洛谷 P2015 二叉苹果树
老规矩,先放题面
题目描述
有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)
这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。
我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树2 5
\ /
3 4
\ /
1
现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。
给定需要保留的树枝数量,求出最多能留住多少苹果。输入输出格式
输入格式:
第1行2个数,N和Q(1<=Q<= N,1<N<=100)。
N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。
每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。
每根树枝上的苹果不超过30000个。输出格式:
一个数,最多能留住的苹果的数量。输入输出样例
输入样例:
5 2
1 3 1
1 4 10
2 3 20
3 5 20输出样例:
21
题意中有隐含条件,要仔细读题,如果要选择当前边的话,那么也必须它与根节点的连线上的边也必须全部选中
动态转移方程:\(f[u][j]=max(f[u][j],f[u][j-k-1]+f[v][k]+e[i].w)(1≤j≤min(q,b[u]),0≤k≤min(b[v],j-1))\)
\(u\)表示当前节点,\(v\)为他的一颗子节点,\(b\)数组表示以i为根节点树上的边数
看到这里,相信方程大家很容易就能看明白甚至自己就能想明白,但是范围为什么是这样的呢?
我们着重讲一下这个取值范围的问题
首先先看\(k\),\(k\)在此处表示取\(v\)子树上的边数,最大自然不能超过\(b[v]\)但是为什么要小于等于\(j-1\)而不是\(j\)呢?
我们前面提到过了,题目中是有隐含条件的,若要选取子树\(v\)上的边,则必须选取\(u\)与\(v\)相连的边保证选取的边全部与根节点相连
然后就是\(j\),\(b[u]\)数组是在实时发生变化的,它不断加上自己子树的边,保证背包容量不断扩大,此处千万不要写成\(b[v]\)
下放代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define maxn 105
#define gc() getchar()
#define ll long long
using namespace std;
inline ll read(){
ll a=0;char p=gc();int f=0;
while(!isdigit(p)){f|=(p=='-');p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
}
struct ahaha{
int to,next,w;
}e[maxn<<1];
int n,q,head[maxn],f[maxn][maxn],b[maxn],sz;
inline void add(int u,int v,int z){
e[sz].to=v;e[sz].w=z;e[sz].next=head[u];head[u]=sz++;
}
void dfs(int u,int fa){
for(int i=head[u];~i;i=e[i].next){
int v=e[i].to;if(v==fa)continue; //防止死循环
dfs(v,u);
b[u]+=b[v]+1; //当前点的边数加上子树的边数后,还需加上与子树相连的那一条边
for(int j=min(q,b[u]);j>=1;--j)
for(int k=min(b[v],j-1);k>=0;--k)
f[u][j]=max(f[u][j],f[u][j-k-1]+f[v][k]+e[i].w);
}
}
int main(){memset(head,-1,sizeof head);
n=read();q=read();
for(int i=1;i<n;++i){
int x=read(),y=read(),z=read();
add(x,y,z);add(y,x,z); //由于是树,每条边我们添加两遍,便于使用
}
dfs(1,0);
printf("%d",f[1][q]);
return 0;
}
洛谷 P2015 二叉苹果树的更多相关文章
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解
二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
- 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树
这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...
- 洛谷P2015 二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷—— P2015 二叉苹果树
https://www.luogu.org/problem/show?pid=2015 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点 ...
- 洛谷P2015 二叉苹果树(树状dp)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷P2015二叉苹果树
传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...
- 洛谷 P2015 二叉苹果树 题解
题面 裸的树上背包: 设f[u][i]表示在以u为子树的树种选择i条边的最大值,则:f[u][i]=max(f[u][i],f[u][i-j-1]+f[v][k]+u到v的边权); #include ...
随机推荐
- CF 1083 A. The Fair Nut and the Best Path
A. The Fair Nut and the Best Path https://codeforces.com/contest/1083/problem/A 题意: 在一棵树内找一条路径,使得从起点 ...
- Codeception (安装)
来源:http://codeception.com/install 注意:打开Codeception的官网需要FQ 1. 下载 下载地址:http://codeception.com/thanks 或 ...
- Hibernate各种主键生成策略与配置详解(转)
原文链接:http://www.cnblogs.com/hoobey/p/5508992.html 1.assigned 主键由外部程序负责生成,在 save() 之前必须指定一个.Hibernate ...
- 在docker中执行linux shell命令
在docker中执行shell命令,需要在命令前增加sh -c,例如: docker run ubuntu sh -c 'cat /data/a.txt > b.txt' 否则,指令无法被正常解 ...
- protobuf工程的编译以及使用
一. 获取Protocol Buffer 1.1 获得源码 Github:ProtocolBuffer源码 Git clone之:git clone https://github.com/google ...
- dalao自动报表邮件2.0
经过昨天的修改优化后,dalao收到了不是“木马”的邮件,欣慰地点了点头,“不错,不错,这几张表设计的简洁明了,看着有货!不过呀,,,这些表的数据太多了一点,十几天的数据一大溜,能不能再简洁一点,做一 ...
- Python爬虫下载Bilibili番剧弹幕
本文绍如何利用python爬虫下载bilibili番剧弹幕. 准备: python3环境 需要安装BeautifulSoup,selenium包 phantomjs 原理: 通过aid下载bilibi ...
- win7下配置spark
1.安装jdk(配置JAVA_HOME,CLASSPATH,path) 2.安装scala(配置SCALA_HOME,path) 3.安装spark Spark的安装非常简单,直接去Download ...
- centos上搭建git服务--3
前言:当我们想要实现几个小伙伴合作开发同一个项目,或者建立一个资源分享平台的时候,GIT就是一个很好的选择.当然,既然是一个共有平台,那么把这个平台放到个人计算机上明显是不合适的,因此就要在服务器上搭 ...
- Junit4 单元测试框架的常用方法介绍
Junit 介绍: Junit是一套框架(用于JAVA语言),由 Erich Gamma 和 Kent Beck 编写的一个回归测试框架(regression testing framework),即 ...