# 题解

一道数论欧拉函数和欧拉定理的入门好题。
虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧。
首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\times 8\)。
那么可以列出一个下面的方程
\[\frac{(10^x-1)}{9}\times 8=L\times k\]

设\(d=gcd(9L,8)=gcd(L,8)\)

\[\frac89(10^x-1)=Lk\]

\[\frac{8(10^x-1)}d=\frac{9Lk}{d}\]

令\(p=\frac8d,q=\frac{9L}d\),易证\(p\)和\(q\)互质。

\[p(10^x-1)=qk\]

可得\(q|10^x-1\),所以得到了\(10^x\equiv1(mod \ q)\)

根据欧拉定理,当\(10\)和\(q\)互质,必定有一组解,是\(\varphi(q)\)

那么最小的一组解一定是\(\varphi(q)\)的一个约数。


那么欧拉函数计算一下,然后枚举一下约数,快速幂判断一下就好了。

代码

#include <cstdio>
#include <cmath>
#include <iostream>
#include <algorithm>
#define ll long long
#define db double
using namespace std;
ll L, ans;
bool fg;
ll gcd(ll x, ll y) { return y == 0 ? x : gcd(y, x % y) ; }
ll mulmod(ll x, ll y, ll mod) {
    ll res = 0ll;
    for (; y; y >>= 1) { if (y & 1) res = (res + x) % mod; x = (x << 1) % mod; }
    return res;
}
ll power(ll x, ll y, ll mod) {
    ll res = 1ll;
    for (; y; y >>= 1) { if (y & 1) res = mulmod(res, x, mod); x = mulmod(x, x, mod); }
    return res;
}
ll euler(ll x) {
    ll res = x;
    for (ll i = 2; i * i <= x; i ++) {
        if (x % i == 0) {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    }
    if (x > 1) res = res / x * (x - 1);
    return res;
}
int main() {
    int cas = 0;
    while (~scanf("%I64d", &L) && L) {
        ll d = gcd(L, 8), q = 9 * L / d; fg = 0;
        if (gcd(q, 10) != 1) printf("Case %d: 0\n", ++ cas);
        else {
            ll phi = euler(q), m = sqrt((db)(phi));
            ans = phi;
            for (int i = 1; i <= m; i ++)
                if (phi % i == 0 && power(10, i, q) == 1) { ans = i; fg = 1; break; }
            if (!fg) for (int i = m; i >= 2; i --) {
                if (phi % i == 0 && power(10, phi / i, q) == 1) { ans = phi / i; break; }
            }
            printf("Case %d: %I64d\n", ++ cas, ans);
        }
    }
    return 0;
}

「POJ3696」The Luckiest number【数论,欧拉函数】的更多相关文章

  1. POJ 3696 The Luckiest number (欧拉函数,好题)

    该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...

  2. LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)

    题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...

  3. 数论-欧拉函数-LightOJ - 1370

    我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...

  4. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  5. BZOJ 4026 dC Loves Number Theory (主席树+数论+欧拉函数)

    题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值 还复习了欧拉函数以及线性筛逆元 考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[ ...

  6. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  7. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  8. HDU1695-GCD(数论-欧拉函数-容斥)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  9. Codeforces_776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

随机推荐

  1. 多线程系列之四:Guarded Suspension 模式

    一,什么是Guarded Suspension模式如果执行现在的处理会造成问题,就让执行处理的线程等待.这种模式通过让线程等待来保证实例的安全性 二,实现一个简单的线程间通信的例子 一个线程(Clie ...

  2. CodeForces Round #548 Div2

    http://codeforces.com/contest/1139 A. Even Substrings You are given a string s=s1s2…sns=s1s2…sn of l ...

  3. vue-cli项目开发/生产环境代理实现跨域请求+webpack配置开发/生产环境的接口地址

    一.开发环境中跨域 使用 Vue-cli 创建的项目,开发地址是 localhost:8080,需要访问非本机上的接口http://10.1.0.34:8000/queryRole.不同域名之间的访问 ...

  4. redis 的简单命令

    以下实例讲解了如何启动 redis 客户端: 启动 redis 客户端,打开终端并输入命令 redis-cli.该命令会连接本地的 redis 服务. $redis-cli redis > re ...

  5. RDD特性

  6. python之路--操作系统介绍,进程的创建

    一 .  操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理.调度进程,并且将多个进程对硬件的竞争变得有序 二 多道技术: 所谓多道程序设计技术,就是指允许多个程序同时进入内存 ...

  7. jedis单机版应用

    1.pom文件添加依赖: 2.创建配置文件 创建单机版redisClient 代码: package com.skymall.rest.dao.imp; import org.springframew ...

  8. Spring Boot 构建电商基础秒杀项目 (二) 使用 Spring MVC 方式获取用户信息

    SpringBoot构建电商基础秒杀项目 学习笔记 修改 DOMapper 在 UserPasswordDOMapper.xml 添加: <select id="selectByUse ...

  9. asp.net core mvc ajaxform submit files

    <form id="form1" method="post" enctype="multipart/form-data" asp-co ...

  10. CodeForces - 1051D Bicolorings(DP)

    题目链接:http://codeforces.com/problemset/problem/1051/D 看了大佬的题解后觉着是简单的dp,咋自己做就做不来呢. 大佬的题解:https://www.c ...