Hadoop mapreduce自定义分组RawComparator
本文发表于本人博客。
今天接着上次【Hadoop mapreduce自定义排序WritableComparable】文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始。
首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下:
/**
* Define the comparator that controls which keys are grouped together
* for a single call to
* {@link Reducer#reduce(Object, Iterable,
* org.apache.hadoop.mapreduce.Reducer.Context)}
* @param cls the raw comparator to use
* @throws IllegalStateException if the job is submitted
*/
public void setGroupingComparatorClass(Class<? extends RawComparator> cls
) throws IllegalStateException {
ensureState(JobState.DEFINE);
conf.setOutputValueGroupingComparator(cls);
}
从方法的源码可以看出这个方法是定义自定义键分组功能。设置这个自定义分组类必须满足extends RawComparator,那我们可以看下这个类的源码:
/**
* <p>
* A {@link Comparator} that operates directly on byte representations of
* objects.
* </p>
* @param <T>
* @see DeserializerComparator
*/
public interface RawComparator<T> extends Comparator<T> {
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2);
}
然而这个RawComparator是泛型继承Comparator接口的,简单看了下那我们来自定义一个类继承RawComparator,代码如下:
public class MyGrouper implements RawComparator<SortAPI> {
@Override
public int compare(SortAPI o1, SortAPI o2) {
return (int)(o1.first - o2.first);
}
@Override
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
int compareBytes = WritableComparator.compareBytes(b1, s1, 8, b2, s2, 8);
return compareBytes;
} }
源码中SortAPI是上节自定义排序中的定义对象,第一个方法从注释可以看出是比较2个参数的大小,返回的是自然整数;第二个方法是在反序列化时比较,所以需要是用字节比较。接下来我们继续看看自定义MyMapper类:
public class MyMapper extends Mapper<LongWritable, Text, SortAPI, LongWritable> {
@Override
protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
String[] splied = value.toString().split("\t");
try {
long first = Long.parseLong(splied[0]);
long second = Long.parseLong(splied[1]);
context.write(new SortAPI(first,second), new LongWritable(1));
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
}
自定义MyReduce类:
public class MyReduce extends Reducer<SortAPI, LongWritable, LongWritable, LongWritable> {
@Override
protected void reduce(SortAPI key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
context.write(new LongWritable(key.first), new LongWritable(key.second));
} }
自定义SortAPI类:
public class SortAPI implements WritableComparable<SortAPI> {
public Long first;
public Long second;
public SortAPI(){ }
public SortAPI(long first,long second){
this.first = first;
this.second = second;
} @Override
public int compareTo(SortAPI o) {
return (int) (this.first - o.first);
} @Override
public void write(DataOutput out) throws IOException {
out.writeLong(first);
out.writeLong(second);
} @Override
public void readFields(DataInput in) throws IOException {
this.first = in.readLong();
this.second = in.readLong(); } @Override
public int hashCode() {
return this.first.hashCode() + this.second.hashCode();
} @Override
public boolean equals(Object obj) {
if(obj instanceof SortAPI){
SortAPI o = (SortAPI)obj;
return this.first == o.first && this.second == o.second;
}
return false;
} @Override
public String toString() {
return "输出:" + this.first + ";" + this.second;
} }
接下来准备数据,数据如下:
1 2
1 1
3 0
3 2
2 2
1 2
上传至hdfs://hadoop-master:9000/grouper/input/test.txt,main代码如下:
public class Test {
static final String OUTPUT_DIR = "hdfs://hadoop-master:9000/grouper/output/";
static final String INPUT_DIR = "hdfs://hadoop-master:9000/grouper/input/test.txt";
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, Test.class.getSimpleName());
job.setJarByClass(Test.class);
deleteOutputFile(OUTPUT_DIR);
//1设置输入目录
FileInputFormat.setInputPaths(job, INPUT_DIR);
//2设置输入格式化类
job.setInputFormatClass(TextInputFormat.class);
//3设置自定义Mapper以及键值类型
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(SortAPI.class);
job.setMapOutputValueClass(LongWritable.class);
//4分区
job.setPartitionerClass(HashPartitioner.class);
job.setNumReduceTasks(1);
//5排序分组
job.setGroupingComparatorClass(MyGrouper.class);
//6设置在一定Reduce以及键值类型
job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(LongWritable.class);
//7设置输出目录
FileOutputFormat.setOutputPath(job, new Path(OUTPUT_DIR));
//8提交job
job.waitForCompletion(true);
} static void deleteOutputFile(String path) throws Exception{
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(new URI(INPUT_DIR),conf);
if(fs.exists(new Path(path))){
fs.delete(new Path(path));
}
}
}
执行代码,然后在节点上用终端输入:hadoop fs -text /grouper/output/part-r-00000查看结果:
1 2
2 2
3 0
接下来我们修改下SortAPI类的compareTo()方法:
@Override
public int compareTo(SortAPI o) {
long mis = (this.first - o.first) * -1;
if(mis != 0 ){
return (int)mis;
}
else{
return (int)(this.second - o.second);
}
}
再次执行并查看/grouper/output/part-r-00000文件:
3 0
2 2
1 1
这样我们就得出了同样的数据分组结果会受到排序算法的影响,比如排序是倒序那么分组也是先按照倒序数据源进行分组输出。我们还可以在map函数以及reduce函数中打印记录(过程省略)这样经过对比也得出分组阶段:键值对中key相同(即compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)方法返回0)的则为一组,当前组再按照顺序选择第一个往缓冲区输出(也许会存储到硬盘)。其它的相同key的键值对就不会再往缓冲区输出了。在百度上检索到这边文章,其中它的分组是把map函数输出的value全部迭代到同一个key中,就相当于上面{key,value}:{1,{2,1,2}},这个结果跟最开始没有自定义分组时是一样的,我们可以在reduce函数输出Iterable<LongWritable> values进行查看,其实我觉得这样的才算是分组吧就像数据查询一样。
在这里我们应该要弄懂分组与分区的区别。分区是对输出结果文件进行分类拆分文件以便更好查看,比如一个输出文件包含所有状态的http请求,那么为了方便查看通过分区把请求状态分成几个结果文件。分组就是把一些相同键的键值对进行计算减少输出;分区之后数据全部还是照样输出到reduce端,而分组的话就有所减少了;当然这2个步骤也是不同的阶段执行。
这次先到这里。坚持记录点点滴滴!
Hadoop mapreduce自定义分组RawComparator的更多相关文章
- Hadoop mapreduce自定义分区HashPartitioner
本文发表于本人博客. 在上一篇文章我写了个简单的WordCount程序,也大致了解了下关于mapreduce运行原来,其中说到还可以自定义分区.排序.分组这些,那今天我就接上一次的代码继续完善实现自定 ...
- [Hadoop] - Mapreduce自定义Counter
在Hadoop的MR程序开发中,经常需要统计一些map/reduce的运行状态信息,这个时候我们可以通过自定义Counter来实现,这个实现的方式是不是通过配置信息完成的,而是通过代码运行时检查完成的 ...
- 【Hadoop】Hadoop MR 自定义分组 Partition机制
1.概念 2.Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理 3.代码示例 FlowBean package com.ares.hadoop.mr.flowgroup; ...
- Hadoop mapreduce自定义排序WritableComparable
本文发表于本人博客. 今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区.排序.分组.规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始! 说到排序我们可以查看下hadoop源码 ...
- hadoop的自定义分组实现 (Partition机制)
hadoop开发中我们会遇到类似这样的问题,比如 如何将不同省份的手机号分别输出到不同的文件中,本片文章将对hadoop内置的Partition类进行重写以解决这个问题. MapReduce的使用者通 ...
- Hadoop MapReduce自定义数据类型
一 自定义数据类型的实现 1.继承接口Writable,实现其方法write()和readFields(), 以便该数据能被序列化后完成网络传输或文件输入/输出: 2.如果该数据需要作为主键key使用 ...
- 关于MapReduce中自定义分组类(三)
Job类 /** * Define the comparator that controls which keys are grouped together * for a single ...
- 一脸懵逼学习Hadoop中的MapReduce程序中自定义分组的实现
1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toStrin ...
- Hadoop自定义分组Group
matadata: hadoop a spark a hive a hbase a tachyon a storm a redis a 自定义分组 import org.apache.hadoop.c ...
随机推荐
- MySQL<多表操作>
多表操作 外键 什么是外键 外键是指引用另一个表中的一列或多列,被引用的列应该具有主键约束或唯一性约束. 外键用于建立和加强两个表数据之间的链接. 为表添加外键约束 想要真正连接两个表的数据,就需要为 ...
- hadoop程序MapReduce之DataSort
需求:对文件中的数据进行排序. 样本:sort.log 10 13 10 20 输出:1 10 2 10 3 13 4 20 分析部分: mapper分析: 1.<k1,v1>k1代表:行 ...
- 《转》python学习(4)对象
转自http://www.cnblogs.com/BeginMan/p/3160044.html 一.学习目录 1.pyhton对象 2.python类型 3.类型操作符与内建函数 4.类型工厂函数 ...
- c++11实现optional
optional< T> c++14中将包含一个std::optional类,optional< T>内部存储空间可能存储了T类型的值也可能没有存储T类型的值.当optiona ...
- devstack with neutron 参考文献
http://networkstatic.net/installing-openstack-ml2-neutron-plugin-devstack-fedora/ https://wiki.opens ...
- 微信Android热补丁实践演进之路
版权声明:本文由张绍文原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/81 来源:腾云阁 https://www.qclou ...
- font-size对展示的影响
实例: <head> <style type="text/css"> span{display: inline-bloc ...
- oneThink添加成功,返回到当前请求地址!
其实没什么,就一行代码: $this->success('已采纳',$_SERVER['HTTP_REFERER']);
- 基于Token的身份验证--JWT
初次了解JWT,很基础,高手勿喷. 基于Token的身份验证用来替代传统的cookie+session身份验证方法中的session. JWT是啥? JWT就是一个字符串,经过加密处理与校验处理的字符 ...
- postgresql架构基础(转)-(1)
PostgreSQL使用一种客户端/服务器的模型.一次PostgreSQL会话由下列相关的进程(程序)组成: 一个服务器进程,它管理数据库文件.接受来自客户端应用与数据库的联接并且代表客户端在数据库上 ...