题目

Description

One of the more popular activities in San Antonio is to enjoy margaritas in the park along the river know as the River Walk. Margaritas may be purchased at many establishments along the River Walk from fancy hotels toJoe’s Taco and Margarita stand. (The problem is not to find out how Joe got a liquor license. That involves Texas politics and thus is much too difficult for an ACM contest problem.) The prices of the margaritas vary depending on the amount and quality of the ingredients and the ambience of the establishment. You have allocated a certain amount of money to sampling different margaritas.

Given the price of a single margarita (including applicable taxes and gratuities) at each of the various establishments and the amount allocated to sampling the margaritas, find out how many different maximal combinations, choosing at most one margarita from each establishment, you can purchase. A valid combination must have a total price no more than the allocated amount and the unused amount (allocated amount – total price) must be less than the price of any establishment that was not selected. (Otherwise you could add that establishment to the combination.)

For example, suppose you have $25 to spend and the prices (whole dollar amounts) are:

Vendor A B C D H J
Price 8 9 8 7 16 5

Then possible combinations (with their prices) are:

ABC(25), ABD(24), ABJ(22), ACD(23), ACJ(21), ADJ( 20), AH(24), BCD(24), BCJ(22), BDJ(21), BH(25), CDJ(20), CH(24), DH(23) and HJ(21).

Thus the total number of combinations is 15.

Input

The input begins with a line containing an integer value specifying the number of datasets that follow, N (1 ≤ N ≤ 1000). Each dataset starts with a line containing two integer values V and D representing the number of vendors (1 ≤ V ≤ 30) and the dollar amount to spend (1 ≤ D ≤ 1000) respectively. The two values will be separated by one or more spaces. The remainder of each dataset consists of one or more lines, each containing one or more integer values representing the cost of a margarita for each vendor. There will be a total of V cost values specified. The cost of a margarita is always at least one (1). Input values will be chosen so the result will fit in a 32 bit unsigned integer.

Output

For each problem instance, the output will be a single line containing the dataset number, followed by a single space and then the number of combinations for that problem instance.

Sample Input

2
6 25
8 9 8 7 16 5
30 250
1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

Sample Output

1 15
2 16509438

Hint

Note: Some solution methods for this problem may be exponential in the number of vendors. For these methods, the time limit may be exceeded on problem instances with a large number of vendors such as the second example below.

思路

1. 朴素背包方案统计的状态转移方程为 dp[i] += dp[i-w[i]]

2. 题目要求背包剩下的空间无法再放下任意一个还未被选择的物品, 那么需要特殊考虑

  • 先对所有物品按照其价值进行排序, 对于每件物品都有拿或者不拿两种选择
  • 对于第 k 件物品, 分拿或不拿两种选择. 假设第 k 件物品是未拿到的价值最小的, 那么 0~k-1 这 k 件物品一定都拿了. 然后对 K+1 ~ END 执行朴素背包方案统计即可

3. 下面的代码解析.

  • delta 是指 0 ~ K-1 这 K 件物品的价值总和, 每次循环加上 dp[i], 因此名为 delta
  • 初始化 dp[delta] = 0, dp[else] = 0

代码:

#include <iostream>
#include <algorithm>
using namespace std; const int MAXN = 1010;
int testCase, V, D;
int w[MAXN];
int dp[MAXN];
int solve_dp() {
int solution = 0;
int delta = 0;
for(int i = 0; i < V; i ++) { memset(dp, 0, sizeof(dp));
dp[delta] = 1;
for(int j = i+1; j < V; j++) {
for(int k = D; k >= delta+w[j]; k--) {
dp[k] = dp[k]+dp[k-w[j]];
}
} for(int k = D; k > max(0, D-w[i]); k --) { // WA 过一次, 写成 >=, 等于的话就可以装下 i 了
if(k >= delta) {
solution += dp[k];
}
}
delta += w[i];
}
return solution;
} int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin); cin >> testCase;
int index = 0;
while(testCase--) {
index++;
cin >> V >> D;
for(int i = 0; i < V; i ++) {
scanf("%d", &w[i]);
}
sort(w, w+V);//WA 过, 忘了排序
// mainFunc
printf("%d %d\n", index, solve_dp());
}
return 0;
}

  

POJ 3093 Margaritas(Kind of wine) on the River Walk (背包方案统计)的更多相关文章

  1. poj[3093]Margaritas On River Walk

    Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...

  2. POJ 3093 Margaritas on the River Walk(背包)

    题意 n个有体积的物品,问选取一些物品,且不能再继续选有多少方法? n<=1000 题解 以前的考试题.当时是A了,但发现是数据水,POJ上WA了. 把体积从小到大排序枚举没选的物品中体积最小的 ...

  3. POJ 1426 Find The Multiple(背包方案统计)

    Description Given a positive integer n, write a program to find out a nonzero multiple m of n whose ...

  4. Margaritas on the River Walk_背包

    Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...

  5. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  6. POJ 3260 The Fewest Coins 最少硬币个数(完全背包+多重背包,混合型)

    题意:FJ身上有各种硬币,但是要买m元的东西,想用最少的硬币个数去买,且找回的硬币数量也是最少(老板会按照最少的量自动找钱),即掏出的硬币和收到的硬币个数最少. 思路:老板会自动找钱,且按最少的找,硬 ...

  7. POJ Charlie's Change 查理之转换(多重背包,变形)

    题意: 给定身上的4种硬币,分别是1 ,5 ,10, 25面额各有多张,要求组成面额p的硬币尽可能多.输出组成p的4种硬币各自的数量. 思路: 多重背包,300+ms.用01背包+二进制的方法.记录下 ...

  8. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  9. poj 1726

    http://poj.org/problem?id=1276 解题要点:用完全背包来模拟的解题,只不过加了限制条件used[]...其他的就一样了.. 注意: cash 和n 为0 的情况 #incl ...

随机推荐

  1. Qt 的QString类的使用

    Qt的QString类提供了很方便的对字符串操作的接口. 使某个字符填满字符串,也就是说字符串里的所有字符都有等长度的ch来代替. QString::fill ( QChar ch, int size ...

  2. AngularJS 初始化加载流程

    一.AngularJS 初始化加载流程 1.浏览器载入HTML,然后把它解析成DOM.2.浏览器载入angular.js脚本.3.AngularJS等到DOMContentLoaded事件触发.4.A ...

  3. [流水账]搜索与web-container版本匹配的jar包

    刚才发现自己的servlet-api.jar里面的javax.servlet.jsp为空的,但是我又需要做一些JSP tag-lib的编程,所以没办法,只好去下一个新的包 上网找了找,我用的tomca ...

  4. 用C#写一个实现进程监控的自动关机工具

    今天QA部门需要进行Performance测试,因为跑job的时间会很长,下班也跑不完.所以想要做一个job运行完毕自动关机的工具. 原理就是检查进程的名称,如果检查不到相应的进程,就说明job已经跑 ...

  5. pyqt布局管理器QGridLayout简单示例

    # _*_ coding:utf-8 _*_ import sys from PyQt4 import QtGui class Example(QtGui.QWidget): def __init__ ...

  6. JAVA-JSP动作元素之param

    相关资料:<21天学通Java Web开发> 结果总结:1.用来传递参数,一般与<jsp:include>.<jsp:forward>联合使用.2.<jsp: ...

  7. 如何用Visual Studio 2013 (vs2013)编写C语言程序

    如何用Visual Studio 2013 (vs2013)编写C语言程序 (2014-05-16 10:58:15)   Visual Studio 2013是一个很强大的软件,但是刚开始用Visu ...

  8. setTimeout解读

    看一个简单的例子: for(var i=0; i<4; i++){ setTimeout(function(){console.log(i)}, 0); } 请问下这段代码会输出什么呢? 如果你 ...

  9. SpringMVC 之类型转换Converter详解转载

    SpringMVC之类型转换Converter详解 本文转载 http://www.tuicool.com/articles/uUjaum 1.1     目录 1.1      目录 1.2     ...

  10. Apache HttpComponents 文件上传例子

    /* * ==================================================================== * * Licensed to the Apache ...