BZOJ1089:[SCOI2003]严格n元树(DP,高精度)
Description
如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d
(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:
给出n, d,编程数出深度为d的n元树数目。
Input
仅包含两个整数n, d( 0 < n < = 32, 0 < = d < = 16)
Output
仅包含一个数,即深度为d的n元树的数目。
Sample Input
2 2
2 3
【样例输入3】
3 5
Sample Output
3
【样例输出2】
21
【样例输出2】
58871587162270592645034001
Solution
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (509)
using namespace std; struct bign
{
int len, s[N];
bign ()
{
memset(s, , sizeof(s));
len = ;
}
bign (int num) { *this = num; }
bign (const char *num) { *this = num; }
bign operator = (const int num)
{
char s[N];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char *num)
{
for(int i = ; num[i] == ''; num++) ; //去前导0
len = strlen(num);
for(int i = ; i < len; i++) s[i] = num[len-i-] - '';
return *this;
}
bign operator + (const bign &b) const //+
{
bign c;
c.len = ;
for(int i = , g = ; g || i < max(len, b.len); i++)
{
int x = g;
if(i < len) x += s[i];
if(i < b.len) x += b.s[i];
c.s[c.len++] = x % ;
g = x / ;
}
return c;
}
bign operator += (const bign &b)
{
*this = *this + b;
return *this;
}
void clean()
{
while(len > && !s[len-]) len--;
}
bign operator * (const bign &b) //*
{
bign c;
c.len = len + b.len;
for(int i = ; i < len; i++)
{
for(int j = ; j < b.len; j++)
{
c.s[i+j] += s[i] * b.s[j];
}
}
for(int i = ; i < c.len; i++)
{
c.s[i+] += c.s[i]/;
c.s[i] %= ;
}
c.clean();
return c;
}
bign operator *= (const bign &b)
{
*this = *this * b;
return *this;
}
bign operator - (const bign &b)
{
bign c;
c.len = ;
for(int i = , g = ; i < len; i++)
{
int x = s[i] - g;
if(i < b.len) x -= b.s[i];
if(x >= ) g = ;
else
{
g = ;
x += ;
}
c.s[c.len++] = x;
}
c.clean();
return c;
}
bign operator -= (const bign &b)
{
*this = *this - b;
return *this;
}
bign operator / (const bign &b)
{
bign c, f = ;
for(int i = len-; i >= ; i--)
{
f = f*;
f.s[] = s[i];
while(f >= b)
{
f -= b;
c.s[i]++;
}
}
c.len = len;
c.clean();
return c;
}
bign operator /= (const bign &b)
{
*this = *this / b;
return *this;
}
bign operator % (const bign &b)
{
bign r = *this / b;
r = *this - r*b;
return r;
}
bign operator %= (const bign &b)
{
*this = *this % b;
return *this;
}
bool operator < (const bign &b)
{
if(len != b.len) return len < b.len;
for(int i = len-; i >= ; i--)
{
if(s[i] != b.s[i]) return s[i] < b.s[i];
}
return false;
}
bool operator > (const bign &b)
{
if(len != b.len) return len > b.len;
for(int i = len-; i >= ; i--)
{
if(s[i] != b.s[i]) return s[i] > b.s[i];
}
return false;
}
bool operator == (const bign &b)
{
return !(*this > b) && !(*this < b);
}
bool operator != (const bign &b)
{
return !(*this == b);
}
bool operator <= (const bign &b)
{
return *this < b || *this == b;
}
bool operator >= (const bign &b)
{
return *this > b || *this == b;
}
string str() const
{
string res = "";
for(int i = ; i < len; i++) res = char(s[i]+'') + res;
return res;
}
}; istream& operator >> (istream &in, bign &x)
{
string s;
in >> s;
x = s.c_str();
return in;
} ostream& operator << (ostream &out, const bign &x)
{
out << x.str();
return out;
} bign Pow(bign a,int b)
{
bign ans=;
for (int i=; i<=b; ++i)
ans=ans*a;
return ans;
} bign f[],ans;
int n,d; int main()
{
scanf("%d%d",&n,&d);
if (!d){puts(""); return ;}
f[]=;
for (int i=; i<=d; ++i)
f[i]=Pow(f[i-],n)+;
cout<<f[d]-f[d-];
}
BZOJ1089:[SCOI2003]严格n元树(DP,高精度)的更多相关文章
- bzoj1089 [SCOI2003]严格n元树(dp+高精)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1899 Solved: 954[Submit][Statu ...
- 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...
- BZOJ1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 762 Solved: 387[Submit][Status ...
- [BZOJ1089][SCOI2003]严格n元树(递推+高精度)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...
- BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度
题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...
- P4295 [SCOI2003]严格N元树 DP
思路:DP 提交:\(5\)次 错因:2次高精写错(我太菜了),2次写错特判 题解: 设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有 \[f[i]=pow(f[i-1], ...
- bzoj1089严格n元树——DP+高精度
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089 f[d]为深度小于等于d的树的个数: 从根节点出发,有n个子树,乘法原理可以得到 f[ ...
- bzoj 1089 [SCOI2003]严格n元树(DP+高精度)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1250 Solved: 621[Submit][Statu ...
随机推荐
- 利用PHP的debug_backtrace函数,实现PHP文件权限管理、动态加载
简述 可能大家都知道,php中有一个函数叫debug_backtrace,它可以回溯跟踪函数的调用信息,可以说是一个调试利器. 好,来复习一下 01 one(); 02 03 function one ...
- MVC官方教程索引
1.MVC教程首页http://www.asp.net/learn/mvc/?lang=cs 2.MVC概况2.1创建一个基于数据库的"电影"web应用http://www.asp ...
- Autocomplete 自动提示
<!doctype html> <html lang="en"> <head> <meta charset="utf-8&quo ...
- [javaSE] 多线程通信(等待-唤醒机制)
两个线程操作同一个资源,比如,输入和输出,操作同一个对象,此时两个线程会争夺cpu的执行权,随机的进行切换.我们想实现先输入再输出,顺序的执行 目标对象定义一个标记字段,进行判断,wait()和not ...
- OpenGL开发入门
1.OpenGL简介: OpenGL ES (OpenGL for Embedded Systems) 是 OpenGL三维图形 API 的子集,针对手机.PDA和游戏主机等嵌入式设备而设计.该API ...
- IO流的复习笔记
IO字节流和缓冲流 IO字节流的读取和写入 读取 import java.io.FileInputStream; import java.io.FileNotFoundException; impor ...
- 记Spring与跨域
跨域 简单理解就是跨域名 (ip+端口) 在 52liming.com 中向demo.com中发起Ajax请求, 出于安全考虑会进行拦截 参考: 浏览器的同源策略 什么是JS跨域访问? 跨域资源共享 ...
- Angular中引入Bootstrap部分样式失效以及Jquery的$无法识别
大多数同学在模仿慕课网的时候可能会遇到引入bootstrap和jquery样式部分失效以及$符号报错,这里为大家提供正确的解决方案. 可能大家在引入试过col-md之后觉得bootstrap是ok的, ...
- sublime Text3汉化和激活注册码
sublimeText3 很不错,前面几天下了vscore学习Node.js,感觉有点懵,今天下载sublimeText3,遇到的一些小问题,在这里说说: 百度云:https://pan.baidu. ...
- html5 区块与内联div 与span html块级元素
HTML <div> 和 <span> HTML 列表 HTML 类 可以通过 <div> 和 <span> 将 HTML 元素组合起来. HTML 块 ...