显然转化为求不包含关键点的矩形个数。考虑暴力,枚举矩形下边界,求出该行每个位置对应的最低障碍点高度,对其建笛卡尔树,答案即为Σhi*(slson+1)*(srson+1),即考虑跨过该位置的矩形个数。

  笛卡尔树就是treap,于是考虑利用treap将其动态维护,将hi设为treap的优先级。移动下边界,可以发现每次相当于将所有点的优先级+1,并对该行出现的关键点将对应位置的优先级设为0,打打标记瞎维护下即可。由于数据随机复杂度很对。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,r,c,root,cnt;
ll ans;
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x<a.x;
}
}a[N];
struct data2{int ch[2],x,p,s,lazy;ll ans;
}tree[N<<1];
void up(int k)
{
tree[k].s=tree[lson].s+tree[rson].s+1;
tree[k].ans=tree[lson].ans+tree[rson].ans+1ll*tree[k].p*(tree[lson].s+1)*(tree[rson].s+1);
}
void move(int &k,int p)
{
int t=tree[k].ch[p];
tree[k].ch[p]=tree[t].ch[!p],tree[t].ch[!p]=k,up(k),up(t),k=t;
}
void build(int &k,int l,int r)
{
if (l>r) return;
k=++cnt;
int mid=l+r>>1;
tree[k].x=mid,tree[k].p=0;
build(lson,l,mid-1);
build(rson,mid+1,r);
up(k);
}
void update(int k,int x)
{
tree[k].lazy+=x;
tree[k].p+=x;
tree[k].ans+=1ll*x*tree[k].s*(tree[k].s+1)/2;
}
void down(int k)
{
update(lson,tree[k].lazy);
update(rson,tree[k].lazy);
tree[k].lazy=0;
}
void modify(int &k,int x)
{
down(k);
if (tree[k].x==x) tree[k].p=0;
else if (tree[k].x<x) modify(rson,x),move(k,1);
else modify(lson,x),move(k,0);
up(k);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2658.in","r",stdin);
freopen("bzoj2658.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
r=read(),c=read(),n=read();
for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read();
ans=1ll*r*(r+1)*c*(c+1)/4;
sort(a+1,a+n+1);
build(root,1,c);
int x=0;
for (int i=1;i<=r;i++)
{
update(root,1);
while (a[x+1].x==i)
{
x++;
modify(root,a[x].y);
}
ans-=tree[root].ans;
}
cout<<ans;
return 0;
}
//ans=Σpi*(sl+1)*(sr+1)

  

BZOJ2658 ZJOI2012 小蓝的好友(treap)的更多相关文章

  1. bzoj2658: [Zjoi2012]小蓝的好友(mrx)

    太神辣 treap的随机键值竟然能派上用场.. 要用不旋转的treap来进行维护区间信息 #include<cstdio> #include<cstring> #include ...

  2. 【BZOJ2658】[Zjoi2012]小蓝的好友(mrx) 平衡树维护笛卡尔树+扫描线

    [BZOJ2658][Zjoi2012]小蓝的好友(mrx) Description 终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事,为了回馈各位比赛选手,此题的主角是贯穿这次比赛的 ...

  3. 洛谷 P2611 [ZJOI2012]小蓝的好友 解题报告

    P2611 [ZJOI2012]小蓝的好友 题目描述 终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事,为了回馈各位比赛选手,此题的主角是贯穿这次比赛的关键人物--小蓝的好友. 在帮小 ...

  4. 【BZOJ2658】[Zjoi2012]小蓝的好友(mrx) (扫描线,平衡树,模拟)

    题面 终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事,为了回馈各位比赛选手,此题的主角是贯穿这次比赛的关键人物--小蓝的好友. 在帮小蓝确定了旅游路线后,小蓝的好友也不会浪费这个难得 ...

  5. @bzoj - 2658@ [Zjoi2012]小蓝的好友(mrx)

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事 ...

  6. [ZJOI2012]小蓝的好友

    https://www.luogu.org/problemnew/show/P2611 题解 \(n\times m\)肯定过不去.. 我们把给定的点看做障碍点,考虑先补集转化为求全空矩阵. 然后我们 ...

  7. P2611-[ZJOI2012]小蓝的好友【Treap,扫描线】

    正题 题目链接:https://www.luogu.com.cn/problem/P2611 题目大意 \(r*c\)的网格上有\(n\)个标记点,然后求有多少个矩形包含至少一个标记点. \(1\le ...

  8. BZOJ 2658 小蓝的好友

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2658 题意:给出一个n*m的格子.某些格子中有障碍.求包含至少一个障碍的矩形有多少 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. VS2012添加数据库连接时报错,未能加载文件或程序集microsoft.sqlserver.management.sdk.sfc

    今天在VS2012中添加数据库连接时报错 未能加载文件或程序集microsoft.sqlserver.management.sdk.sfc,Version=11.0 查了很多资料,最后下载安装了Sha ...

  2. 项目笔记-SC01

    项目启动已有两周,从分析需求到系统设计,文档性工作比较多,只是文档参考比较少,相对的标准就不好界定了. 计划开发时间理论上是按部就班的,没什么变化,可能真正进入开发阶段才会遇到一些问题吧,有些问题就是 ...

  3. Python之自测代码标识__name__=='__main__'

    __name__是python的默认的自测代码标识,其他文件导入该python文件时,不会执行这行代码以下部分. def yangfan(a): print('yangfan %s' %a) prin ...

  4. MYSQL 创建数据库SQL

    CREATE DATABASE crm CHARACTER SET utf8 COLLATE utf8_general_ci; MySQL :: MySQL 5.7 Reference Manual ...

  5. Linux查看和注销用户(User)

    Linux如何注销其他用户?_Linux教程_Linux公社-Linux系统门户网站https://www.linuxidc.com/Linux/2012-07/64939.htm linux注销指定 ...

  6. EntityFrameworkCore中的实体状态

    Entry表示一个追踪,里面有state属性,是EntityState的枚举类型. 每一个实体都有一个相对应的Entry: var entry = dbContext.ChangeTracker.En ...

  7. Laravel 门面实例教程 —— 创建自定义 Facades 类

    我们首先创建一个需要绑定到服务容器的Test类: <?php namespace App\Facades; class Test { public function doSomething() ...

  8. C# Note19: Windows安装包制作实践

    前言 最近在项目中需要不断更新新版本的software installer(软件安装包),于是便查阅资料,整理了下制作方法. NSIS安装包制作脚本 NSIS(Nullsoft Scriptable ...

  9. Linux基础操作二

    编程语言的作用及与操作系统和硬件的关系 编程语言的作用:用来定义计算机程序的形式,程序员用它来编写程序,进而控制其向计算机发出指令,使计算机完成人类布置的任务. 编程语言的作用及与操作系统和硬件的关系 ...

  10. scala flatmap、reduceByKey、groupByKey

    1.test.txt文件中存放 asd sd fd gf g dkf dfd dfml dlf dff gfl pkdfp dlofkp // 创建一个Scala版本的Spark Context va ...