【uoj#310】[UNR #2]黎明前的巧克力 FWT
题目描述
给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等。求总方案数。
输入
第一行一个正整数 $n$ ,表示巧克力的个数。
第二行 $n$ 个整数 $a_i$ 表示每个巧克力的美味值。
输出
输出一行一个整数,表示能使得他们心情契合的吃巧克力的方案数对 998244353 取模的结果。
样例输入
6
1 2 3 4 5 6
样例输出
80
题解
FWT
首先如果两个集合的异或相等,那么它们的异或为0。原问题转化为求选出一个异或和为0的集合并分为两个即可的方案数。
那么设 $f[i][j]$ 表示前 $i$ 个数中选出的数的异或和为 $j$ 的方案数。那么就有 $f[i][j]=f[i-1][j]+2·f[i-1][j\ xor\ a[i]]$ 。
可以发现这是一个异或卷积的形式,相当于每次卷的是:$b[0]=1,b[a[i]]=2$ ,然而并无卵用 = =
考虑对这个过程进行FWT,那么:
0对每个位置的贡献都是1;
a[i]对某些位置的贡献是2,对某些位置的贡献是-2。
所以每次卷上的 $b$ 数组的每个数都是-1或3。
另有:和的FWT等于FWT的和。
因此把它们求和后进行FWT,那么就知道了每个位置FWT的和。
由于只有-1和3,因此可以解出-1和3的个数,然后快速幂处理一下即可。
最终再逆FWT回来即可。
时间复杂度 $O(n\log n)$
- #include <cstdio>
- #define N 1050000
- #define mod 998244353
- typedef long long ll;
- ll a[N] , b[N];
- ll pow(ll x , ll y)
- {
- ll ans = 1;
- while(y)
- {
- if(y & 1) ans = ans * x % mod;
- x = x * x % mod , y >>= 1;
- }
- return ans;
- }
- void fwt(ll *a , int n , int flag)
- {
- int i , j , k , t;
- for(i = 1 ; i < n ; i <<= 1)
- for(j = 0 ; j < n ; j += (i << 1))
- for(k = j ; k < j + i ; k ++ )
- t = a[k] , a[k] = (t + a[k + i]) * flag % mod , a[k + i] = (t - a[k + i] + mod) * flag % mod;
- }
- int main()
- {
- int n , mx = 0 , m = 1 , i , x;
- scanf("%d" , &n);
- for(i = 1 ; i <= n ; i ++ )
- {
- scanf("%d" , &x) , a[0] ++ , a[x] += 2;
- if(mx < x) mx = x;
- }
- while(m <= mx) m <<= 1;
- fwt(a , m , 1);
- for(i = 0 ; i < m ; i ++ )
- {
- x = (n + a[i]) * 748683265 % mod;
- if(((x + n) % mod) & 1) b[i] = (mod - pow(3 , x)) % mod;
- else b[i] = pow(3 , x);
- }
- fwt(b , m , 499122177);
- printf("%lld\n" , (b[0] - 1 + mod) % mod);
- return 0;
- }
【uoj#310】[UNR #2]黎明前的巧克力 FWT的更多相关文章
- uoj310【UNR #2】黎明前的巧克力(FWT)
uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...
- UOJ #310 黎明前的巧克力 FWT dp
LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...
- UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...
- UOJ#310. 【UNR #2】黎明前的巧克力(FWT)
题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...
- [UOJ UNR#2 黎明前的巧克力]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...
- UOJ #310 黎明前的巧克力 (FWT)
题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...
- UOJ310. 【UNR #2】黎明前的巧克力 [FWT]
UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...
- [UOJ310][UNR #2]黎明前的巧克力
uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
随机推荐
- mfc通过MapWinGIS控件读取shp文件(不通过#import实现)
1.首先注册MapWinGIS ActiveX组件, 引入MapWinGIS.ocx产生的MapWinGIS_i.h和MapWinGIS_i.c文件,利用CoCreateInstance函数来调用 演 ...
- PostgreSQL参数学习:vacuum_defer_clean_age
官方文档: http://www.postgresql.org/docs/9.3/static/runtime-config-replication.html 为了防止slave端读取数据时,因为读到 ...
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
- CF 1064 D. Labyrinth
D. Labyrinth http://codeforces.com/contest/1064/problem/D 题意: n*m的矩阵,只能往左走l次,往右走r次,上下走无限制,问能走到多少个点. ...
- MySql Host is blocked because of many connection errors; unblock with 'mysqladmin flush-hosts' 的解决方法
解决方法如下: 方法 1.在线修改提高允许的max_connection_errors数量: A. 登录Mysql数据库查看max_connection_errors: mysql>show ...
- Spring学习(四)-----Spring Bean引用同xml和不同xml bean的例子
在Spring,bean可以“访问”对方通过bean配置文件指定相同或不同的引用. 1. Bean在不同的XML文件 如果是在不同XML文件中的bean,可以用一个“ref”标签,“bean”属性引用 ...
- 04-容器 What, Why, How
What - 什么是容器? 容器是一种轻量级.可移植.自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行.开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机 ...
- UTF-8编码下'\u7528\u6237'转换为中文汉字'用户'
UTF-8编码下'\u7528\u6237'转换为中文'用户' 一.前言 有过多次,在开发项目中遇见设置文件编码格式为UTF-8,但是打开该文件出现类似\u7528这样的数据,看也看不懂,也不是平常见 ...
- DruidDataSource源码分析
最近公司要求基于阿里的DruidDataSource来做一个连接池监控 , 正好之前没有看过DruidDataSource的源码 , 便自己看了四个多小时写了一些自己的理解 , 给大家分享一下 , 如 ...
- How to Manage Amazon-Fulfilled Orders - Cancel an Amazon-Fulfilled Order
You may request to cancel customer orders that have a status of "Pending" or "Unshipp ...