3566: [SHOI2014]概率充电器

Time Limit: 40 Sec  Memory Limit: 256 MB
Submit: 1888  Solved: 857
[Submit][Status][Discuss]

Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

 
题意:给你一颗树,每个点有一定的概率被直接导通,每条边也有一定概率导通,每个点可以通过相连的边在另一个点导通情况下以一定概率导通。求整棵树导通点个数的期望。
题解:首先期望这里等于每个点导通概率和。由于导通情况很多,正着计算非常困难,所以不妨正难则反,考虑每个点无法导通的情况。显然,因为是一棵树,根据大部分树形dp的套路,稍加思索发现这里存在父亲向儿子的转移,也存在儿子向父亲的转移。
定义f[i]表示i这个点由儿子无法转移的概率。显然有:f[i]=(1-p[i])*Π(f[v]+(1-f[v])*(1-val[i]));
把累乘里的东西定义为h[i]。
这题难点主要是父亲向儿子的转移。定义g[i]为i的父亲无法向i转移的概率。
tmp=g[fa[i]]∗f[fa[i]]/h[i];
然后g[i]=tmp+(1-tmp)*(1-val[i]);//这里val[i]是i的父亲到i的那条边,意会一下。
为什么tmp是这样的呢,画个图就很明白了。
因为这里g[i]可能是父亲链上转移过来的,也可能是从i的兄弟通过父亲转移过来,所以真正这个转移时我们的目标是对着这条边。所以把f[fa[i]]/h[i]就是除h[i]之外的所有兄弟使得fa[i]不能点亮的概率,再乘以g[fa[i]]就是不从父亲链也不从兄弟转移过来的概率,然后g[i]的计算就变得显然了。

#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define _mp make_pair
#define db double
#define eps 1e-9
using namespace std;
const int maxn=5e5+100;
const int inf=1e6;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int cnt,tot;
int n,m;
int fir[maxn],nxt[maxn*2],to[maxn*2];
db val[maxn*2],f[maxn],g[maxn],h[maxn],p[maxn];
void add_e(int x,int y,db k)
{
++cnt;nxt[cnt]=fir[x];fir[x]=cnt;to[cnt]=y;val[cnt]=k;
}
void dfs1(int x,int fa)
{
f[x]=p[x];
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
dfs1(v,x);
h[v]=(1.0-f[v])*(1-val[i])+f[v];
f[x]*=h[v];
}
}
void dfs2(int x,int fa)
{
db sum=p[x];int sz=0;
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
if(h[v]>eps)
{
sum*=h[v];
}
else sz++;
}
for(int i=fir[x];i;i=nxt[i])
{
int v=to[i];
if(v==fa)continue;
db tmp;
if(h[v]>eps)
{
tmp=(sz?0:sum/h[v]*g[x]);
}
else tmp=(sz>1?0:sum*g[x]);
g[v]=tmp+(1.0-tmp)*(1-val[i]);
dfs2(v,x);
}
}
int main()
{
cnt=0;
n=read();
int u,v,w;
for(int i=1;i<n;i++)
{
u=read();v=read();w=read();
db kk=1.0*w/100.0;
add_e(u,v,kk);
add_e(v,u,kk);
}
for(int i=1;i<=n;i++)
{
w=read();
p[i]=1.0-1.0*w/100;
}
dfs1(1,0);g[1]=1.0;dfs2(1,0);
db ans=0;
for(int i=1;i<=n;i++)
{
ans+=1.0-f[i]*g[i];
}
printf("%.6f\n",ans);
}

  

BZOJ3566: [SHOI2014]概率充电器 树形+概率dp的更多相关文章

  1. 【bzoj3566】[SHOI2014]概率充电器 树形概率dp

    题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的 ...

  2. BZOJ 3566 概率充电器(树形概率DP)

    题面 题目传送门 分析 定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j 这条边联通的 ...

  3. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  4. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  5. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  6. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  7. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  8. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  9. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

随机推荐

  1. asp.net mvc5 action多个参数

    需要完成http://site.com/user/add/1/2这样的url解析 使用action的参数直接获取数据的方式 Action声明如下 ) { ViewBag.clubID = id; ) ...

  2. Struts2——通配符,Action Method_DMI

    Action wildcard 通配符(配置量降到最低) 使用通配符,就是为了配置简便,但是一定遵守“约定优于配置”原则,约定就是做项目之前最好事先与项目组的人或是自己规定好命名规则. 多个*  {1 ...

  3. Java Json 数据下划线与驼峰格式进行相互转换

    概述 今天遇见一个需求,需要对json数据进行下划线与驼峰格式之间进行转换,在Fastjson.Jackson.Gson都提供了转换的方式,在这里进行一下列举. User类: public class ...

  4. valgrind 检查内存泄露

    https://www.oschina.net/translate/valgrind-memcheck

  5. jenkins和jdk版本问题

    问题:公司业务是用的jdk1.7的,但最新版的jenkins (jenkins-2.138.2-1.1.noarch.rpm)却只支持jdk1.8 分析: 1.公司业务用的jdk1.7不能换,不然影响 ...

  6. tomcat 与 nginx,apache的区别

    tomcat 与 nginx,apache的有什么区别 回答一: 题主说的Apache,指的应该是Apache软件基金会下的一个项目——Apache HTTP Server Project:Nginx ...

  7. Http请求笔记

    1 HTTP请求报文组成: 请求行:请求方法 url 协议版本 请求头:报文头-属性名:属性值 Accept属性告诉服务端-客户端接受什么类型的响应,可为一个或多个mime类型值 Cookie:服务端 ...

  8. sql行转列实例

    select gh ,xm , max(A.bz) as bz , max(A.jcz) as jcz , max(A.dl) as dl , max(A.czzx) as czzx , max(A. ...

  9. 1.ansible基本参数介绍

    想使用ansible 先--help学习下基本的options吧小兄弟1: -m 指定模块名称只有一个模块command 可以省略:-M 指出模块路径来加载2: -a 指定模块参数就是模块的内容你知道 ...

  10. Ajax 调用的WCF

    支持ajax 跨域调用的WCF搭建 1.新建一个"ASP.NET空Web应用程序"项目. 2.新建一个“WCF服务(支持ajax)”. 3.修改WCFAjaxService.svc ...