UVa 1658 海军上将(最小费用最大流)
https://vjudge.net/problem/UVA-1658
题意:
给出一个v个点e条边的有向加权图,求1~v的两条不相交(除了起点和终点外公共点)的路径,使得权和最小。
思路:
把2到v-1的每个点拆分为两个节点,容量为1,也就是只可以用一次,费用为0,然后求1到v的流量为2的最小费用流。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
using namespace std; const int maxn = + ;
const int INF = 0x3f3f3f3f; typedef long long LL; struct Edge{
int from, to, cap, flow, cost; Edge(int u, int v, int c, int f, int w) :from(u), to(v), cap(c), flow(f), cost(w) {}
}; struct MCMF
{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn]; void init(int n)
{
this->n = n;
for (int i = ; i<n; i++) G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int cap, int cost)
{
edges.push_back(Edge(from, to, cap, , cost));
edges.push_back(Edge(to, from, , , -cost));
m = edges.size();
G[from].push_back(m - );
G[to].push_back(m - );
} bool BellmanFord(int s, int t, int &flow, LL & cost)
{
for (int i = ; i<n; i++) d[i] = INF;
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ; p[s] = ; a[s] = INF; queue<int> Q;
Q.push(s);
while (!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = ;
for (int i = ; i<G[u].size(); i++){
Edge& e = edges[G[u][i]];
if (e.cap>e.flow && d[e.to]>d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]) { Q.push(e.to); inq[e.to] = ; }
}
}
}
if (d[t] == INF) return false;
flow += a[t];
cost += (LL)d[t] * (LL)a[t];
for (int u = t; u != s; u = edges[p[u]].from){
edges[p[u]].flow += a[t];
edges[p[u] ^ ].flow -= a[t]; }
return true;
} void MincostMaxdflow(int s, int t, int limit, LL & cost){
int flow = ; cost = ;
while (BellmanFord(s, t, flow, cost) && flow < limit);
//return flow;
}
}t; int main()
{
//freopen("D:\\input.txt", "r", stdin);
int n, m;
while (~scanf("%d%d", &n, &m))
{
t.init( * n - );
for (int i = ; i <= n - ; i++)
{
t.AddEdge(i - , n - + i, , );
}
for (int i = ; i<m; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
v--;
if (u != && u != n) u += n - ;
else u--;
t.AddEdge(u, v, , w);
}
LL cost;
t.MincostMaxdflow(, n - , , cost);
printf("%lld\n", cost);
}
return ;
}
UVa 1658 海军上将(最小费用最大流)的更多相关文章
- UVa 1658 Admiral(最小费用最大流)
拆点费用流 --------------------------------------------------------------------- #include<cstdio> # ...
- UVA 1658 海军上将(拆点法+最小费用限制流)
海军上将 紫书P375 这题我觉得有2个难点: 一是拆点,要有足够的想法才能把这题用网络流建模,并且知道如何拆点. 二是最小费用限制流,最小费用最大流我们都会,但如果限制流必须为一个值呢?比如这题限制 ...
- UVa 1658 - Admiral(最小费用最大流 + 拆点)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 1658 Admiral (最小费用最大流)
最短路对应费用,路径数量对应流量.为限制点经过次数,拆点为边.跑一次流量为2的最小费用最大流. 最小费用最大流和最大流EK算法是十分相似的,只是把找增广路的部分换成了求费用的最短路. #include ...
- UVa 10806 Dijkstra,Dijkstra(最小费用最大流)
裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...
- UVA 10806 最小费用最大流
终于可以写这道题的题解了,昨天下午纠结我一下下午,晚上才照着人家的题解敲出来,今天上午又干坐着想了两个小时,才弄明白这个问题. 题意很简单,给出一个无向图,要求从1 到 n最短路两次,但是两次不允许经 ...
- [板子]最小费用最大流(Dijkstra增广)
最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...
- bzoj1927最小费用最大流
其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→ =_=你TM逗我 刚要删突然感觉dinic的模 ...
- ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)
将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
随机推荐
- 网页头部的声明应该是用 lang="";
我们经常需要用缩写的代码来表示一种语言,比如用en表示英语,用de表示德语.ISO 639就是规定语种代码的国际标准.最早的时候,ISO 639规定的代码是,用两个拉丁字母表示一种语言,这被称为ISO ...
- android麦克风自录自放demo
extends:http://blog.csdn.net/trbbadboy/article/details/7865530 是一个直接播放麦克风采集到的声音线程类: class RecordThre ...
- having使用的时机
where 子句的作用是在对查询结果进行分组前,将不符合where条件的行去掉,即在分组之前过滤数据,条件中不能包含聚组函数,使用where条件显示特定的行. having 子句的作用是筛选满足条件的 ...
- [Android Tips] 30.如何在 Android Studio 中一次性格式化所有代码
在目录上面右击,有 Reformat Code Ctrl + Alt + L 参考 如何在IntelliJ IDEA或Android Studio中一次性格式化所有代码?
- Python 之定时器
#引入库 threading import threading #定义函数 def fun_timer(): print('hello timer') #打印输出 global timer #定 ...
- Pentaho Report Designer 数据大于某值显示红色
在细节栏中的字段的属性, 在样式的text-color,右边的表达式 输入下面表达式即可! =IF( [ALL_VALUE] > 50 ; "black" ; IF([ALL ...
- poj1821 Fence【队列优化线性DP】
Fence Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6122 Accepted: 1972 Description ...
- [Haskell]解决hslua unknown symbol `___s trtod'的问题
用cabal编译libpandoc时遇到这样的错误: HShslua-0.3.12.o: unknown symbol `___s trtod' ghc.exe: unable to load pac ...
- WebSocket学习记录
参考资料: Java后端WebSocket的Tomcat实现 基于Java的WebSocket推送 java WebSocket的实现以及Spring WebSocket 利用spring-webso ...
- Webservice实践(七)CXF 与Spring结合+tomcat发布
上一节介绍了如何使用CXF 来发布服务,但是没有介绍使用web 容器来发布,很多项目需要用tomcat 这样的容器来发布.另外本节将介绍CXF 与spring 结合的方法. 一 目标: 1.利用spi ...