【BZOJ4362】isn
【BZOJ4362】isn
题面
题解
设\(f[i][j]\)表示当前在\(i\),长度为\(j\)的最长不降子序列有多少个
这个可以用树状数组\(n^2logn\)求出
设\(g[i]\)为长度为\(i\)的不降子序列的和
则\(g[i]=\sum_{j=1}^nf[j][i]\)
最后的答案乍一看是\((n-i)!\sum_{i=1}^ng[i]\)
但是因为我们取到非降就\(break\)
所以需要容斥一下
不难想到
Ans=\sum_{i=1}^nans_i
\]
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 2e3 + 5;
const int Mod = 1e9 + 7;
inline void pls(int &x, int y) { x += y; if (x >= Mod) x -= Mod; }
inline int dec(int x, int y) { x -= y; if (x < 0) x += Mod; return x; }
int N, a[MAX_N], f[MAX_N][MAX_N], c[MAX_N][MAX_N], g[MAX_N], fac[MAX_N];
int X[MAX_N], cnt;
inline int lb(int x) { return x & -x; }
void add(int *bit, int x, int v) { while (x <= cnt) pls(bit[x], v), x += lb(x); }
int sum(int *bit, int x) { int res = 0; while (x > 0) pls(res, bit[x]), x -= lb(x); return res; }
int main () {
N = gi(); for (int i = 1; i <= N; i++) X[++cnt] = a[i] = gi();
sort(&X[1], &X[cnt + 1]); cnt = unique(&X[1], &X[cnt + 1]) - X - 1;
for (int i = 1; i <= N; i++) a[i] = lower_bound(&X[1], &X[cnt + 1], a[i]) - X;
add(c[0], 1, 1);
for (int i = 1; i <= N; i++) {
for (int j = N; j >= 1; j--) {
f[i][j] = sum(c[j - 1], a[i]);
add(c[j], a[i], f[i][j]);
}
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j++) pls(g[i], f[j][i]);
fac[0] = 1;
for (int i = 1; i <= N; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
int ans = 0;
for (int i = 1; i <= N; i++)
pls(ans, dec(1ll * fac[N - i] * g[i] % Mod, 1ll * fac[N - i - 1] * g[i + 1] % Mod * (i + 1) % Mod));
printf("%d\n", ans);
return 0;
}
【BZOJ4362】isn的更多相关文章
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
- 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新
[原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
- Python高手之路【一】初识python
Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...
- 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】
说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...
- 【原】FMDB源码阅读(二)
[原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...
随机推荐
- 创建 JavaScript 对象
http://www.w3school.com.cn/js/js_objects.asp 创建 JavaScript 对象 通过 JavaScript,您能够定义并创建自己的对象. 创建新对象有两种不 ...
- Java50道经典习题-程序13 根据条件求数字
题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?分析:完全平方数:如果一个数能是由两个相同的数相乘的结果,那么这个数就是完全平方数,例如:9==3*3: ...
- Hadoop学习之路(二十八)MapReduce的API使用(五)
求所有两两用户之间的共同好友 数据格式 A:B,C,D,F,E,O B:A,C,E,K C:F,A,D,I D:A,E,F,L E:B,C,D,M,L F:A,B,C,D,E,O,M G:A,C,D, ...
- 【jQuery】cookie插件
通过该插件的学习使我对cookie.Date().getDate().setDate().toUTCString()有了更直观的了解,具体分析见注释: function(key, value, opt ...
- face++
1.链表反转 2.快排 3.m*k n*k两矩阵计算欧几里得距离np.tile 4.链表排序,要求时间复杂度小于O(N^2),空间O(1),不允许改变链表的值 5.2sum及其变体 6.给一个数组 ...
- jQuery .attr()和.removeAttr()方法操作元素属性示例
今天主要和大家一起分享一下如何使用jQuery的.attr()和.removeAttr()方法读取,添加,修改,删除元素的属性.大家在平时的Web页面制作中都有碰到如何动态的获取元素的属性和属性值,或 ...
- ubuntu中phpstorm和sublime快速启动
ubuntu gnome桌面 + dash to dock扩展 下载安装包手动安装phpstorm会遇到无法固定到dash上的情况(运行软件时在dash右击未出现Add to Favoriates) ...
- Linux内存管理学习笔记——内存寻址
最近开始想稍微深入一点地学习Linux内核,主要参考内容是<深入理解Linux内核>和<深入理解Linux内核架构>以及源码,经验有限,只能分析出有限的内容,看完这遍以后再更深 ...
- PAT——1061. 判断题
判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分. 输入格式: 输入在第一行给出两个不超过100的正整数N和M,分别是学生人数和判断题数量.第二行给出M个不超过5的正 ...
- flink Window的Timestamps/Watermarks和allowedLateness的区别
Watermartks是通过additional的时间戳来控制窗口激活的时间,allowedLateness来控制窗口的销毁时间. 注: 因为此特性包括官方文档在1.3-1.5版本均未做改变,所以 ...