# -*- coding: utf-8 -*-
from pandas import read_csv
import numpy as np
from sklearn.datasets.base import Bunch
import pickle # 导入cPickle包并且取一个别名pickle #持久化类
from sklearn.feature_extraction.text import TfidfVectorizer
import jieba
import operator # 排序用
from sklearn import metrics
from sklearn.externals import joblib
import xlwt def importSmallContentdata(file, data, art, label, f, Slast, Snew):
dataset = read_csv(file)
Sdata = dataset.values[:, :]
print(type(Sdata)) if f == 1:
for line in Sdata:
ls = []
ls.append(line[14])
ls.append(line[15])
ls.append(line[16])
ls.append(line[17])
Slast.append(ls)
# print(len(Slast))
# print("需要对照的小类数据准备完毕") '''找到smalli不为0的装入Straindata,把数据分开'''
for smalli in range(14, 18):
# print(smalli)
count = 0
for line in Sdata:
count = count + 1
if line[smalli] != '' and line[smalli] != 0:
k = 1
ls = []
for i in line:
if k == 1:
#art.append(i)
k = k + 1
continue
if k == 11: # k为14并不代表是line[14],因为line是从0开始
break
ls.append(float(i))
k = k + 1
data.append(ls)
label.append(line[smalli])
if f == 1:
Snew.append(count) for line in Sdata:
art.append(line[0])
# print("为什么都超限",len(Snew)) def getKvector(train_set, vec, n):
class obj:
def __init__(self):
self.key = 0
self.weight = 0.0 nonzero = train_set.tdm.nonzero()
k = 0
lis = []
gather = []
p = -1
for i in nonzero[0]:
p = p + 1
if k == i:
a = obj()
a.key = nonzero[1][p]
a.weight = train_set.tdm[i, nonzero[1][p]]
lis.append(a)
else:
lis.sort(key=lambda obj: obj.weight, reverse=True) # 对链表内为类对象的排序
gather.append(lis)
while k < i:
k = k + 1
lis = []
a = obj()
a.key = nonzero[1][p]
a.weight = train_set.tdm[i, nonzero[1][p]]
lis.append(a)
gather.append(lis) # gather存储的是每条数据的事实描述的特征向量,已经从小到大排好了,只不过每个存既有key又有weight # 我们只要key,不再需要weight sj = 1
for i in gather:
ls = []
for j in i:
sj = sj + 1
ls.append(float(j.key))
while sj <= n:
sj = sj + 1
ls.append(-1)
sj = 1
vec.append(ls) '''读取停用词''' def _readfile(path):
with open(path, "rb") as fp:
content = fp.read()
return content ''' 读取bunch对象''' def _readbunchobj(path):
with open(path, "rb") as file_obj:
bunch = pickle.load(file_obj)
return bunch '''写入bunch对象''' def _writebunchobj(path, bunchobj):
with open(path, "wb") as file_obj:
pickle.dump(bunchobj, file_obj) def buildtrainbunch(bunch_path, art_train, trainlabel):
bunch = Bunch(label=[], contents=[])
for item1 in trainlabel:
bunch.label.append(item1) # trainContentdatasave=[] #存储所有训练和测试数据的分词
for item2 in art_train:
item2 = str(item2)
item2 = item2.replace("\r\n", "")
item2 = item2.replace(" ", "")
content_seg = jieba.cut(item2)
save2 = ''
for item3 in content_seg:
if len(item3) > 1 and item3 != '\r\n':
# trainContentdatasave.append(item3)
save2 = save2 + "," + item3
bunch.contents.append(save2)
with open(bunch_path, "wb") as file_obj:
pickle.dump(bunch, file_obj)
print("构建训练数据文本对象结束!!!") def buildtestbunch(bunch_path, art_test, testlabel):
bunch = Bunch(label=[], contents=[])
for item1 in testlabel:
bunch.label.append(item1) # testContentdatasave=[] #存储所有训练和测试数据的分词
for item2 in art_test:
item2 = str(item2)
item2 = item2.replace("\r\n", "")
item2 = item2.replace(" ", "")
content_seg = jieba.cut(item2)
save2 = ''
for item3 in content_seg:
if len(item3) > 1 and item3 != '\r\n':
# testContentdatasave.append(item3)
save2 = save2 + "," + item3
bunch.contents.append(save2)
with open(bunch_path, "wb") as file_obj:
pickle.dump(bunch, file_obj)
print("构建测试数据文本对象结束!!!") def vector_space(stopword_path, bunch_path, space_path):
stpwrdlst = _readfile(stopword_path).splitlines() # 读取停用词
bunch = _readbunchobj(bunch_path) # 导入分词后的词向量bunch对象
# 构建tf-idf词向量空间对象
tfidfspace = Bunch(label=bunch.label, tdm=[], vocabulary={}) # 权重矩阵tdm,其中,权重矩阵是一个二维矩阵,tdm[i][j]表示,第j个词(即词典中的序号)在第i个类别中的IF-IDF值 # 使用TfidVectorizer初始化向量空间模型
vectorizer = TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.5, min_df=0.0001, use_idf=True,
max_features=15000)
# print(vectorizer)
# 文本转为词频矩阵,单独保存字典文件
tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
tfidfspace.vocabulary = vectorizer.vocabulary_
# 创建词袋的持久化
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!") def testvector_space(stopword_path, bunch_path, space_path, train_tfidf_path):
stpwrdlst = _readfile(stopword_path).splitlines() # 把停用词变成列表
bunch = _readbunchobj(bunch_path)
tfidfspace = Bunch(label=bunch.label, tdm=[], vocabulary={})
# 导入训练集的TF-IDF词向量空间 ★★
trainbunch = _readbunchobj(train_tfidf_path)
tfidfspace.vocabulary = trainbunch.vocabulary vectorizer = TfidfVectorizer(stop_words=stpwrdlst, sublinear_tf=True, max_df=0.7, vocabulary=trainbunch.vocabulary,
min_df=0.001) tfidfspace.tdm = vectorizer.fit_transform(bunch.contents)
_writebunchobj(space_path, tfidfspace)
print("if-idf词向量空间实例创建成功!!!")
if __name__=="__main__":  

    Stestdata = []
Stestlabel = []
Sart_test = [] Slast = []
Snew = [] '''============================先导入数据=================================='''
file_test = 'F:/goverment/excel operating/all_tocai_train.csv' importSmallContentdata(file_test, Stestdata, Sart_test, Stestlabel, 1, Slast, Snew)
#print(Sart_test)
# print("Stestlabel" ,len(Stestlabel)) # print("小类导入数据完毕") # print("大类标签导入完毕")#共1329*4 '''==========================================================tf-idf对Bar进行文本特征提取============================================================================'''
# 导入分词后的词向量bunch对象
test_bunch_path = "F:/goverment/excel operating/trainbunch.bat"
test_space_path = "F:/goverment/excel operating/traintfdifspace.dat"
stopword_path = "F:/goverment/excel operating/hlt_stop_words.txt" '''============================================================tf-idf对Sart进行文本特征提取==============================================================================''' buildtestbunch(test_bunch_path, Sart_test, Stestlabel) testvector_space(stopword_path, test_bunch_path, test_space_path, test_space_path) test_set = _readbunchobj(test_space_path) '''测试数据''' #获取已知 id 找 文本
dic={}
for i in test_set.vocabulary.keys():
dic[test_set.vocabulary[i]]=i
#print(dic)

test_set分为三部分

查看test_set.tdm

print(test_set.tdm)
(0, 3836) 0.0963936202992
(0, 3780) 0.264296259679
(0, 3329) 0.237469184748
(0, 3299) 0.227380842236
(0, 2870) 0.169936848661
(0, 2708) 0.196690909187
(0, 2576) 0.323459018807
(0, 2431) 0.293877639243
(0, 2424) 0.269994966851
(0, 2385) 0.16602904382
(0, 2174) 0.250705638585
(0, 2128) 0.223109589522
(0, 1998) 0.323459018807
(0, 1099) 0.237469184748
(0, 795) 0.293877639243
(0, 687) 0.306155021043
(1, 4127) 0.158745878875
(1, 4075) 0.187148908824
(1, 4066) 0.275285441964
(1, 3506) 0.325600030259
(1, 3329) 0.271913955503
(1, 2512) 0.30263228246
(1, 2385) 0.190111462595
(1, 2121) 0.370376566292
(1, 1555) 0.325600030259
: :
(1437, 790) 0.216605181177
(1437, 784) 0.30372112351
(1437, 558) 0.20127256985
(1438, 4279) 0.240643793924
(1438, 4276) 0.118606614328
(1438, 4184) 0.148565457218
(1438, 4107) 0.185731268834
(1438, 4014) 0.154101569448
(1438, 3877) 0.220155031015
(1438, 3298) 0.245309299377
(1438, 2933) 0.318303833306
(1438, 2383) 0.0923818814565
(1438, 2378) 0.213187531379
(1438, 2092) 0.263926619628
(1438, 2091) 0.263926619628
(1438, 1969) 0.15613334884
(1438, 1802) 0.144868484461
(1438, 1714) 0.256704677923
(1438, 1447) 0.309102127772
(1438, 1411) 0.226077842579
(1438, 1010) 0.116062811153
(1438, 997) 0.263926619628
(1438, 648) 0.15613334884
(1438, 640) 0.157728638816
(1438, 565) 0.232695024234

打印出分词及权重

    #各个文本的词语及权重
dataset = read_csv(file_test)
Sdata = dataset.values[:, :]
print(len(Sdata)) #print(nonzero[1]) myexcel = xlwt.Workbook()
sheet = myexcel.add_sheet("sheet1")
for k in range(len(Sdata)):#遍历每一条文本
nonzero=test_set.tdm[k].nonzero()
ls=[]
for i in range(len(nonzero[1])):
b=test_set.tdm[k, nonzero[1][i]]*100 #test_set.tdm[k, nonzero[1][i]]是第k条文本中,第i个权重非零的词权重
a= dic[nonzero[1][i]] +" "+str(round(b,2))+"%"
ls.append(a) for i in range(len(nonzero[1])):
sheet.write(k,i,str(ls[i])) myexcel.save("out_vector.xls")

运行结果如下:

 画出3d图:还可以转动呢

python文本挖掘输出权重,词频等信息,画出3d权重图的更多相关文章

  1. Python 日志输出中添加上下文信息

    Python日志输出中添加上下文信息 除了传递给日志记录函数的参数(如msg)外,有时候我们还想在日志输出中包含一些额外的上下文信息.比如,在一个网络应用中,可能希望在日志中记录客户端的特定信息,如: ...

  2. Caffe 根据log信息画出loss,accuracy曲线

    在执行训练的过程中,若指定了生成log信息,log信息包含初始化,网络结构初始化和训练过程随着迭代数的loss信息. 注意生成的log文件可能没有.log后缀,那么自己加上.log后缀.如我的log信 ...

  3. CSS3简单画出3d图形

    1.气球 2.泳圈 1.2两图实现代码分别如下: <html> <head> <meta charset="utf-8"> <meta h ...

  4. 使用pangolin库画出轨迹

    https://github.com/stevenlovegrove/Pangolin cmake_minimum_required(VERSION 2.8) project(chapter3) ) ...

  5. 【转】Python之向日志输出中添加上下文信息

    [转]Python之向日志输出中添加上下文信息 除了传递给日志记录函数的参数(如msg)外,有时候我们还想在日志输出中包含一些额外的上下文信息.比如,在一个网络应用中,可能希望在日志中记录客户端的特定 ...

  6. 关于python的中国历年城市天气信息爬取

    一.主题式网络爬虫设计方案(15分)1.主题式网络爬虫名称 关于python的中国城市天气网爬取 2.主题式网络爬虫爬取的内容与数据特征分析 爬取中国天气网各个城市每年各个月份的天气数据, 包括最高城 ...

  7. [python] 常用正则表达式爬取网页信息及分析HTML标签总结【转】

    [python] 常用正则表达式爬取网页信息及分析HTML标签总结 转http://blog.csdn.net/Eastmount/article/details/51082253 标签: pytho ...

  8. Python日志输出——logging模块

    Python日志输出——logging模块 标签: loggingpythonimportmodulelog4j 2012-03-06 00:18 31605人阅读 评论(8) 收藏 举报 分类: P ...

  9. python爬虫之12306网站--车站信息查询

    python爬虫查询车站信息 目录: 1.找到要查询的url 2.对信息进行分析 3.对信息进行处理 python爬虫查询全拼相同的车站 目录: 1.找到要查询的url 2.对信息进行分析 3.对信息 ...

随机推荐

  1. [调参]CV炼丹技巧/经验

    转自:https://www.zhihu.com/question/25097993 我和@杨军类似, 也是半路出家. 现在的工作内容主要就是使用CNN做CV任务. 干调参这种活也有两年时间了. 我的 ...

  2. Tinkoff Challenge - Elimination Round B. Igor and his way to work(dfs+优化)

    http://codeforces.com/contest/793/problem/B 题意:一个地图,有起点和终点还有障碍点,求从起点出发到达终点,经过的路径上转弯次数是否能不超过2. 思路: 直接 ...

  3. mysql Alter 的问题

    转自:https://blog.csdn.net/c_enhui/article/details/50903351 -- 设置或删除列的默认值.该操作会直接修改.frm文件而不涉及表数据. 此操作很快 ...

  4. windows下的IO模型之选择(select)模型

    1.选择(select)模型:选择模型:通过一个fd_set集合管理套接字,在满足套接字需求后,通知套接字.让套接字进行工作. 选择模型的核心是FD_SET集合和select函数.通过该函数,我们可以 ...

  5. Android下移植tcpflow

    tcpflow是linux平台下的开源抓包工具,它能监听网络url,获取http请求的各种数据.tcpflow可以说是tcpdump的简约版.要想将tcpflow移植到Android平台中,就需要通过 ...

  6. CORS请求

    一.简介 CORS(跨域资源共享 Cross-origin resource sharing)是实现跨域的一种常用方式.实现CORS通信的关键是服务器.只要服务器实现了CORS接口,就可以跨源通信 二 ...

  7. POJ 3279 Fliptile 状态压缩,思路 难度:2

    http://poj.org/problem?id=3279 明显,每一位上只需要是0或者1, 遍历第一行的所有取值可能,(1<<15,时间足够)对每种取值可能: 对于第0-n-2行,因为 ...

  8. vue: alias

    resolve: { extensions: ['.js', '.vue', '.json'], alias: { '@': path.resolve('src') } }

  9. Nginx安装配置详解

    http://nginx.org/download/ 下载对应的Nginx 安装nginx之前需要安装依赖包 yum install gcc gcc-c++ zlib-devel pcre-devel ...

  10. tcpdump学习笔记

    简介     简单的说,tcpdump就是一个抓包工具,类似Wireshark.     tcpdump可以根据使用者的定义过滤/截取网络上的数据包,并进行分析.tcpdump可以将数据包的头部完全接 ...