【POJ2891】Strange Way to Express Integers(拓展CRT)

题面

Vjudge

板子题。

题解

拓展\(CRT\)模板题。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
#define MAX 111111
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return a;}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;return d;
}
int n;
ll m[MAX],a[MAX];
int main()
{
while(scanf("%d",&n)!=EOF)
{
bool fl=true;ll x,y;
for(int i=1;i<=n;++i)scanf("%lld%lld",&m[i],&a[i]);
for(int i=2;i<=n;++i)
{
ll d=exgcd(m[1],m[i],x,y),g=a[i]-a[1],t;
if(g%d){fl=false;break;}
x*=g/d;t=m[i]/d;x=(x%t+t)%t;
a[1]+=x*m[1];m[1]*=t;a[1]%=m[1];
}
if(!fl)puts("-1");
else printf("%lld\n",(a[1]%m[1]+m[1])%m[1]);
}
return 0;
}

【POJ2891】Strange Way to Express Integers(拓展CRT)的更多相关文章

  1. 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)

    0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...

  2. POJ2891——Strange Way to Express Integers(模线性方程组)

    Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...

  3. POJ2891 Strange Way to Express Integers

    题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...

  4. POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)

    放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...

  5. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  6. POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...

  7. POJ2891 - Strange Way to Express Integers(模线性方程组)

    题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证 ...

  8. POJ2891 Strange Way to Express Integers [中国剩余定理]

    不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring&g ...

  9. POJ.2891.Strange Way to Express Integers(扩展CRT)

    题目链接 扩展中国剩余定理:1(直观的).2(详细证明). [Upd:]https://www.luogu.org/problemnew/solution/P4774 #include <cst ...

  10. POJ2891 Strange Way to Express Integers【扩展中国剩余定理】

    题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...

随机推荐

  1. loj2538 「PKUWC 2018」Slay the Spire

    pkusc 快到了--做点题涨涨 rp. ref我好菜啊QAQ. 可以发现期望只是一个幌子.我们的目的是:对于所有随机的选择方法(一共 \(\binom{2n}{m}\)种),这些选择方法都最优地打出 ...

  2. JS基础,课堂作业,三个数字排序

    三个数字大小排序 <script> var a = parseInt(prompt("请输入第一个整数:")); var b = parseInt(prompt(&qu ...

  3. DDD实战成绩管理---需求分析

    需求的分析我们采用四色模型.从用户故事中找出MI,然后围绕MI找出其中的role,ppt,des.本次先对两个优先级最高的用户故事进行四色模型建模. 1.用户故事一建模:作为教务处老师,我要建立教学班 ...

  4. 面试之HTTP基础(不断完善中)

    目录 1. HTTP状态码 2.Cookie和Session Cookie Session 3.短连接与长连接 4.HTTPs 加密 5.Http和https的区别 6.HTTP/1.0 与 HTTP ...

  5. 如何选择 .NET Framework目标版本

    如何选择 .NET Framework目标版本 简介 .NET Framework是所有 .NET程序赖以运行的基础. 版本 到目前位置 .NET Framework共出了: .NET Framewo ...

  6. 第八次ScrumMeeting博客

    第八次ScrumMeeting博客 本次会议于11月2日(四)22时整在3公寓725房间召开,持续20分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕.方科栋. 1. 每个人的工作(有Issue的 ...

  7. BFC的表象认识

    首先字面翻译,这三个字母分别代表什么,box,formatting, context,它决定了元素如何对其内容进行定位,以及与其他元素的关系和相互作用. 形象点就是说一种规范,规范什么呢?规范盒子内部 ...

  8. lintcode-397-最长上升连续子序列

    397-最长上升连续子序列 给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列.(最长上升连续子序列可以定义为从右到左或从左到右的序列.) 注意事 ...

  9. lintcode-382-三角形计数

    382-三角形计数 给定一个整数数组,在该数组中,寻找三个数,分别代表三角形三条边的长度,问,可以寻找到多少组这样的三个数来组成三角形? 样例 例如,给定数组 S = {3,4,6,7},返回 3 其 ...

  10. caffe环境搭建笔记

    首先安装以下库或软件 sudo apt-get install gitsudo apt-get install      libprotobuf-dev     libleveldb-dev    l ...