题目描述

$T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构。求不同构的环的个数模 $p$ 的结果。 $T\le 3500,n\le 10^9,p\le 30000$ 。


题解

Polya定理+欧拉函数

根据 poj2409 中得到的结论,答案为:

$\frac{\sum\limits_{i=1}^nn^{\gcd(i,n)}}n=\sum\limits_{i=1}^nn^{\gcd(i,n)-1}$

由于 $n$ 有 $10^9$ 之大,因此考虑优化这个式子。

枚举 $\gcd(i,n)$ ,则有:

$Ans=\sum\limits_{d|n}n^{d-1}\sum\limits_{j=1}^{\frac nd}[\gcd(j·d,n)==d]\\\ \ \ \ \ \ \ =\sum\limits_{d|n}n^{d-1}\sum\limits_{j=1}^{\frac nd}[\gcd(j,\frac nd)==1]\\\ \ \ \ \ \ \ =\sum\limits_{d|n}n^{d-1}\varphi(\frac nd)\\\ \ \ \ \ \ \ =\sum\limits_{k|n}n^{\frac nk-1}\varphi(k)$

此时 $k$ 是 $n$ 的约数,总个数不会超过 $O(\sqrt n)$ 个。但是直接枚举约数的话难以快速算出 $\varphi$ 值。

考虑将 $n$ 分解质因数,设 $n=\prod\limits_{i=1}^mp_i^{a_i}$ ,那么我们dfs枚举 $k=\prod\limits_{i=1}^mp_i^{b_i}\ (0\le b_i\le a_i)$ ,由于 $\varphi$ 是积性函数,所以在枚举的过程中就可以顺便求出 $\varphi$ 值 ,再与 $n^{\frac nk-1}$ 作乘积累加到答案中即可。这样能够不重不漏地枚举到 $n$ 的所有约数并统计答案。

时间复杂度 $O(T\sqrt n\log n)$ ,由于这个根号是远远不满的,因此可以过。

#include <cstdio>
int a[40] , c[40] , tot , n , p , ans;
inline int pow(int x , int y)
{
int ans = 1;
while(y)
{
if(y & 1) ans = ans * x % p;
x = x * x % p , y >>= 1;
}
return ans;
}
void dfs(int x , int d , int v)
{
if(x > tot)
{
ans = (ans + pow(n % p , n / d - 1) * (v % p)) % p;
return;
}
int i;
dfs(x + 1 , d , v);
d *= a[x] , v *= a[x] - 1;
for(i = 1 ; i <= c[x] ; i ++ , d *= a[x] , v *= a[x])
dfs(x + 1 , d , v);
}
int main()
{
int T , i , x;
scanf("%d" , &T);
while(T -- )
{
scanf("%d%d" , &n , &p);
tot = 0 , x = n;
for(i = 2 ; i * i <= x ; i ++ )
{
if(!(x % i))
{
a[++tot] = i , c[tot] = 0;
while(!(x % i)) x /= i , c[tot] ++ ;
}
}
if(x != 1) a[++tot] = x , c[tot] = 1;
ans = 0 , dfs(1 , 1 , 1);
printf("%d\n" , ans);
}
return 0;
}

【poj2154】Color Polya定理+欧拉函数的更多相关文章

  1. POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)

    由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...

  2. poj2154Color polya定理+欧拉函数优化

    没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...

  3. POJ2154 Color 【Polya定理 + 欧拉函数】

    题目 Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). ...

  4. poj2154(polya定理+欧拉函数)

    题目链接:http://poj.org/problem?id=2154 题意:n 种颜色的珠子构成一个长为 n 的环,每种颜色珠子个数无限,也不一定要用上所有颜色,旋转可以得到状态只算一种,问有多少种 ...

  5. poj 2154 Color【polya定理+欧拉函数】

    根据polya定理,答案应该是 \[ \frac{1}{n}\sum_{i=1}^{n}n^{gcd(i,n)} \] 但是这个显然不能直接求,因为n是1e9级别的,所以推一波式子: \[ \frac ...

  6. 【POJ2154】Color Pólya定理+欧拉函数

    [POJ2154]Color 题意:求用$n$种颜色染$n$个珠子的项链的方案数.在旋转后相同的方案算作一种.答案对$P$取模. 询问次数$\le 3500$,$n\le 10^9,P\le 3000 ...

  7. Luogu4980 【模板】Polya定理(Polya定理+欧拉函数)

    对于置换0→i,1→i+1……,其中包含0的循环的元素个数显然是n/gcd(i,n),由对称性,循环节个数即为gcd(i,n). 那么要求的即为Σngcd(i,n)/n(i=0~n-1,也即1~n). ...

  8. poj 2154 Color(polya计数 + 欧拉函数优化)

    http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...

  9. poj2409 & 2154 polya计数+欧拉函数优化

    这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...

随机推荐

  1. 20155338 ch02 ch03课下作业

    20155338 ch02 ch03课下作业 要求: 1.补充完成课上测试(不能只有截图,要有分析,问题解决过程,新学到的知识点) 课上测试-3-ch02 1.编写一个程序 "week060 ...

  2. cdh中hdfs非ha环境迁移Namenode与secondaryNamenode,从uc机器到阿里;

    1.停掉外部接入服务: 2 NameNode Metadata备份: 2.1 备份fsimage数据,(该操作适用HA和非HA的NameNode),使用如下命令进行备份: [root@cdh01 df ...

  3. Struts 2(四):类型转换

    类型转换是Struts 2的一个非常重要的部分,通过类型转换能够将表单参数转换成Java中的各种类型,本文将详细介绍Struts 2的内建类型转换器和自定义类型转换器. 第一节 Struts 2内建类 ...

  4. 「Leetcode」976. Largest Perimeter Triangle(C++)

    分析 好久不刷题真的思维僵化,要考虑到这样一个结论:如果递增的三个数\(x_i,x_{i+1},x_{i+2}\)不符合题意,那么最大的两边之差一定大于等于第一条边,那么任何比第一条边小的都不能成立. ...

  5. xampp服务器搭建和使用

    1.安装完XAMPP后会出现Apache端口被占用的问题,一下方法解决 错误信息如下: Error: Apache shutdown unexpectedly. 9:37:01  [Apache] T ...

  6. hdu6447

    YJJ's Salesman Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  7. Linux内核学习笔记(2)-- 父进程和子进程及它们的访问方法

    Linux系统中,进程之间有一个明显的继承关系,所有进程都是 PID 为1的 init 进程的后代.内核在系统启动的最后阶段启动 init 进程.该进程读取系统的初始化脚本(initscript)并执 ...

  8. less 语法特性翻译稿 - 特性快速预览部分

    原文地址 http://lesscss.cn/features/ 概述 作为CSS的一种扩展语法,Less不仅仅向后兼容CSS,新的特性也是基于CSS现有语法.这使得学习Less变得容易,如果你有所怀 ...

  9. ab命令做压测测试

    1. 背景:互联网发达的今天,大大小小的网站如雨后春笋,不断出现,但是想要做出一个网站很简单,但是想要做好一个网站,非常非常难,首先:网站做好之后的功能怎么样这都是次要的,主要的是你的网站能承受怎么样 ...

  10. 基于 Agent 的模型入门:Python 实现隔离仿真

    2005 年诺贝尔经济学奖得主托马斯·谢林(Thomas Schelling)在上世纪 70 年代就纽约的人种居住分布得出了著名的 Schelling segregation model,这是一个 A ...