嘟嘟嘟

题目大意就是对于一个m面的骰子,回答这么两个问题:

1.求连续扔n次都是同一数字的期望次数。

2.求连续扔n次每一次数字都不相同的期望次数。

对于期望dp特别菜的我来说,这道题已经算是很难了。反正是抠了一天……

我们先看第一问。

令fi表示连续 i 次数字都相同的期望,那么要考虑他能转化到什么状态,而不是由什么状态转化过来。

转化到什么状态要考虑到所有情况:包括扔的数字相同的和不同两种情况,于是转移方程就写出来了:

  fi = 1 / m * fi+1 + (m - 1) / m * f1.

因为如果扔到的数字不同,就退回到了f1.

然而这个方程是有后效性的,所以变一个形:

  fi+1 = m * fi - (m - 1) * f1

还可以再变,相邻两项作差得:

  fi+1 - fi = m * (fi - fi-1)

当i = 1时,a1 = f1 = 1

当i >= 2时,令ai = fi - fi-1

于是ai就是一个公比为m的等比数列。

然后很显然

  fn = Sn = a1 * (1 - qn) / (1 - q) = (1 - mn) / (1 - m).

用快速幂求解即可。

然后是第二问:

令f[i]表示抛出 i 次不一样的数字的期望,则

  fi = (m - i) / m * fi+1 + 1/ m * fi + 1 / m * fi-1 + 1/ m * fi-2 +……+ 1 / m * f1.

因为有1 / m的概率和第fj次是相同的。

然后每一次将fi累加到fn就行了。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 1e6 + ; int T, d, m, n;
db dp[maxn]; int quickpow(int a, int b)
{
int ret = ;
while(b)
{
if(b & ) ret *= a;
a *= a; b >>= ;
}
return ret;
} int main()
{
while(scanf("%d", &T) != EOF)
{
while(T--)
{
scanf("%d%d%d", &d, &m, &n);
if(!d) printf("%.9lf\n", (db)(quickpow(m, n) - ) / (db)(m - ));
else
{
dp[] = 1.00; dp[n] = dp[];
for(rg int i = ; i < n; ++i)
{
dp[i] = (db)m / (db)(m - i) * dp[i - ];
dp[n] += dp[i];
}
printf("%.9lf\n", dp[n]);
}
}
}
return ;
}

HDU 4652 Dice的更多相关文章

  1. HDU 4652 Dice(期望)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4652 题意:一个m个面的筛子.两种询问:(1)平均抛多少次后使得最后n次的面完全一样:(2)平均抛多少 ...

  2. HDU 4652 Dice:期望dp(成环)【错位相减】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4652 题意: 给你一个有m个面的骰子. 两种询问: (1)"0 m n": “最后 ...

  3. HDU 4652 Dice (概率DP)

    版权声明:欢迎关注我的博客,本文为博主[炒饭君]原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/36685493 D ...

  4. hdu 4652 Dice 概率DP

    思路: dp[i]表示当前在已经投掷出i个不相同/相同这个状态时期望还需要投掷多少次 对于第一种情况有: dp[0] = 1+dp[1] dp[1] = 1+((m-1)*dp[1]+dp[2])/m ...

  5. Dice (HDU 4652)

    题面: m 面骰子,求1. 出现n个连续相同的停止 ;2. 出现n个连续不同的停止的期望次数.(n, m ≤ 10^6 ) 解析: 当然要先列式子啦. 用f[i](g[i])表示出现i个连续相同(不相 ...

  6. HDOJ 4652 Dice

      期望DP +数学推导 Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  7. 【HDOJ】4652 Dice

    1. 题目描述对于m面的骰子.有两种查询,查询0表示求最后n次摇骰子点数相同的期望:查询1表示最后n次摇骰子点数均不相同的期望. 2. 基本思路由期望DP推导,求得最终表达式.(1) 查询0    不 ...

  8. hdu 5012 Dice

    Problem Description There are 2 special dices on the table. On each face of the dice, a distinct num ...

  9. HDU 5012 Dice (BFS)

    事实上是非常水的一道bfs,用字符串表示每一个状态,map判重就ok了. 题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=5012 #include&l ...

随机推荐

  1. Groovy中each、find跳出循环

    在groovy中使用break跳出each或者find的循环会会报错,为什么呢?groovy中each.find方法是一个闭包操作,要想跳出循环要使用 return true,但有几个问题有待研究: ...

  2. 标签设置为inline-block后,如何消除标签之间的间隔。

    标签设置为inline-block后,如何消除标签之间的间隔. 例如: <div> <ul> <li><a href="#">学习& ...

  3. HTML网页随笔笔记

    文档设置标记   1.格式标记 1.<br> 强制换行标记 让后面的文字.图片.表格等等,显示在下一行 2.<p> 换段落标记 换段落,由于多个空格和回车在HTML中会被等效为 ...

  4. UOJ188. 【UR #13】Sanrd

    传送门 Sol 设 \(f_i\) 表示 \(i\) 的次大质因子 题目就是要求 \[\sum_{i=l}^{r}f_i\] 考虑求 \(\sum_{i=1}^{n}f_i\) 所求的东西和质因子有关 ...

  5. sublime3下载安装及常用插件、浏览器预览设置

    之前与学习前端有关的软件都安装在了实验室电脑上,最近由于要放寒假(也许我寒假回去会学习呢),于是得在笔记本电脑上重新安装一遍.几个软件各种出错,花了一下午才安装好,必须记录下来啊! 这篇文章主要介绍s ...

  6. 【Android】14.0 UI开发(五)——列表控件RecyclerView的瀑布布局排列实现

    1.0 列表控件RecyclerView的瀑布布局排列实现,关键词StaggeredGridLayoutManager LinearLayoutManager 实现顺序布局 GridLayoutMan ...

  7. C# 求百分比并保留2位小数

    , b = ; decimal c = (decimal)a / b; , ); , )).ToString() + "%"; Console.WriteLine( - resul ...

  8. C语言——二叉排序树

    二叉排序树是一种实现动态查找的树表,又称二叉查找树. 二叉排序树的性质: 1. 若它的左子树不为空,则左子树上所有节点的键值均小于它的根节点键值 2. 若它的右子树不为空,则右子树上所有节点的键值均大 ...

  9. Java 社区论坛 - Sym 1.5.0 发布

    简介 Sym 是一个用 Java 写的实时论坛,欢迎来 体验!(如果你需要搭建一个企业内网论坛,请使用 SymX) 非常详细的 Sym 功能点脑图 如果你在搭建或者二次开发时碰到问题,欢迎加 Q 群 ...

  10. 关于eclipse连接外置android模拟器

    1.win+R,输入cmd,打开命令提示符 2.cd D:\Java(安卓应用开发)\adt-bundle-windows-64\sdk\platform-toolsadb connect 127.0 ...