题目链接:Edge Deletion

题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多。输出m条边中需要保留的边的编号。

题解:先跑一遍最短路,在松弛操作时,存父子关系和边,在以这些关系建立新图(树),因为在松弛操作时存的关系,所以能保证是最短路径,最后DFS输出k条边即可。

 #include <queue>
#include <cstdio>
#include <cstring>
using namespace std; typedef long long ll;
const int N=3e5+; struct qnode{
ll v,w;
qnode(){}
qnode(ll v,ll w):v(v),w(w){}
bool operator < (const qnode& b) const{
return w>b.w;
}
}; struct node{
ll nxt,v,w;
node(){}
node(ll nxt,ll v,ll w):nxt(nxt),v(v),w(w){}
}; ll n,m,k,tot;
node edge[N<<];
ll head[N],d[N];
qnode cur,tmp;
bool vis[N];
priority_queue <qnode> Q;
pair <ll,ll> fa[N];
vector <int> g[N],ans; void add_edge(ll u,ll v,ll w){
edge[tot]=node(head[u],v,w);
head[u]=tot++;
} void init(){
tot=;
memset(head,,sizeof(head));
} void dijkstra(ll s){
for(int i=;i<N;i++) d[i]=1e18;
d[s]=;
Q.push(qnode(s,));
while(!Q.empty()){
cur=Q.top();
Q.pop();
ll u=cur.v;
if(vis[u]) continue;
vis[u]=true;
for(ll i=head[u];i;i=edge[i].nxt){
ll v=edge[i].v;
ll w=edge[i].w;
if(d[u]+w<d[v]){
d[v]=d[u]+w;
fa[v]=make_pair(u,(i+)/);
Q.push(qnode(v,d[v]));
}
}
}
} void dfs(int u){
if(k==) return;
if(u!=){
ans.push_back(fa[u].second);
k--;
}
for(ll v:g[u]) dfs(v);
} int main(){
init();
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=;i<=m;i++){
ll u,v,w;
scanf("%lld%lld%lld",&u,&v,&w);
add_edge(u,v,w);
add_edge(v,u,w);
}
dijkstra();
for(ll i=;i<=n;i++) g[fa[i].first].push_back(i);
dfs();
printf("%d\n",ans.size());
for(ll u:ans) printf("%lld ",u);
printf("\n");
return ;
}

Codeforces 1076D Edge Deletion(最短路树)的更多相关文章

  1. CF1076D Edge Deletion 最短路树

    问题描述 Codeforces 洛谷(有翻译) 题解 最短路树,是一棵在最短路过程中构建的树. 在\(\mathrm{Dijkstra}\)过程中,如果最终点\(y\)是由点\(x\)转移得到的,则在 ...

  2. Codeforces 1076D Edge Deletion 【最短路+贪心】

    <题目链接> 题目大意: n个点,m条边的无向图,现在需要删除一些边,使得剩下的边数不能超过K条.1点为起点,如果1到 i 点的最短距离与删除边之前的最短距离相同,则称 i 为 " ...

  3. 1076D Edge Deletion 【最短路】

    题目:戳这里 题意:求出1到所有点的最短路径后,把边减到小于等于k条,问保留哪些边可以使仍存在的最短路径最多. 解题思路:这题就是考求最短路的原理.比如dijkstra,用优先队列优化后存在队列中的前 ...

  4. [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)

    [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...

  5. Berland and the Shortest Paths CodeForces - 1005F(最短路树)

    最短路树就是用bfs走一遍就可以了 d[v] = d[u] + 1 表示v是u的前驱边 然后遍历每个结点 存下它的前驱边 再用dfs遍历每个结点 依次取每个结点的某个前驱边即可 #include &l ...

  6. hdu 3409 最短路树+树形dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3409 参考博客:http://www.cnblogs.com/woaishizhan/p/318981 ...

  7. LA4080/UVa1416 Warfare And Logistics 最短路树

    题目大意: 求图中两两点对最短距离之和 允许你删除一条边,让你最大化删除这个边之后的图中两两点对最短距离之和. 暴力:每次枚举删除哪条边,以每个点为源点做一次最短路,复杂度\(O(NM^2logN)\ ...

  8. 51nod 1443 路径和树(最短路树)

    题目链接:路径和树 题意:给定无向带权连通图,求从u开始边权和最小的最短路树,输出最小边权和. 题解:构造出最短路树,把存留下来的边权全部加起来.(跑dijkstra的时候松弛加上$ < $变成 ...

  9. Connections between cities HDU - 2874(最短路树 lca )

    题意: 给出n个点m条边的图,c次询问 求询问中两个点间的最短距离. 解析: Floyd会T,所以用到了最短路树..具体思想为: 设k为u和v的最近公共祖先 d[i] 为祖结点到i的最短距离  则di ...

随机推荐

  1. 解决ERR Client sent AUTH, but no password is set

    在搭建cookies池时,需要将账号密码保存到redis,保存时报错:ERR Client sent AUTH, but no password is set 报错原因:Redis服务器没有设置密码, ...

  2. Mysql占用CPU过高如何优化?(转)

    原文:http://bbs.landingbj.com/t-0-241441-1.html MySQL处在高负载环境下,磁盘IO读写过多,肯定会占用很多资源,必然CP会U占用过高. 占用CPU过高,可 ...

  3. Git本地仓库push至GitHub远程仓库每次输入账户密码问题解决(亲测可行)

    在使用git push命令将本地仓库内容推送至GitHub远程仓库的每一次git都要让我们输入GitHub的用户名和密码.这着实让我们心烦.我们会有疑问,我明明设置了公钥呀!怎么还需要输入账户和密码? ...

  4. Angular MVC

    <!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...

  5. ELK日志系统+x-pack安全验证

    根据之前已经搭好的ELK系统,现在加一个x-pack插件上去,不然谁拿到ip和端口都可以访问elasticsearch和kibana. 要的效果如下:打开kibana界面的时候要让其输入用户名密码才能 ...

  6. 二叉搜索树的第k个节点

    给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4. = =一看就想到中序遍历 public class Soluti ...

  7. 转《service worker在移动端H5项目的应用》

    1. PWA和Service Worker的关系 PWA (Progressive Web Apps) 不是一项技术,也不是一个框架,我们可以把她理解为一种模式,一种通过应用一些技术将 Web App ...

  8. 【apache2】AH00543: httpd: bad user name apache

    当启动 apache 时,出现一下异常:AH00543: httpd: bad user name daemon 解决方法:            #groupadd daemon          ...

  9. vue-cli(vue脚手架)

    vue-cli用于自动生成vue+webpack项目. 安装webpack:npm install webpack -g 检查webpack是否安装成功和版本:webpack -v 如果是webpac ...

  10. WinForm中在非UI线程更改控件值的办法

    从非UI线程调用UI控件赋值.或进行其他更新UI的操作的话,会出现异常: System.InvalidOperationException:“线程间操作无效: 从不是创建控件“xxx”的线程访问它.” ...