HDU3335 Divisibility Dilworth定理+最小路径覆盖
首先需要一些概念: 有向图,最小路径覆盖,最大独立集,Dilworth,偏序集,跳舞链(DLX)....
理解一:
对于DAG图,有:最大独立集=点-二分匹配数,二分匹配数=最小路径覆盖。
而无向图,定点N>20差不多就是NP问题。
所以此题的除的关系设成单向,然后求匹配数。
理解二:
没看懂QwQ,不过最小拦截系统中庸到了这个思想。
理解三:
跳舞链,就是线性代数的方式解决?
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<memory.h>
using namespace std;
const int maxn=;
int used[maxn],link[maxn],map[maxn][maxn];
long long a[maxn],b[maxn];
int n,m,cnt;
bool _find(int v){
for(int i=;i<=cnt;i++)
if(!used[i]&&map[v][i]){
used[i]=;
if(!link[i]||_find(link[i])){
link[i]=v;
return true;
}
}
return false;
}
int main()
{
int i,j,T,ans;
scanf("%d",&T);
while(T--){
memset(map,,sizeof(map));
memset(link,,sizeof(link));
ans=cnt=;
scanf("%d",&n);
for(i=;i<=n;i++) scanf("%lld",&a[i]); sort(a+,a+n+); if(n>=) b[++cnt]=a[];
for(i=;i<=n;i++) if(a[i]!=a[i-]) b[++cnt]=a[i]; for(i=;i<=cnt;i++)
for(j=i+;j<=cnt;j++)
if(b[j]%b[i]==) map[i][j]=; for(i=;i<=cnt;i++){
memset(used,,sizeof(used));
if(_find(i)) ans++;
}
printf("%d\n",cnt-ans);
}
return ;
}
HDU3335 Divisibility Dilworth定理+最小路径覆盖的更多相关文章
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- (step6.3.4)hdu 1151(Air Raid——最小路径覆盖)
题意: 一个镇里所有的路都是单向路且不会组成回路. 派一些伞兵去那个镇里,要到达所有的路口,有一些或者没有伞兵可以不去那些路口,只要其他人能完成这个任务.每个在一个路口着陆了的伞兵可以沿着街去 ...
- 最小路径覆盖 hdu 1151 hdu 3335
Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- 网络流二十四题之P2764 最小路径覆盖问题
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
- bzoj 2044 三维导弹拦截——DAG最小路径覆盖(二分图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2044 还以为是CDQ.发现自己不会三维以上的…… 第一问可以n^2.然后是求最长不下降子序列 ...
- 【Luogu】P2764最小路径覆盖(拆点求最大匹配)
题目链接 这个……学了一条定理 最小路径覆盖=原图总点数-对应二分图最大匹配数 这个对应二分图……是什么呢? 就是这样 这是原图 这是拆点之后对应的二分图. 然后咱们的目标就是从这张图上跑出个最大流来 ...
- 刷题总结——魔术球问题(ssoj最小路径覆盖+网络流)
题目: 题目描述 假设有 n 根柱子,现要按下述规则在这 n 根柱子中依次放入编号为 1,2 ,3,… 的球.(1)每次只能在某根柱子的最上面放球.(2)在同一根柱子中,任何 2 个相邻球的编号之和为 ...
- P2764 最小路径覆盖问题 网络流重温
P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...
随机推荐
- CSV文件读取类
最近项目中,经常需要读取Csv文件.基本步骤是: (1)按行读取 (2)然后将一行数据按逗号,分割为字符串数组 (3)将各列字符串转换成相应类型的数据 ,如int double类型 写了一个简单的Cs ...
- web前端几个小知识点笔记
1.css实现宽度是百分比的盒子为正方形 <div style="width:50%;padding-bottom:50%;height:0px;background:#ccc;&qu ...
- 测试人必备:国内外最好用的6款Bug跟踪管理系统
在移动互联网产品中,Bug会导致软件产品在某种程度上不能满足用户的需要.确保一个项目进展顺利,关键在于妥善处理软件中的BUG,那么,如何高效的管理BUG,解决BUG?在这里,我为大家搜集了几款优秀的B ...
- python一段代码 感受一下
class T(): def aa(self): write = 1 print '123' class B(): def hehe(self) ...
- 使用nagios+python监控nginx进程数
1.编写python脚本监控nginx #!/usr/bin/python # -*- coding: utf-8 -*- import os, sys, time import string imp ...
- Union、Union All、Intersect、Minus用法和区别
假设我们有一个表Student,包括以下字段与数据: [c-sharp] view plain copydrop table student; create table student ( ...
- 微信 audio 获取 duration 为 NaN 的解决方法
先加load() myaudio.load(); myaudio.oncanplay = function () { alert(myaudio.duration); } load() 方法用于在更改 ...
- linux第七章读书笔记
Vim编辑器 Vim 仅仅通过键盘来在插入和执行命令等多种模式之间切换.这使得Vim可以不用进行菜单或者鼠标操作,并且最小化组合键的操作,对文字录入员或者程序员可以大大增强速度和效率. CHAPTER ...
- CentOS7.2 安装RabbitMQ3.6.10
CentOS上面使用yum安装比较方便 先记录一些rabbitmq的基本操作命令: $ sudo chkconfig rabbitmq-server on # 添加开机启动RabbitMQ服务 $ s ...
- Python学习札记(二十九) 模块2
参考:使用模块 NOTE 1.内建sys模块: #!/usr/bin/env python3 import sys 'a test module' __author__ = 'wasdns' def ...