scrapy与redis实战
从零搭建Redis-Scrapy分布式爬虫
Scrapy-Redis分布式策略:
假设有四台电脑:Windows 10、Mac OS X、Ubuntu 16.04、CentOS 7.2,任意一台电脑都可以作为 Master端 或 Slaver端,比如:
Master端
(核心服务器) :使用 Windows 10,搭建一个Redis数据库,不负责爬取,只负责url指纹判重、Request的分配,以及数据的存储Slaver端
(爬虫程序执行端) :使用 Mac OS X 、Ubuntu 16.04、CentOS 7.2,负责执行爬虫程序,运行过程中提交新的Request给Master
首先Slaver端从Master端拿任务(Request、url)进行数据抓取,Slaver抓取数据的同时,产生新任务的Request便提交给 Master 处理;
Master端只有一个Redis数据库,负责将未处理的Request去重和任务分配,将处理后的Request加入待爬队列,并且存储爬取的数据。
Scrapy-Redis默认使用的就是这种策略,我们实现起来很简单,因为任务调度等工作Scrapy-Redis都已经帮我们做好了,我们只需要继承RedisSpider、指定redis_key就行了。
缺点是,Scrapy-Redis调度的任务是Request对象,里面信息量比较大(不仅包含url,还有callback函数、headers等信息),可能导致的结果就是会降低爬虫速度、而且会占用Redis大量的存储空间,所以如果要保证效率,那么就需要一定硬件水平。
一、安装Redis
安装Redis:http://redis.io/download
安装完成后,拷贝一份Redis安装目录下的redis.conf到任意目录,建议保存到:/etc/redis/redis.conf
(Windows系统可以无需变动)
二、修改配置文件 redis.conf
打开你的redis.conf配置文件,示例:
非Windows系统:
sudo vi /etc/redis/redis.conf
Windows系统:
C:\Intel\Redis\conf\redis.conf
Master端redis.conf里注释
bind 127.0.0.1
,Slave端才能远程连接到Master端的Redis数据库。
2.daemonize yno
表示Redis默认不作为守护进程运行,即在运行redis-server /etc/redis/redis.conf
时,将显示Redis启动提示画面;
daemonize yes
则默认后台运行,不必重新启动新的终端窗口执行其他命令,看个人喜好和实际需要。
三、测试Slave端远程连接Master端
测试中,Master端Windows 10 的IP地址为:192.168.199.108
Master端按指定配置文件启动
redis-server
,示例:非Windows系统:
sudo redis-server /etc/redis/redis.conf
Windows系统:
命令提示符(管理员)
模式下执行redis-server C:\Intel\Redis\conf\redis.conf
读取默认配置即可。
Master端启动本地
redis-cli
:
3.slave端启动redis-cli -h 192.168.199.108
,-h 参数表示连接到指定主机的redis数据库
注意:Slave端无需启动redis-server
,Master端启动即可。只要 Slave 端读取到了 Master 端的 Redis 数据库,则表示能够连接成功,可以实施分布式。
四、Redis数据库桌面管理工具
这里推荐 Redis Desktop Manager,支持 Windows、Mac OS X、Linux 等平台:
下载地址:https://redisdesktop.com/download
源码自带项目说明:
使用scrapy-redis的example来修改
先从github上拿到scrapy-redis的示例,然后将里面的example-project目录移到指定的地址:
- # clone github scrapy-redis源码文件
- git clone https://github.com/rolando/scrapy-redis.git
- # 直接拿官方的项目范例,改名为自己的项目用(针对懒癌患者)
- mv scrapy-redis/example-project ~/scrapyredis-project
我们clone到的 scrapy-redis 源码中有自带一个example-project项目,这个项目包含3个spider,分别是dmoz, myspider_redis,mycrawler_redis。
一、dmoz (class DmozSpider(CrawlSpider))
这个爬虫继承的是CrawlSpider,它是用来说明Redis的持续性,当我们第一次运行dmoz爬虫,然后Ctrl + C停掉之后,再运行dmoz爬虫,之前的爬取记录是保留在Redis里的。
分析起来,其实这就是一个 scrapy-redis 版 CrawlSpider
类,需要设置Rule规则,以及callback不能写parse()方法。
执行方式:scrapy crawl dmoz
- from scrapy.linkextractors import LinkExtractor
- from scrapy.spiders import CrawlSpider, Rule
- class DmozSpider(CrawlSpider):
- """Follow categories and extract links."""
- name = 'dmoz'
- allowed_domains = ['dmoz.org']
- start_urls = ['http://www.dmoz.org/']
- rules = [
- Rule(LinkExtractor(
- restrict_css=('.top-cat', '.sub-cat', '.cat-item')
- ), callback='parse_directory', follow=True),
- ]
- def parse_directory(self, response):
- for div in response.css('.title-and-desc'):
- yield {
- 'name': div.css('.site-title::text').extract_first(),
- 'description': div.css('.site-descr::text').extract_first().strip(),
- 'link': div.css('a::attr(href)').extract_first(),
- }
二、myspider_redis (class MySpider(RedisSpider))
这个爬虫继承了RedisSpider, 它能够支持分布式的抓取,采用的是basic spider,需要写parse函数。
其次就是不再有start_urls了,取而代之的是redis_key,scrapy-redis将key从Redis里pop出来,成为请求的url地址。
- from scrapy_redis.spiders import RedisSpider
- class MySpider(RedisSpider):
- """Spider that reads urls from redis queue (myspider:start_urls)."""
- name = 'myspider_redis'
- # 注意redis-key的格式:
- redis_key = 'myspider:start_urls'
- # 可选:等效于allowd_domains(),__init__方法按规定格式写,使用时只需要修改super()里的类名参数即可
- def __init__(self, *args, **kwargs):
- # Dynamically define the allowed domains list.
- domain = kwargs.pop('domain', '')
- self.allowed_domains = filter(None, domain.split(','))
- # 修改这里的类名为当前类名
- super(MySpider, self).__init__(*args, **kwargs)
- def parse(self, response):
- return {
- 'name': response.css('title::text').extract_first(),
- 'url': response.url,
- }
注意:
RedisSpider类 不需要写allowd_domains
和start_urls
:
scrapy-redis将从在构造方法
__init__()
里动态定义爬虫爬取域范围,也可以选择直接写allowd_domains
。必须指定redis_key,即启动爬虫的命令,参考格式:
redis_key = 'myspider:start_urls'
根据指定的格式,
start_urls
将在 Master端的 redis-cli 里 lpush 到 Redis数据库里,RedisSpider 将在数据库里获取start_urls。
执行方式:
通过runspider方法执行爬虫的py文件(也可以分次执行多条),爬虫(们)将处于等待准备状态:
scrapy runspider myspider_redis.py
在Master端的redis-cli输入push指令,参考格式:
$redis > lpush myspider:start_urls http://www.dmoz.org/
Slaver端爬虫获取到请求,开始爬取。
三、mycrawler_redis (class MyCrawler(RedisCrawlSpider))
这个RedisCrawlSpider类爬虫继承了RedisCrawlSpider,能够支持分布式的抓取。因为采用的是crawlSpider,所以需要遵守Rule规则,以及callback不能写parse()方法。
同样也不再有start_urls了,取而代之的是redis_key,scrapy-redis将key从Redis里pop出来,成为请求的url地址。
- from scrapy.spiders import Rule
- from scrapy.linkextractors import LinkExtractor
- from scrapy_redis.spiders import RedisCrawlSpider
- class MyCrawler(RedisCrawlSpider):
- """Spider that reads urls from redis queue (myspider:start_urls)."""
- name = 'mycrawler_redis'
- redis_key = 'mycrawler:start_urls'
- rules = (
- # follow all links
- Rule(LinkExtractor(), callback='parse_page', follow=True),
- )
- # __init__方法必须按规定写,使用时只需要修改super()里的类名参数即可
- def __init__(self, *args, **kwargs):
- # Dynamically define the allowed domains list.
- domain = kwargs.pop('domain', '')
- self.allowed_domains = filter(None, domain.split(','))
- # 修改这里的类名为当前类名
- super(MyCrawler, self).__init__(*args, **kwargs)
- def parse_page(self, response):
- return {
- 'name': response.css('title::text').extract_first(),
- 'url': response.url,
- }
注意:
同样的,RedisCrawlSpider类不需要写allowd_domains
和start_urls
:
scrapy-redis将从在构造方法
__init__()
里动态定义爬虫爬取域范围,也可以选择直接写allowd_domains
。必须指定redis_key,即启动爬虫的命令,参考格式:
redis_key = 'myspider:start_urls'
根据指定的格式,
start_urls
将在 Master端的 redis-cli 里 lpush 到 Redis数据库里,RedisSpider 将在数据库里获取start_urls。
执行方式:
通过runspider方法执行爬虫的py文件(也可以分次执行多条),爬虫(们)将处于等待准备状态:
scrapy runspider mycrawler_redis.py
在Master端的redis-cli输入push指令,参考格式:
$redis > lpush mycrawler:start_urls http://www.dmoz.org/
爬虫获取url,开始执行。
总结:
如果只是用到Redis的去重和保存功能,就选第一种;
如果要写分布式,则根据情况,选择第二种、第三种;
通常情况下,会选择用第三种方式编写深度聚焦爬虫。
有缘网分布式爬虫案例:
- # clone github scrapy-redis源码文件
- git clone https://github.com/rolando/scrapy-redis.git
- # 直接拿官方的项目范例,改名为自己的项目用(针对懒癌患者)
- mv scrapy-redis/example-project ~/scrapy-youyuan
修改settings.py
下面列举了修改后的配置文件中与scrapy-redis有关的部分,middleware、proxy等内容在此就省略了。
- # -*- coding: utf-8 -*-
- # 指定使用scrapy-redis的调度器
- SCHEDULER = "scrapy_redis.scheduler.Scheduler"
- # 指定使用scrapy-redis的去重
- DUPEFILTER_CLASS = 'scrapy_redis.dupefilters.RFPDupeFilter'
- # 指定排序爬取地址时使用的队列,
- # 默认的 按优先级排序(Scrapy默认),由sorted set实现的一种非FIFO、LIFO方式。
- SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderPriorityQueue'
- # 可选的 按先进先出排序(FIFO)
- # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderQueue'
- # 可选的 按后进先出排序(LIFO)
- # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderStack'
- # 在redis中保持scrapy-redis用到的各个队列,从而允许暂停和暂停后恢复,也就是不清理redis queues
- SCHEDULER_PERSIST = True
- # 只在使用SpiderQueue或者SpiderStack是有效的参数,指定爬虫关闭的最大间隔时间
- # SCHEDULER_IDLE_BEFORE_CLOSE = 10
- # 通过配置RedisPipeline将item写入key为 spider.name : items 的redis的list中,供后面的分布式处理item
- # 这个已经由 scrapy-redis 实现,不需要我们写代码
- ITEM_PIPELINES = {
- 'example.pipelines.ExamplePipeline': 300,
- 'scrapy_redis.pipelines.RedisPipeline': 400
- }
- # 指定redis数据库的连接参数
- # REDIS_PASS是我自己加上的redis连接密码(默认不做)
- REDIS_HOST = '127.0.0.1'
- REDIS_PORT = 6379
- #REDIS_PASS = 'redisP@ssw0rd'
- # LOG等级
- LOG_LEVEL = 'DEBUG'
- #默认情况下,RFPDupeFilter只记录第一个重复请求。将DUPEFILTER_DEBUG设置为True会记录所有重复的请求。
- DUPEFILTER_DEBUG =True
- # 覆盖默认请求头,可以自己编写Downloader Middlewares设置代理和UserAgent
- DEFAULT_REQUEST_HEADERS = {
- 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
- 'Accept-Language': 'zh-CN,zh;q=0.8',
- 'Connection': 'keep-alive',
- 'Accept-Encoding': 'gzip, deflate, sdch'
- }
查看pipeline.py
- # -*- coding: utf-8 -*-
- from datetime import datetime
- class ExamplePipeline(object):
- def process_item(self, item, spider):
- #utcnow() 是获取UTC时间
- item["crawled"] = datetime.utcnow()
- # 爬虫名
- item["spider"] = spider.name
- return item
修改items.py
增加我们最后要保存的youyuanItem项,这里只写出来一个非常简单的版本
- # -*- coding: utf-8 -*-
- from scrapy.item import Item, Field
- class youyuanItem(Item):
- # 个人头像链接
- header_url = Field()
- # 用户名
- username = Field()
- # 内心独白
- monologue = Field()
- # 相册图片链接
- pic_urls = Field()
- # 年龄
- age = Field()
- # 网站来源 youyuan
- source = Field()
- # 个人主页源url
- source_url = Field()
- # 获取UTC时间
- crawled = Field()
- # 爬虫名
- spider = Field()
编写 spiders/youyuan.py
在spiders目录下增加youyuan.py文件编写我们的爬虫,之后就可以运行爬虫了。 这里的提供一个简单的版本:
- # -*- coding:utf-8 -*-
- from scrapy.linkextractors import LinkExtractor
- from scrapy.spiders import CrawlSpider, Rule
- # 使用redis去重
- from scrapy.dupefilters import RFPDupeFilter
- from example.items import youyuanItem
- import re
- #
- class YouyuanSpider(CrawlSpider):
- name = 'youyuan'
- allowed_domains = ['youyuan.com']
- # 有缘网的列表页
- start_urls = ['http://www.youyuan.com/find/beijing/mm18-25/advance-0-0-0-0-0-0-0/p1/']
- # 搜索页面匹配规则,根据response提取链接
- list_page_lx = LinkExtractor(allow=(r'http://www.youyuan.com/find/.+'))
- # 北京、18~25岁、女性 的 搜索页面匹配规则,根据response提取链接
- page_lx = LinkExtractor(allow =(r'http://www.youyuan.com/find/beijing/mm18-25/advance-0-0-0-0-0-0-0/p\d+/'))
- # 个人主页 匹配规则,根据response提取链接
- profile_page_lx = LinkExtractor(allow=(r'http://www.youyuan.com/\d+-profile/'))
- rules = (
- # 匹配find页面,跟进链接,跳板
- Rule(list_page_lx, follow=True),
- # 匹配列表页成功,跟进链接,跳板
- Rule(page_lx, follow=True),
- # 匹配个人主页的链接,形成request保存到redis中等待调度,一旦有响应则调用parse_profile_page()回调函数处理,不做继续跟进
- Rule(profile_page_lx, callback='parse_profile_page', follow=False),
- )
- # 处理个人主页信息,得到我们要的数据
- def parse_profile_page(self, response):
- item = youyuanItem()
- item['header_url'] = self.get_header_url(response)
- item['username'] = self.get_username(response)
- item['monologue'] = self.get_monologue(response)
- item['pic_urls'] = self.get_pic_urls(response)
- item['age'] = self.get_age(response)
- item['source'] = 'youyuan'
- item['source_url'] = response.url
- #print "Processed profile %s" % response.url
- yield item
- # 提取头像地址
- def get_header_url(self, response):
- header = response.xpath('//dl[@class=\'personal_cen\']/dt/img/@src').extract()
- if len(header) > 0:
- header_url = header[0]
- else:
- header_url = ""
- return header_url.strip()
- # 提取用户名
- def get_username(self, response):
- usernames = response.xpath("//dl[@class=\'personal_cen\']/dd/div/strong/text()").extract()
- if len(usernames) > 0:
- username = usernames[0]
- else:
- username = "NULL"
- return username.strip()
- # 提取内心独白
- def get_monologue(self, response):
- monologues = response.xpath("//ul[@class=\'requre\']/li/p/text()").extract()
- if len(monologues) > 0:
- monologue = monologues[0]
- else:
- monologue = "NULL"
- return monologue.strip()
- # 提取相册图片地址
- def get_pic_urls(self, response):
- pic_urls = []
- data_url_full = response.xpath('//li[@class=\'smallPhoto\']/@data_url_full').extract()
- if len(data_url_full) <= 1:
- pic_urls.append("");
- else:
- for pic_url in data_url_full:
- pic_urls.append(pic_url)
- if len(pic_urls) <= 1:
- return "NULL"
- # 每个url用|分隔
- return '|'.join(pic_urls)
- # 提取年龄
- def get_age(self, response):
- age_urls = response.xpath("//dl[@class=\'personal_cen\']/dd/p[@class=\'local\']/text()").extract()
- if len(age_urls) > 0:
- age = age_urls[0]
- else:
- age = ""
- age_words = re.split(' ', age)
- if len(age_words) <= 2:
- return ""
- age = age_words[2][:-1]
- # 从age字符串开始匹配数字,失败返回None
- if re.compile(r'[0-9]').match(age):
- return age
- return ""
运行程序:
- Master端打开 Redis:
redis-server
- Slave端直接运行爬虫:
scrapy crawl youyuan
- 多个Slave端运行爬虫顺序没有限制。
将项目修改成 RedisCrawlSpider 类的分布式爬虫,并尝试在多个Slave端运行。
有缘网分布式爬虫案例:
修改 spiders/youyuan.py
在spiders目录下增加youyuan.py文件编写我们的爬虫,使其具有分布式:
- # -*- coding:utf-8 -*-
- from scrapy.linkextractors import LinkExtractor
- #from scrapy.spiders import CrawlSpider, Rule
- # 1. 导入RedisCrawlSpider类,不使用CrawlSpider
- from scrapy_redis.spiders import RedisCrawlSpider
- from scrapy.spiders import Rule
- from scrapy.dupefilters import RFPDupeFilter
- from example.items import youyuanItem
- import re
- # 2. 修改父类 RedisCrawlSpider
- # class YouyuanSpider(CrawlSpider):
- class YouyuanSpider(RedisCrawlSpider):
- name = 'youyuan'
- # 3. 取消 allowed_domains() 和 start_urls
- ##### allowed_domains = ['youyuan.com']
- ##### start_urls = ['http://www.youyuan.com/find/beijing/mm18-25/advance-0-0-0-0-0-0-0/p1/']
- # 4. 增加redis-key
- redis_key = 'youyuan:start_urls'
- list_page_lx = LinkExtractor(allow=(r'http://www.youyuan.com/find/.+'))
- page_lx = LinkExtractor(allow =(r'http://www.youyuan.com/find/beijing/mm18-25/advance-0-0-0-0-0-0-0/p\d+/'))
- profile_page_lx = LinkExtractor(allow=(r'http://www.youyuan.com/\d+-profile/'))
- rules = (
- Rule(list_page_lx, follow=True),
- Rule(page_lx, follow=True),
- Rule(profile_page_lx, callback='parse_profile_page', follow=False),
- )
- # 5. 增加__init__()方法,动态获取allowed_domains()
- def __init__(self, *args, **kwargs):
- domain = kwargs.pop('domain', '')
- self.allowed_domains = filter(None, domain.split(','))
- super(youyuanSpider, self).__init__(*args, **kwargs)
- # 处理个人主页信息,得到我们要的数据
- def parse_profile_page(self, response):
- item = youyuanItem()
- item['header_url'] = self.get_header_url(response)
- item['username'] = self.get_username(response)
- item['monologue'] = self.get_monologue(response)
- item['pic_urls'] = self.get_pic_urls(response)
- item['age'] = self.get_age(response)
- item['source'] = 'youyuan'
- item['source_url'] = response.url
- yield item
- # 提取头像地址
- def get_header_url(self, response):
- header = response.xpath('//dl[@class=\'personal_cen\']/dt/img/@src').extract()
- if len(header) > 0:
- header_url = header[0]
- else:
- header_url = ""
- return header_url.strip()
- # 提取用户名
- def get_username(self, response):
- usernames = response.xpath("//dl[@class=\'personal_cen\']/dd/div/strong/text()").extract()
- if len(usernames) > 0:
- username = usernames[0]
- else:
- username = "NULL"
- return username.strip()
- # 提取内心独白
- def get_monologue(self, response):
- monologues = response.xpath("//ul[@class=\'requre\']/li/p/text()").extract()
- if len(monologues) > 0:
- monologue = monologues[0]
- else:
- monologue = "NULL"
- return monologue.strip()
- # 提取相册图片地址
- def get_pic_urls(self, response):
- pic_urls = []
- data_url_full = response.xpath('//li[@class=\'smallPhoto\']/@data_url_full').extract()
- if len(data_url_full) <= 1:
- pic_urls.append("");
- else:
- for pic_url in data_url_full:
- pic_urls.append(pic_url)
- if len(pic_urls) <= 1:
- return "NULL"
- return '|'.join(pic_urls)
- # 提取年龄
- def get_age(self, response):
- age_urls = response.xpath("//dl[@class=\'personal_cen\']/dd/p[@class=\'local\']/text()").extract()
- if len(age_urls) > 0:
- age = age_urls[0]
- else:
- age = ""
- age_words = re.split(' ', age)
- if len(age_words) <= 2:
- return ""
- age = age_words[2][:-1]
- if re.compile(r'[0-9]').match(age):
- return age
- return ""
分布式爬虫执行方式:
6. 在Master端启动redis-server:
- redis-server
7. 在Slave端分别启动爬虫,不分先后:
- scrapy runspider youyuan.py
8. 在Master端的redis-cli里push一个start_urls
- redis-cli> lpush youyuan:start_urls http://www.youyuan.com/find/beijing/mm18-25/advance-0-0-0-0-0-0-0/p1/
9. 爬虫启动,查看redis数据库数据。
处理Redis里的数据
有缘网的数据爬回来了,但是放在Redis里没有处理。之前我们配置文件里面没有定制自己的ITEM_PIPELINES,而是使用了RedisPipeline,所以现在这些数据都被保存在redis的youyuan:items键中,所以我们需要另外做处理。
在scrapy-youyuan目录下可以看到一个process_items.py
文件,这个文件就是scrapy-redis的example提供的从redis读取item进行处理的模版。
假设我们要把youyuan:items中保存的数据读出来写进MongoDB或者MySQL,那么我们可以自己写一个process_youyuan_profile.py
文件,然后保持后台运行就可以不停地将爬回来的数据入库了。
存入MongoDB
启动MongoDB数据库:
sudo mongod
执行下面程序:
py2 process_youyuan_mongodb.py
- # process_youyuan_mongodb.py
- # -*- coding: utf-8 -*-
- import json
- import redis
- import pymongo
- def main():
- # 指定Redis数据库信息
- rediscli = redis.StrictRedis(host='192.168.199.108', port=6379, db=0)
- # 指定MongoDB数据库信息
- mongocli = pymongo.MongoClient(host='localhost', port=27017)
- # 创建数据库名
- db = mongocli['youyuan']
- # 创建表名
- sheet = db['beijing_18_25']
- while True:
- # FIFO模式为 blpop,LIFO模式为 brpop,获取键值
- source, data = rediscli.blpop(["youyuan:items"])
- item = json.loads(data)
- sheet.insert(item)
- try:
- print u"Processing: %(name)s <%(link)s>" % item
- except KeyError:
- print u"Error procesing: %r" % item
- if __name__ == '__main__':
main()
存入 MySQL
- 启动mysql:
mysql.server start
(跟平台不一样) - 登录到root用户:
mysql -uroot -p
- 创建数据库
youyuan
:create database youyuan;
- 切换到指定数据库:
use youyuan
创建表
beijing_18_25
以及所有字段的列名和数据类型。
- 执行下面程序:
py2 process_youyuan_mysql.py
- #process_youyuan_mysql.py
- # -*- coding: utf-8 -*-
- import json
- import redis
- import MySQLdb
- def main():
- # 指定redis数据库信息
- rediscli = redis.StrictRedis(host='192.168.199.108', port = 6379, db = 0)
- # 指定mysql数据库
- mysqlcli = MySQLdb.connect(host='127.0.0.1', user='power', passwd='xxxxxxx', db = 'youyuan', port=3306, use_unicode=True)
- while True:
- # FIFO模式为 blpop,LIFO模式为 brpop,获取键值
- source, data = rediscli.blpop(["youyuan:items"])
- item = json.loads(data)
- try:
- # 使用cursor()方法获取操作游标
- cur = mysqlcli.cursor()
- # 使用execute方法执行SQL INSERT语句
- cur.execute("INSERT INTO beijing_18_25 (username, crawled, age, spider, header_url, source, pic_urls, monologue, source_url) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s )", [item['username'], item['crawled'], item['age'], item['spider'], item['header_url'], item['source'], item['pic_urls'], item['monologue'], item['source_url']])
- # 提交sql事务
- mysqlcli.commit()
- #关闭本次操作
- cur.close()
- print "inserted %s" % item['source_url']
- except MySQLdb.Error,e:
- print "Mysql Error %d: %s" % (e.args[0], e.args[1])
- if __name__ == '__main__':
- main()
新浪网分类资讯爬虫
思考:如何将已有的Scrapy爬虫项目,改写成scrapy-redis分布式爬虫。
要求:将所有对应的大类的 标题和urls、小类的 标题和urls、子链接url、文章名以及文章内容,存入Redis数据库。
以下为原Scrapy爬虫项目源码:
items.py
- # -*- coding: utf-8 -*-
- import scrapy
- import sys
- reload(sys)
- sys.setdefaultencoding("utf-8")
- class SinaItem(scrapy.Item):
- # 大类的标题 和 url
- parentTitle = scrapy.Field()
- parentUrls = scrapy.Field()
- # 小类的标题 和 子url
- subTitle = scrapy.Field()
- subUrls = scrapy.Field()
- # 小类目录存储路径
- subFilename = scrapy.Field()
- # 小类下的子链接
- sonUrls = scrapy.Field()
- # 文章标题和内容
- head = scrapy.Field()
- content = scrapy.Field()
pipelines.py
- # -*- coding: utf-8 -*-
- from scrapy import signals
- import sys
- reload(sys)
- sys.setdefaultencoding("utf-8")
- class SinaPipeline(object):
- def process_item(self, item, spider):
- sonUrls = item['sonUrls']
- # 文件名为子链接url中间部分,并将 / 替换为 _,保存为 .txt格式
- filename = sonUrls[7:-6].replace('/','_')
- filename += ".txt"
- fp = open(item['subFilename']+'/'+filename, 'w')
- fp.write(item['content'])
- fp.close()
- return item
settings.py
- # -*- coding: utf-8 -*-
- BOT_NAME = 'Sina'
- SPIDER_MODULES = ['Sina.spiders']
- NEWSPIDER_MODULE = 'Sina.spiders'
- ITEM_PIPELINES = {
- 'Sina.pipelines.SinaPipeline': 300,
- }
- LOG_LEVEL = 'DEBUG'
spiders/sina.py
- # -*- coding: utf-8 -*-
- from Sina.items import SinaItem
- import scrapy
- import os
- import sys
- reload(sys)
- sys.setdefaultencoding("utf-8")
- class SinaSpider(scrapy.Spider):
- name= "sina"
- allowed_domains= ["sina.com.cn"]
- start_urls= [
- "http://news.sina.com.cn/guide/"
- ]
- def parse(self, response):
- items= []
- # 所有大类的url 和 标题
- parentUrls = response.xpath('//div[@id=\"tab01\"]/div/h3/a/@href').extract()
- parentTitle = response.xpath("//div[@id=\"tab01\"]/div/h3/a/text()").extract()
- # 所有小类的ur 和 标题
- subUrls = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/@href').extract()
- subTitle = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/text()').extract()
- #爬取所有大类
- for i in range(0, len(parentTitle)):
- # 指定大类目录的路径和目录名
- parentFilename = "./Data/" + parentTitle[i]
- #如果目录不存在,则创建目录
- if(not os.path.exists(parentFilename)):
- os.makedirs(parentFilename)
- # 爬取所有小类
- for j in range(0, len(subUrls)):
- item = SinaItem()
- # 保存大类的title和urls
- item['parentTitle'] = parentTitle[i]
- item['parentUrls'] = parentUrls[i]
- # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
- if_belong = subUrls[j].startswith(item['parentUrls'])
- # 如果属于本大类,将存储目录放在本大类目录下
- if(if_belong):
- subFilename =parentFilename + '/'+ subTitle[j]
- # 如果目录不存在,则创建目录
- if(not os.path.exists(subFilename)):
- os.makedirs(subFilename)
- # 存储 小类url、title和filename字段数据
- item['subUrls'] = subUrls[j]
- item['subTitle'] =subTitle[j]
- item['subFilename'] = subFilename
- items.append(item)
- #发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理
- for item in items:
- yield scrapy.Request( url = item['subUrls'], meta={'meta_1': item}, callback=self.second_parse)
- #对于返回的小类的url,再进行递归请求
- def second_parse(self, response):
- # 提取每次Response的meta数据
- meta_1= response.meta['meta_1']
- # 取出小类里所有子链接
- sonUrls = response.xpath('//a/@href').extract()
- items= []
- for i in range(0, len(sonUrls)):
- # 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
- if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls'])
- # 如果属于本大类,获取字段值放在同一个item下便于传输
- if(if_belong):
- item = SinaItem()
- item['parentTitle'] =meta_1['parentTitle']
- item['parentUrls'] =meta_1['parentUrls']
- item['subUrls'] = meta_1['subUrls']
- item['subTitle'] = meta_1['subTitle']
- item['subFilename'] = meta_1['subFilename']
- item['sonUrls'] = sonUrls[i]
- items.append(item)
- #发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理
- for item in items:
- yield scrapy.Request(url=item['sonUrls'], meta={'meta_2':item}, callback = self.detail_parse)
- # 数据解析方法,获取文章标题和内容
- def detail_parse(self, response):
- item = response.meta['meta_2']
- content = ""
- head = response.xpath('//h1[@id=\"main_title\"]/text()')
- content_list = response.xpath('//div[@id=\"artibody\"]/p/text()').extract()
- # 将p标签里的文本内容合并到一起
- for content_one in content_list:
- content += content_one
- item['head']= head
- item['content']= content
- yield item
执行:
- scrapy crawl sina
将已有的新浪网分类资讯Scrapy爬虫项目,修改为基于RedisSpider类的scrapy-redis分布式爬虫项目
注:items数据直接存储在Redis数据库中,这个功能已经由scrapy-redis自行实现。除非单独做额外处理(比如直接存入本地数据库等),否则不用编写pipelines.py代码。
items.py文件
- # items.py
- # -*- coding: utf-8 -*-
- import scrapy
- import sys
- reload(sys)
- sys.setdefaultencoding("utf-8")
- class SinaItem(scrapy.Item):
- # 大类的标题 和 url
- parentTitle = scrapy.Field()
- parentUrls = scrapy.Field()
- # 小类的标题 和 子url
- subTitle = scrapy.Field()
- subUrls = scrapy.Field()
- # 小类目录存储路径
- # subFilename = scrapy.Field()
- # 小类下的子链接
- sonUrls = scrapy.Field()
- # 文章标题和内容
- head = scrapy.Field()
- content = scrapy.Field()
settings.py文件
- # settings.py
- SPIDER_MODULES = ['Sina.spiders']
- NEWSPIDER_MODULE = 'Sina.spiders'
- USER_AGENT = 'scrapy-redis (+https://github.com/rolando/scrapy-redis)'
- DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
- SCHEDULER = "scrapy_redis.scheduler.Scheduler"
- SCHEDULER_PERSIST = True
- SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
- #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
- #SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"
- ITEM_PIPELINES = {
- # 'Sina.pipelines.SinaPipeline': 300,
- 'scrapy_redis.pipelines.RedisPipeline': 400,
- }
- LOG_LEVEL = 'DEBUG'
- # Introduce an artifical delay to make use of parallelism. to speed up the
- # crawl.
- DOWNLOAD_DELAY = 1
- REDIS_HOST = "192.168.13.26"
- REDIS_PORT = 6379
spiders/sina.py
- # sina.py
- # -*- coding: utf-8 -*-
- from Sina.items import SinaItem
- from scrapy_redis.spiders import RedisSpider
- #from scrapy.spiders import Spider
- import scrapy
- import sys
- reload(sys)
- sys.setdefaultencoding("utf-8")
- #class SinaSpider(Spider):
- class SinaSpider(RedisSpider):
- name= "sina"
- redis_key = "sinaspider:start_urls"
- #allowed_domains= ["sina.com.cn"]
- #start_urls= [
- # "http://news.sina.com.cn/guide/"
- #]#起始urls列表
- def __init__(self, *args, **kwargs):
- domain = kwargs.pop('domain', '')
- self.allowed_domains = filter(None, domain.split(','))
- super(SinaSpider, self).__init__(*args, **kwargs)
- def parse(self, response):
- items= []
- # 所有大类的url 和 标题
- parentUrls = response.xpath('//div[@id=\"tab01\"]/div/h3/a/@href').extract()
- parentTitle = response.xpath("//div[@id=\"tab01\"]/div/h3/a/text()").extract()
- # 所有小类的ur 和 标题
- subUrls = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/@href').extract()
- subTitle = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/text()').extract()
- #爬取所有大类
- for i in range(0, len(parentTitle)):
- # 指定大类的路径和目录名
- #parentFilename = "./Data/" + parentTitle[i]
- #如果目录不存在,则创建目录
- #if(not os.path.exists(parentFilename)):
- # os.makedirs(parentFilename)
- # 爬取所有小类
- for j in range(0, len(subUrls)):
- item = SinaItem()
- # 保存大类的title和urls
- item['parentTitle'] = parentTitle[i]
- item['parentUrls'] = parentUrls[i]
- # 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
- if_belong = subUrls[j].startswith(item['parentUrls'])
- # 如果属于本大类,将存储目录放在本大类目录下
- if(if_belong):
- #subFilename =parentFilename + '/'+ subTitle[j]
- # 如果目录不存在,则创建目录
- #if(not os.path.exists(subFilename)):
- # os.makedirs(subFilename)
- # 存储 小类url、title和filename字段数据
- item['subUrls'] = subUrls[j]
- item['subTitle'] =subTitle[j]
- #item['subFilename'] = subFilename
- items.append(item)
- #发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理
- for item in items:
- yield scrapy.Request( url = item['subUrls'], meta={'meta_1': item}, callback=self.second_parse)
- #对于返回的小类的url,再进行递归请求
- def second_parse(self, response):
- # 提取每次Response的meta数据
- meta_1= response.meta['meta_1']
- # 取出小类里所有子链接
- sonUrls = response.xpath('//a/@href').extract()
- items= []
- for i in range(0, len(sonUrls)):
- # 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
- if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls'])
- # 如果属于本大类,获取字段值放在同一个item下便于传输
- if(if_belong):
- item = SinaItem()
- item['parentTitle'] =meta_1['parentTitle']
- item['parentUrls'] =meta_1['parentUrls']
- item['subUrls'] =meta_1['subUrls']
- item['subTitle'] =meta_1['subTitle']
- #item['subFilename'] = meta_1['subFilename']
- item['sonUrls'] = sonUrls[i]
- items.append(item)
- #发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理
- for item in items:
- yield scrapy.Request(url=item['sonUrls'], meta={'meta_2':item}, callback = self.detail_parse)
- # 数据解析方法,获取文章标题和内容
- def detail_parse(self, response):
- item = response.meta['meta_2']
- content = ""
- head = response.xpath('//h1[@id=\"main_title\"]/text()').extract()
- content_list = response.xpath('//div[@id=\"artibody\"]/p/text()').extract()
- # 将p标签里的文本内容合并到一起
- for content_one in content_list:
- content += content_one
- item['head']= head[0] if len(head) > 0 else "NULL"
- item['content']= content
- yield item
执行:
- slave端:
- scrapy runspider sina.py
- Master端:
- redis-cli> lpush sinaspider:start_urls http://news.sina.com.cn/guide/
IT桔子是关注IT互联网行业的结构化的公司数据库和商业信息服务提供商,于2013年5月21日上线。
IT桔子致力于通过信息和数据的生产、聚合、挖掘、加工、处理,帮助目标用户和客户节约时间和金钱、提高效率,以辅助其各类商业行为,包括风险投资、收购、竞争情报、细分行业信息、国外公司产品信息数据服务等。
用于需自行对所发表或采集的内容负责,因所发表或采集的内容引发的一切纠纷、损失,由该内容的发表或采集者承担全部直接或间接(连带)法律责任,IT桔子不承担任何法律责任。
项目采集地址:http://www.itjuzi.com/company
要求:采集页面下所有创业公司的公司信息,包括以下但不限于:
- # items.py
- # -*- coding: utf-8 -*-
- import scrapy
- class CompanyItem(scrapy.Item):
- # 公司id (url数字部分)
- info_id = scrapy.Field()
- # 公司名称
- company_name = scrapy.Field()
- # 公司口号
- slogan = scrapy.Field()
- # 分类
- scope = scrapy.Field()
- # 子分类
- sub_scope = scrapy.Field()
- # 所在城市
- city = scrapy.Field()
- # 所在区域
- area = scrapy.Field()
- # 公司主页
- home_page = scrapy.Field()
- # 公司标签
- tags = scrapy.Field()
- # 公司简介
- company_intro = scrapy.Field()
- # 公司全称:
- company_full_name = scrapy.Field()
- # 成立时间:
- found_time = scrapy.Field()
- # 公司规模:
- company_size = scrapy.Field()
- # 运营状态
- company_status = scrapy.Field()
- # 投资情况列表:包含获投时间、融资阶段、融资金额、投资公司
- tz_info = scrapy.Field()
- # 团队信息列表:包含成员姓名、成员职称、成员介绍
- tm_info = scrapy.Field()
- # 产品信息列表:包含产品名称、产品类型、产品介绍
- pdt_info = scrapy.Field()
项目实现:
items.py
- # items.py
- # -*- coding: utf-8 -*-
- import scrapy
- class CompanyItem(scrapy.Item):
- # 公司id (url数字部分)
- info_id = scrapy.Field()
- # 公司名称
- company_name = scrapy.Field()
- # 公司口号
- slogan = scrapy.Field()
- # 分类
- scope = scrapy.Field()
- # 子分类
- sub_scope = scrapy.Field()
- # 所在城市
- city = scrapy.Field()
- # 所在区域
- area = scrapy.Field()
- # 公司主页
- home_page = scrapy.Field()
- # 公司标签
- tags = scrapy.Field()
- # 公司简介
- company_intro = scrapy.Field()
- # 公司全称:
- company_full_name = scrapy.Field()
- # 成立时间:
- found_time = scrapy.Field()
- # 公司规模:
- company_size = scrapy.Field()
- # 运营状态
- company_status = scrapy.Field()
- # 投资情况列表:包含获投时间、融资阶段、融资金额、投资公司
- tz_info = scrapy.Field()
- # 团队信息列表:包含成员姓名、成员职称、成员介绍
- tm_info = scrapy.Field()
- # 产品信息列表:包含产品名称、产品类型、产品介绍
- pdt_info = scrapy.Field()
settings.py
# -*- coding: utf-8 -*-
BOT_NAME = 'itjuzi'
SPIDER_MODULES = ['itjuzi.spiders']
NEWSPIDER_MODULE = 'itjuzi.spiders'
# Enables scheduling storing requests queue in redis.
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# Ensure all spiders share same duplicates filter through redis.
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# REDIS_START_URLS_AS_SET = True
COOKIES_ENABLED = False
DOWNLOAD_DELAY = 1.5
# 支持随机下载延迟
RANDOMIZE_DOWNLOAD_DELAY = True
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 300
}
DOWNLOADER_MIDDLEWARES = {
# 该中间件将会收集失败的页面,并在爬虫完成后重新调度。(失败情况可能由于临时的问题,例如连接超时或者HTTP 500错误导致失败的页面)
'scrapy.downloadermiddlewares.retry.RetryMiddleware': 80,
# 该中间件提供了对request设置HTTP代理的支持。您可以通过在 Request 对象中设置 proxy 元数据来开启代理。
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 100,
'itjuzi.middlewares.RotateUserAgentMiddleware': 200,
}
REDIS_HOST = "192.168.199.108"
REDIS_PORT = 6379
- middlewares.py
- # -*- coding: utf-8 -*-
- from scrapy.contrib.downloadermiddleware.useragent import UserAgentMiddleware
- import random
- # User-Agetn 下载中间件
- class RotateUserAgentMiddleware(UserAgentMiddleware):
- def __init__(self, user_agent=''):
- self.user_agent = user_agent
- def process_request(self, request, spider):
- # 这句话用于随机选择user-agent
- ua = random.choice(self.user_agent_list)
- request.headers.setdefault('User-Agent', ua)
- user_agent_list = [
- "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
- "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
- "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
- "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
- "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
- "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
- "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
- "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
- "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
- "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
- "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
- "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
- "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
- "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
- "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
- "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
- "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
- "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/531.21.8 (KHTML, like Gecko) Version/4.0.4 Safari/531.21.10",
- "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/533.17.8 (KHTML, like Gecko) Version/5.0.1 Safari/533.17.8",
- "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/533.19.4 (KHTML, like Gecko) Version/5.0.2 Safari/533.18.5",
- "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-GB; rv:1.9.1.17) Gecko/20110123 (like Firefox/3.x) SeaMonkey/2.0.12",
- "Mozilla/5.0 (Windows NT 5.2; rv:10.0.1) Gecko/20100101 Firefox/10.0.1 SeaMonkey/2.7.1",
- "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_8; en-US) AppleWebKit/532.8 (KHTML, like Gecko) Chrome/4.0.302.2 Safari/532.8",
- "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_4; en-US) AppleWebKit/534.3 (KHTML, like Gecko) Chrome/6.0.464.0 Safari/534.3",
- "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_5; en-US) AppleWebKit/534.13 (KHTML, like Gecko) Chrome/9.0.597.15 Safari/534.13",
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_2) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.186 Safari/535.1",
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.2 (KHTML, like Gecko) Chrome/15.0.874.54 Safari/535.2",
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/535.7 (KHTML, like Gecko) Chrome/16.0.912.36 Safari/535.7",
- "Mozilla/5.0 (Macintosh; U; Mac OS X Mach-O; en-US; rv:2.0a) Gecko/20040614 Firefox/3.0.0 ",
- "Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.0.3) Gecko/2008092414 Firefox/3.0.3",
- "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.1) Gecko/20090624 Firefox/3.5",
- "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.14) Gecko/20110218 AlexaToolbar/alxf-2.0 Firefox/3.6.14",
- "Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15",
- "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1"
- ]
spiders/juzi.py
- # -*- coding: utf-8 -*-
- from bs4 import BeautifulSoup
- from scrapy.linkextractors import LinkExtractor
- from scrapy.spiders import CrawlSpider, Rule
- from scrapy_redis.spiders import RedisCrawlSpider
- from itjuzi.items import CompanyItem
- class ITjuziSpider(RedisCrawlSpider):
- name = 'itjuzi'
- allowed_domains = ['www.itjuzi.com']
- # start_urls = ['http://www.itjuzi.com/company']
- redis_key = 'itjuzispider:start_urls'
- rules = [
- # 获取每一页的链接
- Rule(link_extractor=LinkExtractor(allow=('/company\?page=\d+'))),
- # 获取每一个公司的详情
- Rule(link_extractor=LinkExtractor(allow=('/company/\d+')), callback='parse_item')
- ]
- def parse_item(self, response):
- soup = BeautifulSoup(response.body, 'lxml')
- # 开头部分: //div[@class="infoheadrow-v2 ugc-block-item"]
- cpy1 = soup.find('div', class_='infoheadrow-v2')
- if cpy1:
- # 公司名称://span[@class="title"]/b/text()[1]
- company_name = cpy1.find(class_='title').b.contents[0].strip().replace('\t', '').replace('\n', '')
- # 口号: //div[@class="info-line"]/p
- slogan = cpy1.find(class_='info-line').p.get_text()
- # 分类:子分类//span[@class="scope c-gray-aset"]/a[1]
- scope_a = cpy1.find(class_='scope c-gray-aset').find_all('a')
- # 分类://span[@class="scope c-gray-aset"]/a[1]
- scope = scope_a[0].get_text().strip() if len(scope_a) > 0 else ''
- # 子分类:# //span[@class="scope c-gray-aset"]/a[2]
- sub_scope = scope_a[1].get_text().strip() if len(scope_a) > 1 else ''
- # 城市+区域://span[@class="loca c-gray-aset"]/a
- city_a = cpy1.find(class_='loca c-gray-aset').find_all('a')
- # 城市://span[@class="loca c-gray-aset"]/a[1]
- city = city_a[0].get_text().strip() if len(city_a) > 0 else ''
- # 区域://span[@class="loca c-gray-aset"]/a[2]
- area = city_a[1].get_text().strip() if len(city_a) > 1 else ''
- # 主页://a[@class="weblink marl10"]/@href
- home_page = cpy1.find(class_='weblink marl10')['href']
- # 标签://div[@class="tagset dbi c-gray-aset"]/a
- tags = cpy1.find(class_='tagset dbi c-gray-aset').get_text().strip().strip().replace('\n', ',')
- #基本信息://div[@class="block-inc-info on-edit-hide"]
- cpy2 = soup.find('div', class_='block-inc-info on-edit-hide')
- if cpy2:
- # 公司简介://div[@class="block-inc-info on-edit-hide"]//div[@class="des"]
- company_intro = cpy2.find(class_='des').get_text().strip()
- # 公司全称:成立时间:公司规模:运行状态://div[@class="des-more"]
- cpy2_content = cpy2.find(class_='des-more').contents
- # 公司全称://div[@class="des-more"]/div[1]
- company_full_name = cpy2_content[1].get_text().strip()[len('公司全称:'):] if cpy2_content[1] else ''
- # 成立时间://div[@class="des-more"]/div[2]/span[1]
- found_time = cpy2_content[3].contents[1].get_text().strip()[len('成立时间:'):] if cpy2_content[3] else ''
- # 公司规模://div[@class="des-more"]/div[2]/span[2]
- company_size = cpy2_content[3].contents[3].get_text().strip()[len('公司规模:'):] if cpy2_content[3] else ''
- #运营状态://div[@class="des-more"]/div[3]
- company_status = cpy2_content[5].get_text().strip() if cpy2_content[5] else ''
- # 主体信息:
- main = soup.find('div', class_='main')
- # 投资情况://table[@class="list-round-v2 need2login"]
- # 投资情况,包含获投时间、融资阶段、融资金额、投资公司
- tz = main.find('table', 'list-round-v2')
- tz_list = []
- if tz:
- all_tr = tz.find_all('tr')
- for tr in all_tr:
- tz_dict = {}
- all_td = tr.find_all('td')
- tz_dict['tz_time'] = all_td[0].span.get_text().strip()
- tz_dict['tz_round'] = all_td[1].get_text().strip()
- tz_dict['tz_finades'] = all_td[2].get_text().strip()
- tz_dict['tz_capital'] = all_td[3].get_text().strip().replace('\n', ',')
- tz_list.append(tz_dict)
- # 团队信息:成员姓名、成员职称、成员介绍
- tm = main.find('ul', class_='list-prodcase limited-itemnum')
- tm_list = []
- if tm:
- for li in tm.find_all('li'):
- tm_dict = {}
- tm_dict['tm_m_name'] = li.find('span', class_='c').get_text().strip()
- tm_dict['tm_m_title'] = li.find('span', class_='c-gray').get_text().strip()
- tm_dict['tm_m_intro'] = li.find('p', class_='mart10 person-des').get_text().strip()
- tm_list.append(tm_dict)
- # 产品信息:产品名称、产品类型、产品介绍
- pdt = main.find('ul', class_='list-prod limited-itemnum')
- pdt_list = []
- if pdt:
- for li in pdt.find_all('li'):
- pdt_dict = {}
- pdt_dict['pdt_name'] = li.find('h4').b.get_text().strip()
- pdt_dict['pdt_type'] = li.find('span', class_='tag yellow').get_text().strip()
- pdt_dict['pdt_intro'] = li.find(class_='on-edit-hide').p.get_text().strip()
- pdt_list.append(pdt_dict)
- item = CompanyItem()
- item['info_id'] = response.url.split('/')[-1:][0]
- item['company_name'] = company_name
- item['slogan'] = slogan
- item['scope'] = scope
- item['sub_scope'] = sub_scope
- item['city'] = city
- item['area'] = area
- item['home_page'] = home_page
- item['tags'] = tags
- item['company_intro'] = company_intro
- item['company_full_name'] = company_full_name
- item['found_time'] = found_time
- item['company_size'] = company_size
- item['company_status'] = company_status
- item['tz_info'] = tz_list
- item['tm_info'] = tm_list
- item['pdt_info'] = pdt_list
- return item
scrapy.cfg
- # Automatically created by: scrapy startproject
- #
- # For more information about the [deploy] section see:
- # https://scrapyd.readthedocs.org/en/latest/deploy.html
- [settings]
- default = itjuzi.settings
- [deploy]
- #url = http://localhost:6800/
- project = itjuzi
运行:
- Slave端:
- scrapy runspider juzi.py
- Master端:
- redis-cli > lpush itjuzispider:start_urls http://www.itjuzi.com/company
演示效果:
scrapy与redis实战的更多相关文章
- scrapy电影天堂实战(二)创建爬虫项目
公众号原文 创建数据库 我在上一篇笔记中已经创建了数据库,具体查看<scrapy电影天堂实战(一)创建数据库>,这篇笔记创建scrapy实例,先熟悉下要用到到xpath知识 用到的xpat ...
- Redis实战阅读笔记——开始
Redis实战这本书,看完以后最大的不是redis本身的东西,而是作者面对实际问题的分析而给出的设计方案,可以看成NoSql设计的应用.个人从这方面收获很多,至于Redis本身的东西,这个就花一两个小 ...
- Redis实战阅读笔记——第一章
Redis 实战 中文版 的20-21页看的人郁闷死了,最后看英文版才明白意思,哎,我理解能力差成这样了 其中,图 1-12 有错误,草,这个是英文版的错--应该是group:programming
- redis实战(01)_redis安装
早就想对redis进行实战操作了,最近看了一些视频和参考书籍,总结总结一下,redis实战内容: 实战前先对redis做一个大概的认识: 现在开始安装redis了... redis的安装下载地址 ht ...
- C# Redis实战(二) [转]
二.Redis服务 在C# Redis实战(一)中我将所有文件拷贝到了D盘redis文件夹下,其中redis-server.exe即为其服务端程序,双击即开始运行,如图 ...
- (转)国内外三个不同领域巨头分享的Redis实战经验及使用场景
随着应用对高性能需求的增加,NoSQL逐渐在各大名企的系统架构中生根发芽.这里我们将为大家分享社交巨头新浪微博.传媒巨头Viacom及图片分享领域佼佼者Pinterest带来的Redis实践,首先我们 ...
- C# Redis实战
转自 :http://blog.csdn.net/qiujialongjjj/article/details/16945569 一.初步准备 Redis 是一个开源的使用ANSI C 语言编写.支持 ...
- Redis实战
大约一年多前,公司同事开始使用Redis,不清楚是配置,还是版本的问题,当时的Redis经常在使用一段时间后,连接爆满且不释放.印象中,Redis 2.4.8以下的版本由于设计上的主从库同步问题,就会 ...
- Redis实战之Redis + Jedis
用Memcached,对于缓存对象大小有要求,单个对象不得大于1MB,且不支持复杂的数据类型,譬如SET 等.基于这些限制,有必要考虑Redis! 相关链接: Redis实战 Redis实战之Redi ...
随机推荐
- python学习笔记(五)---sublime text 多行代码注释快捷键
转载网址:https://blog.csdn.net/mycms5/article/details/70194045/ 多行选择后按下ctrl+/ 选择类 Ctrl+D 选中光标所占的文本,继续操作则 ...
- Python - learn note(1)
1. 下载安装Python 2.7(为了向下兼容以前的版本), Python 3.5(VS2015不支持配置3.6的环境) 教程 需要使用VS2015进行开发,必须勾选上后面两项: 2. VS2015 ...
- poj 1789 Truck History 最小生成树 prim 难度:0
Truck History Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19122 Accepted: 7366 De ...
- java之正则表达式的使用1
正则表达式: 主要作用: a.匹配 b.切割 c.替换 d.获取 1.反斜杠和转义字符 废话不多说,直接上demo public static void main(String[] args) { / ...
- 高并发数据采集的架构应用(Redis的应用)
问题的出发点: 最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约3W.如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是报表数据必要 ...
- 【转】 linux的网络接口之扫盲
[转] linux的网络接口之扫盲 转自:http://blog.csdn.net/zhangxinrun/article/details/6820433 (1)网络接口的命名 这里并不存在一定的命名 ...
- LNMP架构下的nginx、mysql、php的源码安装
一.LNMP的介绍 LNMP就是Linux+Nginx+Mysql+Php这种网站服务架构.Linux是一类Unix计算机操作系统的统称,是目前最流行的免费操作系统,常见版本有:centos.ubun ...
- protel99 se中出现许多Backup of 文件,修改过保存时,总会出现备份文件,怎么才能取消这一设置?
在file选项左边有个向下的大箭头标示 点开 有个prefereces项 点开之 把create backup项勾掉即可
- vim自动缩进
最近写完程序,在进行调试时发现特别困难,代码乱的一塌糊涂,特别是代码量很多时,调试起来特别囧,逻辑很难理清. 这让我想起了缩进功能,可以让代码自动对齐. gedit编辑器在菜单栏里的编辑->首选 ...
- C# 空合并操作符(??)不可重载?其实有黑科技可以间接重载!
?? 操作符叫做 null-coalescing operator,即 null 合并运算符.如果此运算符的左操作数不为 null,则此运算符将返回左操作数:否则返回右操作数. 在微软的官方 C# 文 ...