【POJ2891】Strange Way to Express Integers(拓展CRT)

题面

Vjudge

板子题。

题解

拓展\(CRT\)模板题。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 111111
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return a;}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;return d;
}
int n;
ll m[MAX],a[MAX];
int main()
{
while(scanf("%d",&n)!=EOF)
{
bool fl=true;ll x,y;
for(int i=1;i<=n;++i)scanf("%lld%lld",&m[i],&a[i]);
for(int i=2;i<=n;++i)
{
ll d=exgcd(m[1],m[i],x,y),g=a[i]-a[1],t;
if(g%d){fl=false;break;}
x*=g/d;t=m[i]/d;x=(x%t+t)%t;
a[1]+=x*m[1];m[1]*=t;a[1]%=m[1];
}
if(!fl)puts("-1");
else printf("%lld\n",(a[1]%m[1]+m[1])%m[1]);
}
return 0;
}

【POJ2891】Strange Way to Express Integers(拓展CRT)的更多相关文章

  1. 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)

    0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...

  2. POJ2891——Strange Way to Express Integers(模线性方程组)

    Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...

  3. POJ2891 Strange Way to Express Integers

    题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...

  4. POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)

    放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...

  5. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  6. POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...

  7. POJ2891 - Strange Way to Express Integers(模线性方程组)

    题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证 ...

  8. POJ2891 Strange Way to Express Integers [中国剩余定理]

    不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring&g ...

  9. POJ.2891.Strange Way to Express Integers(扩展CRT)

    题目链接 扩展中国剩余定理:1(直观的).2(详细证明). [Upd:]https://www.luogu.org/problemnew/solution/P4774 #include <cst ...

  10. POJ2891 Strange Way to Express Integers【扩展中国剩余定理】

    题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...

随机推荐

  1. 四、利用EnterpriseFrameWork快速开发基于WCF为中间件的三层结构系统

    回<[开源]EnterpriseFrameWork框架系列文章索引> EnterpriseFrameWork框架实例源代码下载: 实例下载 本章内容与上一张<利用Enterprise ...

  2. OpenWrt架设nginx php网站

    参考 http://www.vinoca.org/2012/05/31/openwrt%E6%9E%B6%E8%AE%BEnginxphp%E7%BD%91%E7%AB%99/ 一.安装相关包 opk ...

  3. Redis5.0:现公测全免费,点击就送,注册账号,即开即用

    华为云分布式缓存服务Redis,是华为云服务的一款核心产品. 分布式缓存Redis是一款内存数据库服务,基于双机热备的高可用架构,提供单机.主从.集群等丰富类型的缓存类型. 现推出最新版本Redis5 ...

  4. 如何在HPUX的终端提示符前显示当前登录用户信息和所在目录

    修改/etc/default/profile文件,在最后加上如下内容: case $LOGNAME in     'root')     PS1="$LOGNAME@$(hostname): ...

  5. Rest-Assured 测试框架

    Rest-Assured 是一个测试 Restful Web Service 的 Java 类库,我们能够测试各种各样的请求组合,依次测试核心业务逻辑的不同组合. 它是通过发送特定的rest api, ...

  6. ERROR [IM002] [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序

    在用c#生成应用程序的时候,读写dbf时,open方法出错 ERROR [IM002] [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序 以前这个程序是用着好 ...

  7. 选题博客:北航iCourse课程信息平台

    1. 用户调查 在选题的时候,我们面向北航所有本科在读本科生,发布了<北航信息平台用户调查>.此次问卷调查共回收有效问卷95份. 1.1 功能需求调查 调查其中一项是让同学们对平台功能进行 ...

  8. VR产业链全景图

  9. Wormholes POJ 3259(SPFA判负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  10. CDOJ ABCDE dp(前缀和优化)

    题目链接: http://acm.uestc.edu.cn/#/problem/show/1307 ABCDE Time Limit: 1000/1000MS (Java/Others)Memory ...