luoguP4707 重返现世
收集邮票加强版,每个邮票不是等概率获得的了。
而且是获得K个,如果把一个全集S集合找出其获得时间集合(显然获得时间两两不同)的话,那么就是第n-k+1大的期望!
min-max容斥扩展:
推广到期望:
只要求后面的东西
对于集合T,设∑t∈T=SUM,那么,E(min(T))=m/SUM
所以,只要知道SUM,就可以计算贡献
所以,不妨把SUM放进状态里,记录贡献次数(就是-1和组合数那坨)
k=n-k+1之后也很小
f[p][i][j],当k=p时候,前i个,SUM=j的所有集合的贡献
i不加入:<-f[p][i-1][j]
i加入,[i-1][j]转移。p?之前的所有的这样的集合大小都+1了
就是考虑用组合数来巧妙推出|T|->|T|+1
然后就可以递推了!
初值:f[0][0][0]=0,f[k][0][0]=-1,或者手动把i=1的情况做出来也可以
滚动数组
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=;
const int M=+;
const int K=;
const int mod=;
int n,k,m;
int p[N];
int f[][K][M];
int inv[M];
int ad(int x,int y){
return x+y>=mod?x+y-mod:x+y;
}
int main(){
rd(n);rd(k);rd(m);
for(reg i=;i<=n;++i) rd(p[i]);
k=n-k+;
inv[]=;
for(reg i=;i<=m;++i) {
inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
}
int tmp=;
for(reg t=;t<=k;++t) f[tmp][t][]=-;
for(reg i=;i<=n;++i){
tmp^=;
memset(f[tmp],,sizeof f[tmp]);
for(reg t=;t<=k;++t){
for(reg j=;j<=m;++j){
f[tmp][t][j]=f[tmp^][t][j];
if(j>=p[i]){
f[tmp][t][j]=ad(f[tmp][t][j],ad(f[tmp^][t-][j-p[i]],mod-f[tmp^][t][j-p[i]]));
}
}
}
}
ll ans=;
for(reg j=;j<=m;++j){
ans=ad(ans,(ll)f[tmp][k][j]*m%mod*inv[j]%mod);
}
cout<<ans;
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/
luoguP4707 重返现世的更多相关文章
- 【Luogu4707】重返现世(min-max容斥)
[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...
- 洛谷 P4707 重返现世
洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...
- [LGP4707] 重返现世
世界是物质的,物质是运动的,运动是有规律的,规律是可以被认识的. 关于期望意义下min-max容斥,我们认为每个事件的时间来认识事件,max/min S表示集合S中所有时间最后/最前出现的事件,E(m ...
- Luogu P4707 重返现世
题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...
- [洛谷P4707] 重返现世
Description 为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙.\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始 ...
- 洛谷P4707 重返现世 [DP,min-max容斥]
传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...
- 洛谷 P4707 【重返现世】
题目分析 题目就是求第K种原料的出现期望时间. 考虑广义min-max容斥. \(\text{kthmax}(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\bin ...
- 【题解】洛谷P4707重返现世
在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...
- 洛谷P4707 重返现世(扩展MinMax容斥+dp)
传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...
随机推荐
- CMake--变量
1.一般变量 1)CMake变量引用的方式 使用${}进行变量的引用.例如: ${PROJECT_NAME} #返回项目名称 在 IF 等语句中,是直接使用变量名而不通过${}取值. 2)cmake自 ...
- Oracle创建'数据库'三步走
--创建表空间 create tablespace waterboss datafile 'd:\waterboss.dbf' size 100m autoextend on next 10m; -- ...
- AngularJS基于MVC的复杂操作案例
AngularJS基于MVC的复杂操作案例 <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...
- ajax设置默认值ajaxSetup()方法
$(function(){ //设置全局 jQuery Ajax全局参数 $.ajaxSetup({ type:"POST", async:false, cache:false, ...
- python爬虫-1
import resquests #import urllib.request from bs4 import BeautifulSoup from collections import Ordere ...
- Python rsa公私钥生成 rsa公钥加解密(分段加解密)-私钥加签验签实战
一般现在的SAAS服务提供现在的sdk或api对接服务都涉及到一个身份验证和数据加密的问题.一般现在普遍的做法就是配置使用非对称加密的方式来解决这个问题,你持有SAAS公司的公钥,SAAS公司持有你的 ...
- 多线程的实现方式01 Thread
/* * 多线程 有三种实现方式 * 其一 Thread * * 写一个类 * * 1.让他继承 Thread * 2.重写thread中的run方法 * 3.创建子类对象就是在 创建线程! * 3. ...
- idea中Lombok的使用
使用了lombok的注解(@Setter,@Getter,@ToString,@@RequiredArgsConstructor,@EqualsAndHashCode或@Data)之后,就不需要编写或 ...
- C#后台绑定select
- Jenkins+PowerShell持续集成环境搭建(四)常用PowerShell命令
0. 修改执行策略 Jenkins执行PowerShell脚本,需要修改其执行策略.以管理员身份运行PowerShell,执行以下脚本: Set-ExecutionPolicy Unrestricte ...