题目描述

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

输入

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

输出

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

样例输入

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

样例输出

2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
 
莫队模板题,我们对于询问只记录分子部分的答案,然后考虑当一个颜色的袜子数$+1/-1$时对答案的影响。当$+1$时这种颜色的匹配数从$\frac{x*(x-1)}{2}$变成了$\frac{x*(x+1)}{2}$,对答案的贡献增加了$x$;同理,当$-1$时这种颜色的匹配数从$\frac{x*(x-1)}{2}$变成了$\frac{(x-1)*(x-2)}{2}$,对答案的贡献减少了$x-1$。所以只要在移动两个指针时对应加减分别增加或减少对答案的贡献即可,而对于每个询问的分母则是询问区间长*(询问区间长-1)/2。求一下$gcd$并将$gcd$部分除掉即可。注意当两个指针重合时要特判,否则求出的$gcd$为$0$,然后答案会除$0$导致$RE$。

#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll ans;
struct miku
{
int l,r,id;
ll up,down;
}a[50010];
int n,m;
int cnt[50010];
int ql,qr;
int block[50010];
int c[50010];
ll gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
void updata(int x,int num)
{
if(num==1)
{
ans+=1ll*cnt[x];
cnt[x]++;
}
else
{
ans-=1ll*(cnt[x]-1);
cnt[x]--;
}
}
bool cmp(miku a,miku b)
{
return block[a.l]==block[b.l]?a.r<b.r:a.l<b.l;
}
bool cmp2(miku a,miku b)
{
return a.id<b.id;
}
int main()
{
scanf("%d%d",&n,&m);
int sum=sqrt(n);
for(int i=1;i<=n;i++)
{
scanf("%d",&c[i]);
block[i]=i/sum+1;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
a[i].id=i;
}
sort(a+1,a+1+m,cmp);
ql=1,qr=0;
for(int i=1;i<=m;i++)
{
while(ql<a[i].l)
{
updata(c[ql],-1);
ql++;
}
while(ql>a[i].l)
{
updata(c[ql-1],1);
ql--;
}
while(qr<a[i].r)
{
updata(c[qr+1],1);
qr++;
}
while(qr>a[i].r)
{
updata(c[qr],-1);
qr--;
}
if(ql==qr)
{
a[i].up=0,a[i].down=1;
continue;
}
int len=qr-ql+1;
ll d=gcd(ans,1ll*len*(len-1)/2);
a[i].up=ans/d;
a[i].down=(1ll*len*(len-1)/2)/d;
}
sort(a+1,a+1+m,cmp2);
for(int i=1;i<=m;i++)
{
printf("%lld/%lld\n",a[i].up,a[i].down);
}
}

BZOJ2038[2009国家集训队]小Z的袜子(hose)——莫队的更多相关文章

  1. BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3577  Solved: 1652[Subm ...

  2. [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 10299  Solved: 4685[Sub ...

  3. bzoj2038: [2009国家集训队]小Z的袜子(hose) [莫队]

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  4. [bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法

    Brief Description 给定一个序列,您需要处理m个询问,每个询问形如[l,r],您需要回答在区间[l,r]中任意选取两个数相同的概率. Algorithm Design 莫队算法入门题目 ...

  5. BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法

    要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  7. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  9. 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...

随机推荐

  1. 朱晔的互联网架构实践心得S1E1:Pilot

    朱晔的互联网架构实践心得S1E1:Pilot 最近几年写博客确实写得少了,初出茅庐的时候什么都愿意去写,现在写一点东西之前会反复斟酌是否有价值.工作十几年了,做了N多个互联网系统,业务涉及教育.游戏. ...

  2. 个人实战演练全过程——No.1 最大连续子数组求和

    之前的一次个人总结和一次单元测试入门学习是开启软件工程课程的前奏曲,也是热身,现在大家对于这门课程也有了初步的了解和认识,这次要开始真正的演奏了,要从头到尾完全靠自己的能力来解决一个问题,进行实战演练 ...

  3. 比较ASP.NET和ASP.NET Core[经典 Asp.Net v和 Asp.Net Core (Asp.Net Core MVC)]

    ASP.NET Core是.与.Net Core FrameWork一起发布的ASP.NET 新版本,最初被称为ASP.NET vNext,有一系列的命名变化,ASP.NET 5.0,ASP.NET ...

  4. UnderWater+SDN论文之六

    Protocol Emulation Platform Based on Microservice Architecture for Underwater Acoustic Networks Sour ...

  5. git更新提交代码常用命令

    git pull 拉取代码 git add -A 提交所有变化(包括删除.新增.修改) git commit -m "注释" 本地仓库提交 git push origin mast ...

  6. 虚拟机Ubuntu图形界面进入命令行快捷键

    ctrl+alt+f2 https://jingyan.baidu.com/article/03b2f78c69e5c25ea337ae40.html https://www.zabbix.com/d ...

  7. Linux 光盘挂载步骤

    mount -t fs_type device dir 挂载操作 常见的文件系统类型 Windows :ntfs.fat32 Linux:ext3.ext4.xfs 光盘: iso9660 挂载光盘: ...

  8. SQL server 生成数据字典

    Set nocount on ), ) DECLARE Tbls CURSOR FOR ),isnull(g.[value],'-')) AS TABLE_COMMENT FROM INFORMATI ...

  9. artTemplate精彩文章(个人阅读过)

    轻量级artTemplate引擎 实现前后端分离—基础篇 :https://www.imooc.com/article/20263 轻量级artTemplate引擎 实现前后端分离—语法篇 : htt ...

  10. laravel自定义门面

    https://learnku.com/articles/19195   关于laravel门面和服务提供者使用的一点见解,门面之词,不足之处,还请多多指教. 在laravel中,我们可能需要用到自己 ...