思路:

倒着DP  f[i]表示i时刻的空闲时间最大值

在当前时间没有任务开始 f[i]=f[i+1]+1;    上一分钟最大空闲时间+1

在当前时间有任务开始  f[i]=max(f[i],f[i+a[sum])  //  i+a[sum]表示做完任务后的最大空闲时间  因为做任务的时候是忙着的 所以这样转移

因为 最后做的任务 不会影响前面 所以dp满足无后效性

#include<bits/stdc++.h>
using namespace std;
const int maxn=10005;
int dp[maxn];
int sum[maxn];
struct Node{
int p,t;
}node[maxn];
bool cmp(Node a,Node b){
return a.p>b.p;
}
int main(){
int n,k;
cin>>n>>k;
for(int i=0;i<k;i++){
scanf("%d%d",&node[i].p,&node[i].t);
sum[node[i].p]++;
}
int num=0;
sort(node,node+k,cmp);
for(int i=n;i>=1;i--){
if(!sum[i])dp[i]=dp[i+1]+1;
else {
for(int j=1;j<=sum[i];j++){
if(dp[node[num].t+i]>=dp[i])dp[i]=dp[node[num].t+i];
num++;
}
}
}
cout<<dp[1]<<endl; return 0;
}

  

P1280 尼克的任务 dp的更多相关文章

  1. 洛谷P1280 尼克的任务[DP]

    题目描述 尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成. 尼克的一个工作日为N分钟,从第一分钟开始 ...

  2. 洛谷P1280 尼克的任务 [DP补完计划]

    题目传送门 题目描述 尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成. 尼克的一个工作日为N分钟,从 ...

  3. P1280 尼克的任务 /// DP(选择性地)

    题目大意: https://www.luogu.org/problemnew/show/P1280 题解 手推一遍思路更清晰 #include <bits/stdc++.h> using ...

  4. P1280 尼克的任务 线性DP

    题目描述 尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成. 尼克的一个工作日为N分钟,从第一分钟开始 ...

  5. P1280 尼克的任务[区间覆盖dp]

    题目描述 尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成. 尼克的一个工作日为N分钟,从第一分钟开始 ...

  6. 洛谷P1280 尼克的任务【线性dp】

    题目:https://www.luogu.org/problemnew/show/P1280 题意: 给定k个任务的开始时间和持续时间要求在n时间内完成.问如何安排工作使得休息时间最多. 思路: 用d ...

  7. P1280 尼克的任务(DP)

    题目描述 尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成. 尼克的一个工作日为N分钟,从第一分钟开始 ...

  8. 【Luogu】P1280尼克的任务(DP)

    做顺序DP做惯了,死活没想到这是个倒序DP. f[i]表示时刻i的最大空闲时.有以下两种可能. 1.时刻i没有任务.此时f[i]=f[i+1]+1; 2.时刻i有许多任务.此时f[i]=max(f[i ...

  9. 洛谷 P1280 尼克的任务 (线性DP)

    题意概括 线性资源分配的问题,因为空闲的时间大小看后面的时间(反正感觉这个就是个套路)所以从后往前DP. 转移方程 如果当前时刻没有工作 f[i]=f[i+1]+1 如果当前时刻有工作 f[i]=ma ...

随机推荐

  1. js判断浏览器的类型,动态调整div布局

    最近写页面用bootstrap和amazeUi然后发现自己写的部分和两个框架做重合时,页面大小变化后有的元素变得很乱,很乱无奈只好用js判断 window.onscroll = function sc ...

  2. Floyd最短路(带路径输出)

    摘要(以下内容来自百度) Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似. 该算法名称以创始人之一.1978年图灵奖获得者. ...

  3. HDFS的命令

    .....Hdfs dfs -cat path hadoop fs - 等同 1 -ls 查看当前目录的文件和文件夹 2 -lsr 递归查看 3 -du 查看文件的大小 4-dus 查看文件夹中所有的 ...

  4. 【学习总结】GirlsInAI ML-diary day-5-布尔表达式/Bool

    [学习总结]GirlsInAI ML-diary 总 原博github链接-day5 认识布尔表达式 简单来说,bool 就是对错判断. 给个条件,如果满足条件就返回True, 不满足条件就返回Fal ...

  5. 【kindle笔记】之 《明朝那些事儿》-2018-7-1

    [kindle笔记]读书记录-总 最近在读这本书.之前在微信读书里断断续续读过,读到深处还想蹦起来做笔记那种.后来种种原因断了,再没续上. 现在又开始啦.最近还在重八兄造反阶段,还很早呢,有时候晚上玩 ...

  6. Docker bridge br0 pipework

    Docker Centos7 下建立 Docker 桥接网络 - weifengCorp - 博客园https://www.cnblogs.com/weifeng1463/p/7468497.html ...

  7. Python3练习题求1000以内所有3和5的倍数的总和

    sum = 0 for i in range(1,1000):     if i%3 == 0 or i%5 == 0:         sum += i print(sum)

  8. 前端知识点总结(HTML)

    前端知识点总结(HTML) 一,头部常用的标签 1,link标签  (1),设置ico图标 <link rel="shortcut icon" href="favi ...

  9. CMake--模块的使用和自定义模块

    1.链接外部库 如果程序中使用了外部库,事先并不知道它的头文件和链接库的位置,就要给出头文件和链接库的查找方法,并将他们链接到程序中. FIND_PACKAGE(<name> [major ...

  10. pHP生成唯一单号

    这几天一直在写个人使用的用户中心,虽然期间遇到不少的问题,但还是一点点的都解决了,也从制作期间学到不少的知识,今天就说一说利用PHP生成订单单的方法. 订单号,大家都不陌生,无论从在网上购物,还是在线 ...