题目描述

这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

题目大意

在一个n*m的棋盘中,求任意行和任意列上最多有2个棋子的方案总数。

感想

真的是一道DP好题,状态,转移方程都非常的难想,我也WA了好几发。

分析

看到题目,很明显可以发现的是,因为炮必须是要隔山打虎,那么任意列和任意行都不能有两个棋子。(其实我非常想把题目改成3个,这样难度有加大了)。

因为每一行每一列<=2,所以
定义状态:
\[f[i][j][k]\]
表示前\(i\)中,有\(j\)列有\(1\)个棋子,有\(k\)列有\(2\)个棋子有多少种方案数。
决策分\(3\)种:


第一种是放\(0\)个棋子
这种状态很明显只有转移,也就是可以从上一层直接推过来,\(j\)和\(k\)都不变。
转移方程:\(f[i][j][k]+=f[i-1][j][k]\)


第二种是放一个\(1\)个棋子:

  • \(1\)颗棋子放在没有棋子的列上,那么这样会使现在多\(1\)列有\(1\)个棋子的列,那么原来比现在要少\(1\),也就是可以从\(f[i-1][j-1][k]\)转移过来,但是在原来的状态上,有\(m-(j-1)-k\)列是没有棋子的,也就是这几列上都是可以放棋子,根据乘法原理得到转移方程就是:\(f[i][j][k]+=f[i-1][j-1][k]*(m-(j-1)-k)\)。
  • \(1\)颗棋子放在有1个棋子的列上,那么就会让减少原来的有\(1\)个棋子的列,增加一个\(2\)个棋子的列,也就是说原来有\(j+1\)列1个棋子的列,有\(k-1\)个2个棋子的列,得到转移方程就是\(f[i][j][k]+=f[i-1][j+1][k-1]*(j+1)\)。

第三种是放一个\(2\)个棋子:

  • \(1\)颗棋子放在没有棋子的列上,\(1\)颗棋子放在有\(1\)个棋子的列上,那么很明显这样原来的状态就是\(f[i-1][j][k-1]\),因为有一列从\(0\)变成了\(1\),有一列从\(1\)变成了\(2\),就相当于是一列从0变成了2,那么转移方程就是:\(f[i][j][k]+=f[i-1][j][k-1]*(m-j-(k-1))\)。
  • \(2\)颗棋子都放在没有棋子的列上,而且两个棋子在不同的列上,那么原来就有\(j-2\)列是只有\(1\)个棋子,可得原来的状态就是\(f[i-1][j-2][k]\),因为不能有在同一列上,那么需要对剩余没有棋子的列进行排列组合,剩下来的点数为\(m-(j-2)-k\),取两个那么就是\(C^{2}_{m-(j-2)-k}\),得到转移方程:\(f[i][j][k]+=f[i-1][j-2][k]*C^{2}_{m-(j-2)-k}\)。
  • \(2\)颗棋子都放在有一个棋子的列上,而且两个棋子不在同一列,那么现在减少了\(2\)个有\(1\)个棋子的列,增加了\(2\)个有\(2\)个棋子的列,推出原来的状态是\(f[i-1][j+2][k-2]\),在此根据排列组合,乘法原理得到转移方程是:\(f[i-1][j+2][k-2]*C^{2}_{j+2}\)。

综上,我们整理一下转移方程:
\[if (k >= 1) f[i][j][k] = (f[i][j][k] + f[i - 1][j + 1][k - 1] * (j + 1))\]
\[if (j >= 1) f[i][j][k] = (f[i][j][k] + f[i - 1][j - 1][k] * (m - (j - 1) - k))\]
\[if (k >= 1) f[i][j][k] = (f[i][j][k] + f[i - 1][j][k - 1] * j * (m - j - (k - 1)))\]
\[if (j >= 2) f[i][j][k] = (f[i][j][k] + f[i - 1][j - 2][k] * calc(m - (j - 2) - k))\]
\[if (k >= 2) f[i][j][k] = (f[i][j][k] + f[i - 1][j + 2][k - 2] * calc(j + 2))\]
其中calc就是求组合数。

ac代码

  1. #include <bits/stdc++.h>
  2. #define ll long long
  3. #define ms(a, b) memset(a, b, sizeof(a))
  4. #define inf 0x3f3f3f3f
  5. #define mod 9999973
  6. #define N 105
  7. using namespace std;
  8. template <typename T>
  9. inline void read(T &x) {
  10. x = 0; T fl = 1;
  11. char ch = 0;
  12. while (ch < '0' || ch > '9') {
  13. if (ch == '-') fl = -1;
  14. ch = getchar();
  15. }
  16. while (ch >= '0' && ch <= '9') {
  17. x = (x << 1) + (x << 3) + (ch ^ 48);
  18. ch = getchar();
  19. }
  20. x *= fl;
  21. }
  22. ll f[N][N][N];
  23. int n, m;
  24. ll calc(ll x) {
  25. return (x * (x - 1)) / 2 % mod;
  26. }
  27. int main() {
  28. read(n); read(m);
  29. f[0][0][0] = 1ll;
  30. for (int i = 1; i <= n; i ++) {
  31. for (int j = 0; j <= m; j ++) {
  32. for (int k = 0; k <= m - j; k ++) {
  33. f[i][j][k] = f[i - 1][j][k];
  34. if (k >= 1) f[i][j][k] = (f[i][j][k] + f[i - 1][j + 1][k - 1] * (j + 1)) % mod;
  35. if (j >= 1) f[i][j][k] = (f[i][j][k] + f[i - 1][j - 1][k] * (m - (j - 1) - k)) % mod;
  36. if (k >= 1) f[i][j][k] = (f[i][j][k] + f[i - 1][j][k - 1] * j * (m - j - (k - 1))) % mod;
  37. if (j >= 2) f[i][j][k] = (f[i][j][k] + f[i - 1][j - 2][k] * calc(m - (j - 2) - k)) % mod;
  38. if (k >= 2) f[i][j][k] = (f[i][j][k] + f[i - 1][j + 2][k - 2] * calc(j + 2)) % mod;
  39. f[i][j][k] %= mod;
  40. }
  41. }
  42. }
  43. ll ans = 0;
  44. for (int i = 0; i <= m; i ++) {
  45. for (int j = 0; j <= m ; j ++) {
  46. ans = (ans + f[n][i][j]) % mod;
  47. }
  48. }
  49. printf("%lld\n", ans);
  50. return 0;
  51. }

[luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】的更多相关文章

  1. BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...

  2. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  3. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  4. bzoj1801: [Ahoi2009]chess 中国象棋(DP)

    1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...

  5. BZOJ1801:[Ahoi2009]chess 中国象棋

    Time Limit: 10 Sec  Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...

  6. bzoj1801: [Ahoi2009]chess 中国象棋 dp

    题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...

  7. BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】

    题目 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 输入格式 一行包含两个整数N,M,中间用空格分开. ...

  8. bzoj1801[AHOI2009]CHESS中国象棋

    题意:在棋盘上放一些炮使得它们不互相攻击.其实就是一行/一列最多放两个. 50分的数据中n,m至少有一个不超过8,比较直接的想法是对n/m中较小的一维做状态压缩,状态f[i][S1][S2]表示在前i ...

  9. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

随机推荐

  1. 安装使用swoole

    swoole首页:https://www.swoole.com/ 方法1:使用pecl安装 pecl install swoole 注意,php版本必须是7.0以及7.0以上的版本. 方法2:编译源码 ...

  2. 【kindle笔记】读书记录-总

    注:谨以此贴记录各种读书心得的目录.包括纸质书和电子书等等. 我的啃豆 说起来,买啃豆的初心是<鸟哥私房菜> 来自亚马逊中国官网,于公元2017年,在双十一与双十二中间,一千大洋购得 有了 ...

  3. oracle创建视图时一些问题

    这几天创建视图的时候,遇见的问题. 一:创建视图的时候Oracle-报错:文字与格式字符串不匹配(ORA-01861) 我创建的时候用的 是to_date 然后我改成了to_char select X ...

  4. 【转帖】介绍 .NET Standard

    [译]介绍 .NET Standard https://zhuanlan.zhihu.com/p/24267356 跟开发争执过 自己不会写代码 的确不好. 若有任何对翻译的建议,烦请指正 有任何问题 ...

  5. 虚拟机安装CentOS7之后没有ip的问题

    CentOS 7 默认是不启动网卡的(ONBOOT=no),主要是修改一下网上配置,然后重起便可,看这篇博客操作: https://blog.csdn.net/dancheren/article/de ...

  6. Quartz 定时任务时间设置

    转自https://blog.csdn.net/zdx1515888659/article/details/79158169 quartz定时任务时间设置: 这些星号由左到右按顺序代表 : * * * ...

  7. dentry path_lookat dput

    https://www.ibm.com/developerworks/cn/linux/l-cn-usagecounter/index.html https://blog.csdn.net/young ...

  8. ansible的playbook简单使用

    一.介绍 playbook就是一个用yaml语法把多个模块堆起来的一个文件 核心组件: Hosts:执行的远程主机列表Tasks:任务,由模块定义的操作的列表:Varniables:内置变量或自定义变 ...

  9. django migrate报错(提前删除表等)

    python3 manage.py makemigrations python3 manage.py migrate ##报错 改为##更改migrates的状态 python3 manage.py ...

  10. python django 的环境搭建(centos)

    一.安装好nginx 二.安装uwsgi yum install python-devel -y pip3 install uwsgi #测试启动django /usr/local/python3/b ...