MR的shuffle和Spark的shuffle之间的区别
mr的shuffle
mapShuffle
数据存到hdfs中是以块进行存储的,每一个块对应一个分片,maptask就是从分片中获取数据的
在某个节点上启动了map Task,map Task读取是通过k-v来读取的,读取的数据会放到环形缓存区,这样做的目的是为了防止IO的访问次数,然后环形缓存区的内存达到一定的阀值的
时候会把文件益写到磁盘,溢出的各种小文件会合并成一个大文件,这个合并的过程中会进行排序,这个排序叫做归并排序
map阶段会涉及到
1.sort排序(默认按字典排序)
2.合并(combiner合并)
3.文件合并(merage 合并 总共有三种,默认是内存到磁盘)
4.压缩(设置压缩就会执行)
reduce Shuffle
归并排序完成后reduce端会拉取map端的数据,拉取的这个过程叫做copy过程,拉取的数据合并成一个文件,GroupComparator(默认,这个我们也可以自定义)是专门对文件夹里面的key进行分组
然后就形成k-List(v1,v2,v3)的形式,然后reduce经过业务处理,最终输出到hdfs,如果设置压缩就会执行,不设置则不执行
reduce阶段会涉及到:
1.sort排序
2.分组(将相同的key的value放到一个容器的过程)
3.merge文件合并
4.压缩
spark shuffle的版本一
1.rdd中一个partition对应一个shufflemapTask任务,因为某个节点上可以有多个分区,所以可以有多个shufflemapTask
2.每一个shufflemapTask都会为每一个resultTask创建一个bucket缓存(内存),bucket的数量=M x R,当内存达到一定值的时候会益写到shuffleblockfile文件中
3.shuffleMap task会封装成一个叫mapStatus,这个mapstatus里面包含了每一个resultTask拉取数据的大小
Mapstatus: 是ShuffleMapTask返回调度器scheduler的对象,包括任务运行的块管理器地址和对应每个reducer的输出大小。
如果partitions的数量大于2000,则用HighlyCompressedMapStatus,否则用CompressedMapStatus。
4.每一个resultTask拉取过来的数据,就会在内部形成一个rdd,这个rdd叫做shuffleRdd,这个rdd的数据优先存放到内存中,内存中不够然后存到磁盘里
如果是groupByKey算子就结束了,下次执行ReduceByKey的时候,再进行相同key的聚合操作,这个时候会把shuffle rdd进行聚合操作生成mapPartitionRdd,就是我们执行reduceByKey之后得到的那个rdd
spark shuffle的版本二
版本一的缺点:版本一的shuffle方式中会产生大量的小文件,
版本二的优点:就是为了减少这么多小文件的生成
bucket的数量=cpu*resultTask的个数
版本二设计的原理:一个shuffleMapTask还是会写入resultTask对应个数的本地文件,但是当下一个shuffleMapTask运行的时候会直接把数据写到之前已经建立好的本地文件,这个文件可以复用,这种复用机制叫做consolidation机制
我们把这一组的shuffle文件称为shuffleGroup,每个文件中都存储了很多shuffleMapTask对应的数据,这个文件叫做segment,这个时候因为不同的shuffleMapTask都是存在一个文件中
所以建立索引文件,来标记shuffleMapTask在shuffleBlockFile的位置+偏移量,这样就可以在一个文件里面把不同的shuffleMaptask数据分出来
spark shuffle的版本三
版本三的优点:是通过排序建立索引,相比较于版本二,它只有一个临时文件,不管有多少个resultTask都只有一个临时文件,
缺点:这个排序操作是一个消耗CPU的操作,代价是会消耗很多的cpu
版本二占用内存多,打开文件多,但不需排序,速度快。版本三占用内存少,打开文件少,速度相对慢。实践证明使用第二种方案的应用场景更多些。
shuffle的读流程
1.有一个类blockManager,封装了临时文件的位置信息,resultTask先通过blockManager,就知道我从哪个节点拿数据
如果是远程,它就是发起一次socket请求,创建一个socket链接。然后发起一次远程调用,告诉远程的读取程序,读取哪些数据。读到的内容再通过socket传过来。
2.一条条读数据和一块块读数据的优缺点?
如果是一条条读取的话,实时性好,性能低下
一块块读取的话性能高,但是实时性不好
Shuffle读由reduce这边发起,它需要先到临时文件中读,一般这个临时文件和reduce不在一台节点上,它需要跨网络去读。但也不排除在一台服务器。不论如何它需要知道临时文件的位置,
这个是谁来告诉它的呢?它有一个BlockManager的类。这里就知道将来是从本地文件中读取,还是需要从远程服务器上读取。
读进来后再做join或者combine的运算。
这些临时文件的位置就记录在Map结构中。
可以这样理解分区partition是RDD存储数据的地方,实际是个逻辑单位,真正要取数据时,它就调用BlockManage去读,它是以数据块的方式来读。
比如一次读取32k还是64k。它不是一条一条读,一条一条读肯定性能低。它读时首先是看本地还是远程,如果是本地就直接读这个文件了,
如果是远程,它就是发起一次socket请求,创建一个socket链接。然后发起一次远程调用,告诉远程的读取程序,读取哪些数据。读到的内容再通过socket传过来。
MR的shuffle和Spark的shuffle之间的区别的更多相关文章
- 简要MR与Spark在Shuffle区别
一.区别 ①本质上相同,都是把Map端数据分类处理后交由Reduce的过程. ②数据流有所区别,MR按map, spill, merge, shuffle, sort, r educe等各阶段逐一实现 ...
- 【Spark】Spark的Shuffle机制
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性 ...
- 详细探究Spark的shuffle实现
Background 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环 节,shuffle的性能高低直接影响 ...
- MapReduce Shuffle 和 Spark Shuffle 原理概述
Shuffle简介 Shuffle的本意是洗牌.混洗的意思,把一组有规则的数据尽量打乱成无规则的数据.而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规 ...
- Spark中shuffle的触发和调度
Spark中的shuffle是在干嘛? Shuffle在Spark中即是把父RDD中的KV对按照Key重新分区,从而得到一个新的RDD.也就是说原本同属于父RDD同一个分区的数据需要进入到子RDD的不 ...
- Spark RDD概念学习系列之Spark Hash Shuffle内幕彻底解密(二十)
本博文的主要内容: 1.Hash Shuffle彻底解密 2.Shuffle Pluggable解密 3.Sorted Shuffle解密 4.Shuffle性能优化 一:到底什么是Shuffle? ...
- 【Spark篇】---Spark中Shuffle文件的寻址
一.前述 Spark中Shuffle文件的寻址是一个文件底层的管理机制,所以还是有必要了解一下的. 二.架构图 三.基本概念: 1) MapOutputTracker MapOutputTracker ...
- Spark 的 Shuffle过程介绍`
Spark的Shuffle过程介绍 Shuffle Writer Spark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wi ...
- spark的shuffle和原理分析
概述 Shuffle就是对数据进行重组,由于分布式计算的特性和要求,在实现细节上更加繁琐和复杂. 在MapReduce框架,Shuffle是连接Map和Reduce之间的桥梁,Map阶段 ...
随机推荐
- JavaScript正则表达式1
在编写处理字符串的程序或网页时,经常会有查找符合某些复杂规则的字符串的需要.正则表达式就是用于描述这些规则的工具.换句话说,正则表达式就是记录文本规则的代码. 正则表达式可以: •数据有效性验证.可以 ...
- web开发中的安全问题
web开发中很多东西由前段来负责判断,比如常见的邮箱 电话号码,前端判断到不是一个正确的格式,在你点击提交时候提示你格式填错了,然后不请求后端php,直到你填写正确的格式为止.这种其实可以修改js或者 ...
- 移植opencv到pcDuino
OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Pytho ...
- 3、手把手教React Native实战之flexbox布局
flexbox是Flexible Box的缩写,弹性盒子布局 主流的浏览器都支持 flexbox布局是伸缩容器(container)和伸缩项目(item)组成 Flexbox布局的主体思想是元素可以 ...
- HTML的框架结构
<html> <head> <title>HTML的框架结构</title> </head> <frameset frameborde ...
- 实现Runnable接口和继承Thread类区别
如果一个类继承Thread,则不适合资源共享.但是如果实现了Runable接口的话,则很容易的实现资源共享. 实现Runnable接口比继承Thread类所具有的优势: 1):适合多个相同的程序代码的 ...
- js正则函数match、exec、test、search、replace、split使用介绍集合,学习正则表达式的朋友可以参考下。
match 方法 使用正则表达式模式对字符串执行查找,并将包含查找的结果作为数组返回. stringObj.match(rgExp) 参数 stringObj 必选项.对其进行查找的 String 对 ...
- C++11-新增正则表达式
#include <regex> #include <iostream> #include <string> #include <atlstr.h> s ...
- K-mean和k-mean++
(1)k-mean聚类 k-mean聚类比较容易理解就是一个计算距离,找中心点,计算距离,找中心点反复迭代的过程, 给定样本集D={x1,x2,...,xm},k均值算法针对聚类所得簇划分C={C1, ...
- SQL 根据日期精确计算年龄
SQL 根据日期精确计算年龄 第一种: 一张人员信息表里有一人生日(Birthday)列,跟据这个列,算出该人员的年龄 datediff(year,birthday,getdate()) 例:birt ...