好题。不过之前做过的[SCOI2010]连续攻击游戏跟这题一个套路,我怎么没想到……

题目链接:CF原网 洛谷

题目大意:在一个学校有 $n$ 个学生和 $m$ 个社团,每个学生有一个非负整数能力值 $p_i$,一开始在社团 $c_i$。接下来有 $d$ 天,第 $i$ 天编号为 $k_i$ 的同学会离开他的社团。每天同学离开后会有一场比赛,要从每个社团里选一个人出来组队(如果社团没人了就不管)。队伍的能力是所有队员能力值集合的 $mex$(没出现过的最小非负整数)。问这个 $mex$ 最大是多少。

所有输入的数不超过 $5000$。


直接删除肯定不好搞,可以把删人的操作倒过来,变成加人。

然后我就一直在想数据结构,结果才发现数据结构学傻了……

我们建立一个二分图,一边是能力值,一边是社团。因为一个社团只能选一次,一个能力值最好也只选一次(一个能力值选多次肯定不会更优)。那么直接跑匈牙利,因为答案不降,所以每次试图往更大的扩展,如果能匹配到就继续,匹配不到那么这个值就是最大的 $mex$。接下来一个同学回来,就一条连边。

时间复杂度 $O(n+m(d+\max(p_i)))$。

注意细节,其中有个细节是with初始为 $-1$。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,m,p[maxn],c[maxn],d,k[maxn],with[maxn],el,head[maxn],to[maxn],nxt[maxn],tmp,ans[maxn];
bool vis[maxn],del[maxn];
inline void add(int u,int v){
to[++el]=v;nxt[el]=head[u];head[u]=el;
}
bool dfs(int u){
if(vis[u]) return false;
vis[u]=true;
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(with[v]==- || dfs(with[v])){
with[u]=v;with[v]=u;
return true;
}
}
return false;
}
int main(){
MEM(with,-);
n=read();m=read();
FOR(i,,n) p[i]=read();
FOR(i,,n) c[i]=read();
d=read();
FOR(i,,d) del[k[i]=read()]=true;
FOR(i,,n) if(!del[i] && p[i]<m) add(p[i],c[i]+m),add(c[i]+m,p[i]);
ROF(i,d,){
MEM(vis,);
while(dfs(tmp)) tmp++,MEM(vis,);
ans[i]=tmp;
if(p[k[i]]<m) add(p[k[i]],c[k[i]]+m),add(c[k[i]]+m,p[k[i]]);
}
FOR(i,,d) printf("%d\n",ans[i]);
}

CF1139E Maximize Mex(二分图匹配,匈牙利算法)的更多相关文章

  1. HDU 5943 Kingdom of Obsession 【二分图匹配 匈牙利算法】 (2016年中国大学生程序设计竞赛(杭州))

    Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  2. USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)

    The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...

  3. codeforces1139E Maximize Mex 二分图匹配

    题目传送门 题意:给出n个人,m个社团,每个人都有一个标号,一个能力值,并且属于一个社团,第i天的凌晨,第$k_i$个人会离开.每天每个社团最多派一个人出来参加活动.派出的人的能力值集合为S,求每天$ ...

  4. Codevs 1222 信与信封问题 二分图匹配,匈牙利算法

    题目: http://codevs.cn/problem/1222/ 1222 信与信封问题   时间限制: 1 s   空间限制: 128000 KB   题目等级 : 钻石 Diamond 题解 ...

  5. (转)二分图匹配匈牙利算法与KM算法

    匈牙利算法转自于: https://blog.csdn.net/dark_scope/article/details/8880547 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名 ...

  6. BZOJ1059 [ZJOI2007]矩阵游戏 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1059 题意概括 有一个n*n(n<=200)的01矩阵,问你是否可以通过交换整行和整列使得左 ...

  7. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  8. 矩阵游戏|ZJOI2007|BZOJ1059|codevs1433|luoguP1129|二分图匹配|匈牙利算法|Elena

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MB Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩 ...

  9. BZOJ 1191 [HNOI2006]超级英雄Hero:二分图匹配 匈牙利算法

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1191 题意: 有m道题,每答对一题才能接着回答下一个问题. 你一道题都不会,但是你有n个“ ...

  10. [bzoj]1059矩阵游戏<二分图匹配*匈牙利算法>

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1059 初见此题,我觉得这是水题,我认为只要每一行和每一列至少存在一个黑格就可以出现对角线, ...

随机推荐

  1. 网站数据分析&初始来源

    数据分析:如何追踪访客初始来源_搜索学院_百度搜索资源平台 https://ziyuan.baidu.com/college/articleinfo?id=260 网站数据分析:如何追踪访客初始来源 ...

  2. oracle创建表空间、创建用户、授权角色和导入导出用户数据

    使用数据库管理员身份登录 -- log as sysdba sqlplus / as sysdba; 创建临时表空间 -- create temporary tablespace create tem ...

  3. php单元测试

    https://blog.csdn.net/gaisidewangzhan1/article/details/80347008

  4. [转帖]IP地址、子网掩码、网络号、主机号、网络地址、主机地址以及ip段/数字-如192.168.0.1/24是什么意思?

    IP地址.子网掩码.网络号.主机号.网络地址.主机地址以及ip段/数字-如192.168.0.1/24是什么意思? 2016年03月26日 23:38:50 JeanCheng 阅读数:105674  ...

  5. Django框架导读

    1.虚拟环境的安装 2.web应用 C/S  B/S 架构 3.http协议介绍 4.状态码 5.原生socket 6.框架演变 7.项目演变 一.虚拟环境安装 什么是虚拟环境? 1.对真实环境的一个 ...

  6. RDD

    scala> val rdd1=sc.parallelize(Array("coffe","coffe","hellp"," ...

  7. vue element-ui 绑定@keyup事件无效

    解决办法: <el-input @keyup.native="ajax"></el-input> 加上.native覆盖原有封装的keyup事件即可

  8. SpringBoot Junit Maven JaCoCo

    写一下最近写单体测试的一些笔记. SrpingBoot的测试用例: @RunWith(SpringJUnit4ClassRunner.class) @SpringBootTest(classes = ...

  9. python 编码格式

    1. 字符编码简介 1.1. ASCII ASCII(American Standard Code for Information Interchange),是一种单字节的编码.计算机世界里一开始只有 ...

  10. java静态工厂

    本文摘自:https://www.jianshu.com/p/ceb5ec8f1174 本文略长,所以先来个内容提要 序:什么是静态工厂方法 Effective Java 2.1 静态工厂方法与构造器 ...