegin(GLenum mode)参数有:

GL_POINTS,GL_LINES,GL_LINE_STRIP,GL_LINE_LOOP, GL_TRIANGLES,GL_TRIANGLE_STRIP,GL_TRIANGLE_FAN,GL_QUADS, GL_QUAD_STRIP, GL_POLYGON

  在glBegin和glEnd之间的有效函数有: glVertex,glColor,glIndex, glNormal,glTexCoord, glEvalCoord,glEvalPoint, glMaterial, glEdgeFlag

  

 四.小结

  1、如果要响应WM_SIZE消息,则一定要设置视口和矩阵模式。

  2、尽量把你全部的画图工作在响应WM_PAINT消息时完成。

  3、产生一个绘制环境要耗费大量的CPU时间,所以最好在程序中只产生一次,直到程序结束。

  4、尽量把你的画图命令封装在文档类中,这样你就可以在不同的视类中使用相同的文档,节省你编程的工作量。

  5、glBegin和glEnd一定要成对出现,这之间是对图元的绘制语句。

  glPushMatrix()和glPopMatrix()也一定要成对出现。glPushMatrix()把当前的矩阵拷贝到栈中。当我们调用 glPopMatrix时,最后压入栈的矩阵恢复为当前矩阵。使用glPushMatrix()可以精确地把当前矩阵保存下来,并用 glPopMatrix把它恢复出来。这样我们就可以使用这个技术相对某个物体放置其他物体。例如下列语句只使用一个矩阵,就能产生两个矩形,并将它们成一定角度摆放。

glPushMatrix();
   glTranslated( m_transX, m_transY, );
   glRotated( m_angle1, , , );
   glPushMatrix();
   glTranslated( , , );
   glRotated( m_angle2, , , );
   glColor4f(0.0f, 1.0f, 0.0f, 1.0f);
   glCallList(ArmPart);//ArmPart 且桓鼍卣竺
   glPopMatrix();
   glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
   glCallList(ArmPart);
  glPopMatrix();

6、解决屏幕的闪烁问题。我们知道,在窗口中拖动一个图形的时候,由于边画边显示,会出现闪烁的现象。在GDI中解决这个问题较为复杂,通过在内存中生成一个内存DC,绘画时让画笔在内存DC中画,画完后一次用Bitblt将内存DC“贴”到显示器上,就可解决闪烁的问题。在OpenGL中,我们是通过双缓存来解决这个问题的。一般来说,双缓存在图形工作软件中是很普遍的。双缓存是两个缓存,一个前台缓存、一个后台缓存。绘图先在后台缓存中画,画完后,交换到前台缓存,这样就不会有闪烁现象了。通过以下步骤可以很容易地解决这个问题:

  1) 要注意,GDI命令是没有设计双缓存的。我们首先把使用InvalidateRect(null)的地方改成InvalidateRect(NULL,FALSE)。这样做是使GDI的重画命令失效,由OpenGL的命令进行重画;

  2) 将像素格式定义成支持双缓存的(注:PFD_DOUBLEBUFFER和PFD_SUPPORT_GDI只能取一个,两者相互冲突)。

 pixelDesc.dwFlags =
   PFD_DRAW_TO_WINDOW |
   PFD_SUPPORT_OPENGL |
   PFD_DOUBLEBUFFER |
   PFD_STEREO_DONTCARE;

3) 我们得告诉OpenGL在后台缓存中画图,在视类的OnSize()的最后一行加入:glDrawBuffer (GL_BACK);

  4) 最后我们得把后台缓存的内容换到前台缓存中,在视类的OnPaint()的最后一行加入:SwapBuffers(dc.m_ ps.hdc)。

  7、生成简单的三维图形。我们知道,三维和二维的坐标系统不同,三维的图形比二维的图形多一个z坐标。我们在生成简单的二维图形时,用的是 gluOrtho2D;我们在生成三维图形时,需要两个远近裁剪平面,以生成透视效果。实际上,二维图形只是视线的近裁剪平面z= -1,远裁剪平面z=1;这样z坐标始终当作0,两者没有本质的差别。

  在上述基础之上,我们只做简单的变化,就可以生成三维物体。

  1) 首先,在OnSize()中,把gluOrtho2D(0.0, 500.0*aspect,0.0, 500.0)换成gluPerspective(60, aspect, 1, 10.0);这样就实现了三维透视坐标系的设置。该语句说明了视点在原点,透视角是60度,近裁剪面在z=1处,远裁剪面在z=10.0处。

  2) 在RenderScene()中生成三维图形;实际上,它是由多边形组成的。下面就是一个三维多边形的例子:

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, RedSurface)
   glBegin(GL_POLYGON);
   glNormal3d( 1.0, 0.0, 0.0);
   glVertex3d( 1.0, 1.0, 1.0);
   glVertex3d( 1.0, -1.0, 1.0);
   glVertex3d( 1.0, -1.0, -1.0);
   glVertex3d( 1.0, 1.0, -1.0);
   glEnd();

3) 我们使用glMaterialfv(GL_ FRONT_AND_BACK, GL_AMBIENT, RedSurface)这个函数来定义多边形的表面属性,为每一个平面的前后面设置环境颜色。当然,我们得定义光照模型,这只需在OnSize()的最后加上glEnable(GL_LIGHTING);RedSufFace是一个颜色分量数组,例如:RedSufFace[] ={1.0f,0.0f,0.0f};要定义某个平面的环境颜色,只需把glMaterialfv加在平面的定义前面即可,如上例所示。

  4) Z缓冲区的问题:要使三维物体显得更流畅,前后各面的空间关系正确,一定得使用Z缓冲技术;否则,前后各面的位置就会相互重叠,不能正确显示。Z缓冲区存储物体每一个点的值,这个值表明此点离人眼的距离。Z缓冲需要占用大量的内存和CPU时间。启用Z缓冲只需在OnSize()的最后加上glEnable (GL_DEPTH_TEST);要记住:在每次重绘之前,应使用glClear(GL_DEPTH_BUFFER_BIT)语句清空Z缓冲区。

  5) 现在已经可以正确地生成三维物体了,但还需要美化,可以使物体显得更明亮一些。我们用glLightfv函数定义光源的属性值。下例就定义了一个光源:

 glLightfv(GL_LIGHT0, GL_AMBIENT,LightAmbient);
  glLightfv(GL_LIGHT0, GL_DIFFUSE, LightDiffuse);
  glLightfv(GL_LIGHT0, GL_SPECULAR, LightSpecular);
  glLightfv(GL_LIGHT0, GL_POSITION, LightPosition);
  glEnable(GL_LIGHT0);

GL_LIGHT0是光源的标识号,标识号由GL_LIGHTi组成(i从0到GL_MAX_LIGHTS)。 GL_AMBIENT、GL_DIFFUSE、GL_SPECULAR、GL_POSITION分别定义光源的周围颜色强度、光源的散射强度、光源的镜面反射强度和光源的位置。

原文地址:http://www.cnblogs.com/phinecos/archive/2007/07/28/834916.html

【转】OPenGL MFC绘图的更多相关文章

  1. 【MFC】MFC绘图不闪烁——双缓冲技术

    MFC绘图不闪烁——双缓冲技术[转] 2010-04-30 09:33:33|  分类: VC|举报|字号 订阅 [转自:http://blog.163.com/yuanlong_zheng@126/ ...

  2. OpenGL C#绘图环境配置

    OpenGL C#绘图环境配置   OpenGL简介 OpenGL作为一种图形学编程接口已经非常流行, 虽然在大型游戏方面DirectX有一定的市场占有率, 但由于OpenGL的开放性,可移植性等优点 ...

  3. 关于MFC与OpenGL结合绘图区域用鼠标来控制图形的移动的坑

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/11773171.html 之前开发的导入多个模型,旋转,分别移动什么什么的,都是在纯OpenGL ...

  4. Qt OpenGL三维绘图

     简介 OpenGL是为三维绘图提供的标准应用编程接口. OpenGL处理的仅仅是三维绘图方面,而很少或是根本不提供图形用户界面编程方面的支持.OpenGL*应用程序的用户界面必须由其它工具包创建,比 ...

  5. MFC绘图(转载)

    http://www.cppblog.com/bestcln/articles/83189.html 1 几何对象的结构和类 为了使用绘图函数,应该先了解绘图所用到的几种表示几何对象的结构和类.这些结 ...

  6. MFC绘图相关GDI工具对象和函数介绍

    在利用MFC进行界面编程时,除了需要熟悉各种类型控件的操作外,还会经常遇到图形绘制和显示的问题,比如时频分析界面.图像处理界面等.处理这些软件界面开发问题时,不可避免地需要用到一系列GDI工具对象和相 ...

  7. MFC绘图基础

    ·MFC中三种坐标系统: 1.屏幕坐标系 坐标原点位于屏幕左上角 2.(非客户区)窗口坐标系 坐标原点位于窗口左上角(包括标题栏) 3.客户区坐标系 坐标原点位于客户区左上角(不包括标题栏) ·坐标系 ...

  8. MFC绘图小实验(1)

    这学期开了一门计算机图形学的课程,感觉蛮有趣的,所以想把书上的那些样例程序都实现一遍,了解基本的绘图原理和要点. 1,使用用户自定义的映射模式,设置窗口大小和视区相等的二维坐标系.视区中x轴水平向右为 ...

  9. MFC绘图基础——上机操作步骤

    一.上机之前的介绍 软件环境:VC++6.0 目的:熟悉基本的MFC框架搭建和了解界面 二.MFC上机操作步骤 1,在Windows桌面上运行VC++6.0. 2,新建项目工程文件. 3,在MFC 应 ...

随机推荐

  1. MFC改变对话框背景颜色

    原文链接: http://blog.sina.com.cn/s/blog_59955afc0100spjz.html 方法一:调用CWinApp类的成员函数SetDialogBkColor来实现. - ...

  2. eclipse3.7之后,在引入的jquery的js文件打红叉

    使用Eclipse 3.7时,工程中加入jquery.xx.js文件,发现该文件出现错误提示(红×),但使用Eclipse 3.7以前的版本就不会出现这种提示.是因为Eclipse 3.7在.proj ...

  3. log4j 输出到 数据库

    # LOG4J配置 log4j.rootCategory=ERROR,stdout,errorfile,jdbc # 控制台输出 log4j.appender.stdout=org.apache.lo ...

  4. Android开发15——给TextView加上滚动条

    给TextView加上滚动条非常简单,只需要把TextView标签放在ScrollView标签中 <ScrollView android:layout_width="wrap_cont ...

  5. Silverlight从客户端上传文件到服务器

    这里介绍的是一种利用WebClient手动发送Stream到服务器页面的上传文件方法. 一.服务器接收文件 这里使用一个ASHX页面来接收和保存Silverlight传来的Stream,页面代码如下: ...

  6. 重温java中的String,StringBuffer,StringBuilder类

    不论什么一个系统在开发的过程中, 相信都不会缺少对字符串的处理. 在 java 语言中, 用来处理字符串的的类经常使用的有 3 个: String.StringBuffer.StringBuilder ...

  7. mkdir命令的-p和-m

    mkdir命令是常用的命令,用来建立空目录,它还有2个常用参数: -m, --mode=模式 设定权限 (类似 chmod),而不是 rwxrwxrwx 减 umask -p, --parents 需 ...

  8. angular -- $route API翻译

    $route -$routeProvider服务 -依赖ngRoute模块 $route能够在路径发生改变的时候,渲染不同的视图,调用不同的控制器.它监测了$location.url(),然后根据路径 ...

  9. tomcat Can't create cache file!

    ) at javax.imageio.ImageIO.write(ImageIO.java:1558) ... 119 more Caused by: java.io.IOException: 系统找 ...

  10. js中特殊转换字符为html标签

    function htmlEncode(text){ return text.replace(/&/g,'&amp').replace(/\"/g,'&quot'). ...