codevs 2606 约数和问题 (数学+分块)
Smart最近沉迷于对约数的研究中。
对于一个数X,函数f(X)表示X所有约数的和。例如:f(6)=1+2+3+6=12。对于一个X,Smart可以很快的算出f(X)。现在的问题是,给定两个正整数X,Y(X<Y),Smart希望尽快地算出f(X)+f(X+1)+……+f(Y)的值,你能帮助Smart算出这个值吗?
输入文件仅一行,两个正整数X和Y(X<Y),表示需要计算f(X)+f(X+1)+……+f(Y)。
输出只有一行,为f(X)+f(X+1)+……+f(Y)的值。
2 4
14
对于20%的数据有1≤X<Y≤10^5。
对于60%的数据有1≤X<Y≤1*10^7。
对于100%的数据有1≤X<Y≤2*10^9。
思路:
这道题代码很简单,主要难点是推公式,我们先可以先推出: ans = ∑⌊n/i⌋*i (1<=i<=n,向下取整),解释下这个公式,我们是取1-n的约数和,那么 n/i向下取整也就是1-n中所有可以整除i的数的个数,然后再乘上i就是i这个约数对答案的贡献,i从1-n跑一边便可以算出答案,但是这样会超时的,那么我们需要优化下这个公式,因为是向下去整的那么肯定会有一些连续的数除i后向下取整得到的值一样,我们可以求出这些值的左右边界,将其归为一块,因为⌊n/i⌋(1<=i<=n,)的值一定递增的等差数列,那么我们求出每一个块的左右边界,直接套用等差数列的求和公式,(a1+an)*n/2, 带入l,r就是: (l+r)*(r-l+1)/2,这样就求的了个数之后再乘上权值就好了。
#include<bits/stdc++.h>
using namespace std;
#define ll long long ll solve(ll x){
if(x == ||x == ) return x;
ll l = ,r = ,ans = ; //左右边界
while(l <= x){
r = x/(x/l);
ans += (x/l)*(l+r)*(r-l+)/;
l = r+;
}
return ans;
} int main()
{
ll x,y;
scanf("%lld%lld",&x,&y);
cout<<solve(y) - solve(x-)<<endl;
}
实现代码:
codevs 2606 约数和问题 (数学+分块)的更多相关文章
- codevs 2606 约数和(分块优化数学公式 )
题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...
- 洛谷P2424/codevs 2606 约数和
http://codevs.cn/problem/2606/ https://luogu.lohu.info/problem/show?pid=2424 题目背景 Smart最近沉迷于对约数的研究中. ...
- codevs 2606 约数和问题
题目描述 Description Smart最近沉迷于对约数的研究中. 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X) ...
- P2424 约数和 【整除分块】
一.题目 P2424 约数和 二.分析 因为都是加法,那么肯定有的一个性质,即前缀和的思想,就是$$ { ans =\sum_{i=1}^y f(i)} - {\sum_{i=1}^x f(i)} ...
- bzoj 1257: [CQOI2007]余数之和 (数学+分块)
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...
- BZOJ 1968 [Ahoi2005]COMMON 约数研究:数学【思维题】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968 题意: 设f(x) = x约数的个数.如:12的约数有1,2,3,4,6,12,所以 ...
- [BZOJ1257][CQOI2007]余数之和sum 数学+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257 题目所求为$$Ans=\sum_{i=1}^nk%i$$ 将其简单变形一下$$Ans ...
- codevs 1082 线段树练习 3 --分块练习
时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区间[a,b]的所有数增加X 2:询问区间[ ...
- Codevs 4927 线段树练习5(分块)
4927 线段树练习5 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有n个数和5种操作 add a b c:把区间[a,b]内的 ...
随机推荐
- Applese 的毒气炸弹 G 牛客寒假算法基础集训营4(图论+最小生成树)
链接:https://ac.nowcoder.com/acm/contest/330/G来源:牛客网 Applese 的毒气炸弹 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262 ...
- Selling Souvenirs CodeForces - 808E (分类排序后DP+贪心)
E. Selling Souvenirs time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Python IO模型
这篇博客是本人借鉴一些大神的博客并结合自己的学习过程写下的. 事件驱动模型 事件驱动模型是一种编程范式,这里程序的执行流由外部事件来决定.它的特点是包含一个事件循环,当外部事件发生时,不断从队列里取出 ...
- 关于oracle设置主键自增的问题
关于orcale设置主键自增的问题 关于主键Oracle中并没有提供一个直接的语句设置,对于这个oralce一般都是用序列和触发器来实现 一下又两种方法来实现 一 ,不使用触发器 创建序列: crea ...
- 多线程系列之五:Balking 模式
一,什么是Balking模式 如果现在不合适执行这个操作,或者没必要执行这个操作,就停止处理,直接返回.在Balking模式中,如果守护条件不成立,就立即中断处理. 二,例子: 定期将当前数据内容写入 ...
- 迁移 VMware 虚拟机到 KVM
虚拟机转换| VMware vCenter Converterhttps://www.vmware.com/cn/products/converter.html 迁移 VMware 虚拟机到 KVMh ...
- SSH上传/下载本地文件到linux服务器
在linux下一般用scp这个命令来通过ssh传输文件. 1.从服务器上下载文件 scp username@servername:/path/filename /var/www/local_dir(本 ...
- 3 HTTP 协议
1 什么是HTTP 协议 HTTP (HyperText Transfer Protocol),即超文本传输协议, 17年以前互联网上应用最广泛的协议,之后所有网站都开始使用HTTPS协议(基于HTT ...
- SpringMVC+Spring+Mybatis+AngularJS 多规格保存示例代码
insert时拿到最新增加的id值 绑定参数 js 实体类 Service实现类 Controller
- vue上传图片到服务器
https://blog.csdn.net/qq_29712995/article/details/78839093(copy) HTML代码: <input accept="imag ...