1、决策树的构造

createBranch伪代码:

  检测数据集中的每个子项是否属于同一分类:

    IF SO RETURN 类标签

    ELSE

      寻找划分数据集的最好特征

      划分数据集

      创建分支节点

        FOR 每个划分的子集

          调用函数createBranch并增加返回结果到分支节点中

       RETURN 分支节点

划分数据集的大原则:将无序的数据变的更加有序。在划分数据集之前之后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择

熵定义为信息的期望值。熵越大越离散。

计算给定数据集的香农熵

def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet: #the the number of unique elements and their occurance
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt

2.决策树的构造算法

  ID3算法

ID3算法是一种分类决策树算法。他通过一系列的规则,将数据最后分类成决策树的形式。分类的根据是用到了熵这个概念。熵在物理这门学科中就已经出现过,表示是一个物质的稳定度,在这里就是分类的纯度的一个概念。公式为:

  C4.5算法

C4.5与ID3在核心的算法是一样的,但是有一点所采用的办法是不同的,C4.5采用了信息增益率作为划分的根据,克服了ID3算法中采用信息增益划分导致属性选择偏向取值多的属性。信息增益率的公式为:

分母的位置是分裂因子,他的计算公式为:

  CART算法

CART算法对于属性的值采用的是基于Gini系数值的方式做比较,gini某个属性的某次值的划分的gini指数的值为:

,pk就是分别为正负实例的概率,gini系数越小说明分类纯度越高

<机器学习实战>读书笔记--决策树的更多相关文章

  1. 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...

  2. 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...

  3. 机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(associat ...

  4. 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...

  5. 机器学习实战 - 读书笔记(06) – SVM支持向量机

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知 ...

  6. 【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ------------------------------------------- ...

  7. 机器学习实战 - 读书笔记(14) - 利用SVD简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...

  8. 机器学习实战读书笔记(二)k-近邻算法

    knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训 ...

  9. <机器学习实战>读书笔记--朴素贝叶斯

    1.朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法, 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model, ...

随机推荐

  1. Spring学习(五)——集成MyBatis

    本篇我们将在上一篇http://www.cnblogs.com/wenjingu/p/3829209.html的Demo程序的基础上将 MyBatis 代码无缝地整合到 Spring 中. 数据库仍然 ...

  2. JObject使用

    1.首先需要引用Json.NET\Newtonsoft.Json.dll程序集. 2.Page页 function saveUser() { var param = { id: , name: '张三 ...

  3. WinForm 窗体应用程序(初步)之三

    进程: 进程,简单的说,就是让你的程序启动另一个程序. 1.Process.Start("calc");//启动计算器 弊端:只认识系统自带的程序,如果写错系统会崩溃. 2. // ...

  4. 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 (转载)

    自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本   转自:https://www.cnblogs.com/ailiailan/p/8304989.html 作为测试, ...

  5. linux的mount命令详解

    最近在操作京东云服务器,挂在硬盘,分区等操作,重新温习了一下mount命令: linux下挂载(mount)光盘映像文档.移动硬盘.U盘.Windows和NFS网络共享. linux是个优秀的开放源码 ...

  6. Java io流完成复制粘贴功能

    JAVA 中io字节输入输出流 完成复制粘贴功能: public static void main(String[] args) throws Exception{        // 创建输入流要读 ...

  7. 【timeisprecious】【JavaScript 】JavaScript RegExp \W 元字符

    JavaScript>RegExp正则表达式> \W 元字符 1 .From Runnob JavaScript RegExp \W 元字符 定义和用法: \W 元字符用于查找非单词字符. ...

  8. jzoj5813

    tj:可以知道,隨意構造一個數列x,且x的第i位被n整除的方案是(約數個數)^2m,因為所有數可以隨便選,只要這個數能被n整除即可,方案為約數個數 設一個合法數列a的f值為x,則x小於n^m 假設所有 ...

  9. HTTP报文语法/HTTP组成

        一.HTTP报文分类:请求报文和响应报文 请求报文会向Web服务器请求一个动作,响应报文会将请求的结果返回给客户端 请求报文格式: <method>  <request-UR ...

  10. Mysql Insert Or Update语法实例

    有的时候会需要写一段insert的sql,如果主键存在,则update:如果主键不存在,则insert.Mysql中提供了这样的用法:ON DUPLICATE KEY UPDATE.下面就看看它是如何 ...