参考:http://www.cppblog.com/wicbnu/archive/2013/03/18/198565.html

我太喜欢用dfs和回溯法了,但是这些暴力的方法加上剪枝之后复杂度依然是很高,显然不能达到题目的要求。

这个时候应该考虑动态规划,并且要复杂度尽量接近O(n^2)的算法。

下面这个方法更加简洁:自长到短找到回文串后,往后dfs,并记录递归深度表示并更新最小划分数。http://fisherlei.blogspot.com/2013/03/leetcode-palindrome-partitioning-ii.html


Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

题解:
类似矩阵连乘的动归思路。
dp[i][j]=min(dp[i][k]+dp[k+1][j]+1), i<=k<j.
但是用这个方程的时间是O(n^3),简化dp[i][j]为dp[i],表示从0到i的minCut.
dp[i]=min(dp[k]+1,       dp[k]+i-k), 0<=k<i.

 (s[k+1, i]是回文串)   (s[k+1, i]不是回文串)

具体代码参见上述链接。

值得注意的是,计算是否为回文数的过程中也要用记忆化搜索才能减少重复比较的次数,it's smart~

MY CODE:

 //
// ParlindromePartitioningII.cpp
// SJMcode
//
// Created by Jiamei Shuai on 13-8-31.
// Copyright (c) 2013年 Jiamei Shuai. All rights reserved.
// #include <vector>
#include <iostream>
#include <string.h>
#include <assert.h>
using namespace std; // 两处优化:
// 1.已经计算过的区间的最短划分次数用map纪录
// 2.回文串的判断结果也要用map记录 class Solution{
public:
int *minCutMat;
vector<vector<int> > map; int IsPalindrome(string &s, int i, int j)
{
if(i>j) return false;
if(map[i][j]!= -)
return map[i][j];
if(i==j)
return map[i][j]=; if(s[i]!=s[j])
return map[i][j]=;
else{
if(j-i==)
return map[i][j]=;
else
return map[i][j]=IsPalindrome(s,i+,j-);
}
} int minCut(string s) // 动态规划 d[i] = min{d[k]+1, d[k]+i-k}, 0<=k<i
{
int n = (int)s.length();
if(n==||n==)
return ; vector<int> min, vtmp;
min.clear();vtmp.clear();map.clear();
for(int i=; i<s.size(); i++)
{
min.push_back();
vtmp.push_back(-);
}
for(int i=; i<s.size(); i++)
map.push_back(vtmp); int tmp, ans;
for(int inter = ; inter<n; inter++)
{
if(IsPalindrome(s, , inter))
min[inter]=;
else{
ans = n+;
for(int k = ; k < inter; k++)
{
if(IsPalindrome(s, k+, inter))
tmp = min[k]+;
else
tmp = min[k] + inter - k;
if(tmp < ans)
ans = tmp;
}
min[inter] = ans;
}
}
return min[n-];
} // 较复杂的算法用dfs或者回溯法都太慢了,加上了所有的剪枝策略还是会超时
// 这种情况大多数都应该使用动态规划,要多总结,少犯错误。 int minCut2(string s) // 总是超时,复杂度太高
//这个方法相当于类似矩阵链乘的算法,dp[i][j] = min(dp[i][k]+dp[k+1][j]), i<=k<j,复杂度是O(n^3)
//可以简化dp[i][j]为dp[i],表示从0到i的minCut
{
int minCutNum = (int)s.size();
int len = (int)s.size(); minCutMat = new int[len*len]; // 注意new int[]而不是()
memset(minCutMat, -, len*len*sizeof(int)); vector<int> vtmp;
vtmp.clear();map.clear();
for(int i=; i<s.size(); i++)
vtmp.push_back(-);
for(int i=; i<s.size(); i++)
map.push_back(vtmp); // Notice: if the string need no split and itself a palindrome, how to handle it? 注意细节
if(IsPalindrome(s, , len-)) return ; split(s, , len-, minCutNum); delete []minCutMat; return minCutNum;
} int split(string &s, int begin, int end, int &minCutNum)
{
if(begin == end) return ; if(IsPalindrome(s, begin, end)) return ; int minCurrentSplit = (int)s.size();
int left,right; for(int i = begin; i < end; i++)
{
assert(begin*s.size()+i < s.size()*s.size());
assert(begin*s.size()+i < s.size()*s.size());
if(minCutMat[begin*s.size()+i] >= )
left = minCutMat[begin*s.size()+i];
else
{
left = split(s, begin, i, minCutNum);
minCutMat[begin*s.size()+i] = left;
}
if(left >= minCutNum) { return <<;} if(minCutMat[(i+)*s.size()+end] >= )
right = minCutMat[(i+)*s.size()+end];
else
{
right = split(s, i+, end, minCutNum);
minCutMat[(i+)*s.size()+end] = right;
}
if(right >= minCutNum) return <<; int tmp = left + + right; minCurrentSplit = min(tmp, minCurrentSplit); if(begin == && end == s.size()-) // outer loop
minCutNum = min(tmp, minCutNum);
}
return minCurrentSplit;
} }; int main()
{
Solution sln;
cout << sln.minCut("apjesgpsxoeiokmqmfgvjslcjukbqxpsobyhjpbgdfruqdkeiszrlmtwgfxyfostpqczidfljwfbbrflkgdvtytbgqalguewnhvvmcgxboycffopmtmhtfizxkmeftcucxpobxmelmjtuzigsxnncxpaibgpuijwhankxbplpyejxmrrjgeoevqozwdtgospohznkoyzocjlracchjqnggbfeebmuvbicbvmpuleywrpzwsihivnrwtxcukwplgtobhgxukwrdlszfaiqxwjvrgxnsveedxseeyeykarqnjrtlaliyudpacctzizcftjlunlgnfwcqqxcqikocqffsjyurzwysfjmswvhbrmshjuzsgpwyubtfbnwajuvrfhlccvfwhxfqthkcwhatktymgxostjlztwdxritygbrbibdgkezvzajizxasjnrcjwzdfvdnwwqeyumkamhzoqhnqjfzwzbixclcxqrtniznemxeahfozp"); return ;
}

附上更简洁的算法:

1:        int minCut(string s) {
: int len = s.size();
: int D[len+];
: bool P[len][len];
: //the worst case is cutting by each char
: for(int i = ; i <= len; i++)
: D[i] = len-i;
: for(int i = ; i < len; i++)
: for(int j = ; j < len; j++)
: P[i][j] = false;
: for(int i = len-; i >= ; i--){
: for(int j = i; j < len; j++){
: if(s[i] == s[j] && (j-i< || P[i+][j-])){
: P[i][j] = true;
: D[i] = min(D[i],D[j+]+);
: }
: }
: }
: return D[]-;
: }

以及使用回溯+剪枝的方法:

:    int minCut(string s) {
: int min = INT_MAX;
: DFS(s, , , min);
: return min;
: }
: void DFS(string &s, int start, int depth, int& min)
: {
: if(start == s.size())
: {
: if(min> depth-)
: min = depth-;
: return;
: }
: for(int i = s.size()-; i>=start; i--) //find the biggest palindrome first
: {
: if(isPalindrome(s, start, i))
: {
: DFS(s, i+, depth+, min);
: }
:
:
: }
: }
: bool isPalindrome(string &s, int start, int end)
: {
: while(start< end)
: {
: if(s[start] != s[end])
: return false;
: start++; end--;
: }
: return true;
: }

总结下来,要学会分析问题,不能一成不变的只用一个算法,可能会非常低效。

Leetcode: Palindrome Partitioning II的更多相关文章

  1. [LeetCode] Palindrome Partitioning II 解题笔记

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  2. LeetCode: Palindrome Partitioning II 解题报告

    Palindrome Partitioning II Given a string s, partition s such that every substring of the partition ...

  3. [LeetCode] Palindrome Partitioning II 拆分回文串之二

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  4. [leetcode]Palindrome Partitioning II @ Python

    原题地址:https://oj.leetcode.com/problems/palindrome-partitioning-ii/ 题意: Given a string s, partition s  ...

  5. LeetCode:Palindrome Partitioning,Palindrome Partitioning II

    LeetCode:Palindrome Partitioning 题目如下:(把一个字符串划分成几个回文子串,枚举所有可能的划分) Given a string s, partition s such ...

  6. leetcode@ [131/132] Palindrome Partitioning & Palindrome Partitioning II

    https://leetcode.com/problems/palindrome-partitioning/ Given a string s, partition s such that every ...

  7. 【leetcode】Palindrome Partitioning II

    Palindrome Partitioning II Given a string s, partition s such that every substring of the partition ...

  8. leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II

    131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...

  9. 【LeetCode】132. Palindrome Partitioning II

    Palindrome Partitioning II  Given a string s, partition s such that every substring of the partition ...

随机推荐

  1. Kinect 总结---Kinect基本认识

    玩了Kinect也有差不多一年的时间了,觉得Kinect是个挺好玩挺有未来的玩意.但是很经常做完了一次,下次又得重新看源码,没有把Kinect里的知识总结起来变为自己的知识,所以特意重新总结一下自己使 ...

  2. Unity StrangeIoC框架

    Unity StrangeIoC框架  http://blog.csdn.net/y1196645376/article/details/52746251    

  3. 初识virtual memory

    一.先谈几个重要的东西 virtual memory是一个抽象概念,书上的原文是"an abstraction of main memory known as virtual memory& ...

  4. windows7下Wamp安装php扩展imagick(转)

    ImageMagick是一套功能强大.稳定而且免费的工具集和开发包,可以用来读.写和处理超过185种基本格式的图片文件,包括流行的TIFF, JPEG, GIF, PNG, PDF以及PhotoCD等 ...

  5. lcok-free简易实现

    lock-free是一种基于原子变量类来构建的非阻塞同步算法. 比较并交换(compare-and-swap) 我们经常会先检查某项东西,然后对其进行修改,如if(X...) {X=...}.这种行为 ...

  6. iOS多线程-RunLoop简介

    什么是RunLoop? 从字面上来看是运行循环的意思. 内部就是一个do{}while循环,在这个循环里内部不断的处理各种任务(比如:source/timer/Observer) RunLoop的存在 ...

  7. gulp工具rename

    gulp 对文件批量重命名 gulp-rename重命名 var gulp = require('gulp'); var rename = require("gulp-rename" ...

  8. 阿里无线前端性能优化指南 (Pt.1 加载优化)

    前言 阿里无线前端团队在过去一年对所负责业务进行了全面的性能优化.以下是我们根据实际经验总结的优化指南,希望对大家有所帮助. 第一部分仅包括数据加载期优化. 图片控制 对于网页特别是电商类页面来说,图 ...

  9. Java的国际化(i18n)

    http://blog.csdn.net/csuliky/article/details/4225800 1. Java国际化简介 Java既然作为一个跨平台的语言就必然要在各种不同的语言环境中使用, ...

  10. maven实战(02)_坐标详解

    (一)  何为mave坐标 maven的世界中拥有数量非常巨大的构件,也就是平时用的一些jar,war等文件. maven定义了这样一组规则: 世界上任何一个构件都可以使用Maven坐标唯一标志,ma ...