HDU3335 Divisibility Dilworth定理+最小路径覆盖
首先需要一些概念: 有向图,最小路径覆盖,最大独立集,Dilworth,偏序集,跳舞链(DLX)....
理解一:
对于DAG图,有:最大独立集=点-二分匹配数,二分匹配数=最小路径覆盖。
而无向图,定点N>20差不多就是NP问题。
所以此题的除的关系设成单向,然后求匹配数。
理解二:
没看懂QwQ,不过最小拦截系统中庸到了这个思想。
理解三:
跳舞链,就是线性代数的方式解决?
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<memory.h>
using namespace std;
const int maxn=;
int used[maxn],link[maxn],map[maxn][maxn];
long long a[maxn],b[maxn];
int n,m,cnt;
bool _find(int v){
for(int i=;i<=cnt;i++)
if(!used[i]&&map[v][i]){
used[i]=;
if(!link[i]||_find(link[i])){
link[i]=v;
return true;
}
}
return false;
}
int main()
{
int i,j,T,ans;
scanf("%d",&T);
while(T--){
memset(map,,sizeof(map));
memset(link,,sizeof(link));
ans=cnt=;
scanf("%d",&n);
for(i=;i<=n;i++) scanf("%lld",&a[i]); sort(a+,a+n+); if(n>=) b[++cnt]=a[];
for(i=;i<=n;i++) if(a[i]!=a[i-]) b[++cnt]=a[i]; for(i=;i<=cnt;i++)
for(j=i+;j<=cnt;j++)
if(b[j]%b[i]==) map[i][j]=; for(i=;i<=cnt;i++){
memset(used,,sizeof(used));
if(_find(i)) ans++;
}
printf("%d\n",cnt-ans);
}
return ;
}
HDU3335 Divisibility Dilworth定理+最小路径覆盖的更多相关文章
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- (step6.3.4)hdu 1151(Air Raid——最小路径覆盖)
题意: 一个镇里所有的路都是单向路且不会组成回路. 派一些伞兵去那个镇里,要到达所有的路口,有一些或者没有伞兵可以不去那些路口,只要其他人能完成这个任务.每个在一个路口着陆了的伞兵可以沿着街去 ...
- 最小路径覆盖 hdu 1151 hdu 3335
Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- 网络流二十四题之P2764 最小路径覆盖问题
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
- bzoj 2044 三维导弹拦截——DAG最小路径覆盖(二分图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2044 还以为是CDQ.发现自己不会三维以上的…… 第一问可以n^2.然后是求最长不下降子序列 ...
- 【Luogu】P2764最小路径覆盖(拆点求最大匹配)
题目链接 这个……学了一条定理 最小路径覆盖=原图总点数-对应二分图最大匹配数 这个对应二分图……是什么呢? 就是这样 这是原图 这是拆点之后对应的二分图. 然后咱们的目标就是从这张图上跑出个最大流来 ...
- 刷题总结——魔术球问题(ssoj最小路径覆盖+网络流)
题目: 题目描述 假设有 n 根柱子,现要按下述规则在这 n 根柱子中依次放入编号为 1,2 ,3,… 的球.(1)每次只能在某根柱子的最上面放球.(2)在同一根柱子中,任何 2 个相邻球的编号之和为 ...
- P2764 最小路径覆盖问题 网络流重温
P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...
随机推荐
- cocos代码研究(19)Widget子类ImageView学习笔记
理论基础 显示图片的小控件,继承自 Widget . 代码实践 static ImageView * create()创建一个空的ImageView static ImageView * create ...
- Yahoo Programming Contest 2019
A - Anti-Adjacency 签. #include <bits/stdc++.h> using namespace std; int main() { int n, k; whi ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) Solution
A. Find a Number Solved By 2017212212083 题意:$找一个最小的n使得n % d == 0 并且 n 的每一位数字加起来之和为s$ 思路: 定义一个二元组$< ...
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) Solution
A. Altruistic Amphibians Upsolved. 题意: $有n只青蛙,其属性用三元组表示 <l_i, w_i, h_i> l_i是它能跳的高度,w_i是它的体重,h_ ...
- uboot 版本号生成过程
uboot 版本号生成过程 uboot版本号貌似与实际开发不相关,但是我现在遇到一个bug与版本号关联密切. 这个bug与<uboot dm9000驱动故障>基本上是一样的,但是在上一篇博 ...
- noip2018 爆炸记
noip2018 爆炸记 day-4 ~ day-2 最后考了两套模拟题,题目好水啊,但是我还是爆炸了. 第一套最后一道题竟然时一道毒瘤打表?但是我看着插头DP可做啊..(然而我并不会插头DP)然后还 ...
- UVa 11489 整数游戏
https://vjudge.net/problem/UVA-11489 题意: 给出一个数字串n,两个人轮流从中取出一个数字,要求每次取完之后剩下的数是3的倍数,不能取数者输. 思路: 要想取掉一个 ...
- mongodb的安装与增删改查
mongodb是一款分布式的文件存储的数据库,注意这两个词,分布式和文件存储.mongodb支持复制和分片,可以合理的运用空间的大小,也可以达到容灾的目的.另外文件存储也是一个特点,抛弃了传统的表的概 ...
- 这是一份很详细的 Retrofit 2.0 使用教程(含实例讲解)
前言 在Andrroid开发中,网络请求十分常用 而在Android网络请求库中,Retrofit是当下最热的一个网络请求库 今天,我将献上一份非常详细Retrofit v2.0的使用教程,希望你们会 ...
- Docker和k8s的区别与介绍
本文来源:鲜枣课堂 2010年,几个搞IT的年轻人,在美国旧金山成立了一家名叫“dotCloud”的公司. 这家公司主要提供基于PaaS的云计算技术服务.具体来说,是和LXC有关的容器技术. LXC, ...