迷宫城堡Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13833    Accepted Submission(s): 6174

Problem Description
为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。
 
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
 
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
 
Sample Input
3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0
 
Sample Output
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstring>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
 
#define N 10003
int dfn[N],low[N],ins[N],Time,num;//ins是否在栈里
vector<int>gra[N];
stack<int>sta;
 
void Tarjan(int s)
{
    dfn[s] = low[s] = ++Time;
    sta.push(s);
    ins[s] = 1;
    for(int i=0;i<gra[s].size();i++)
    {
        int k = gra[s][i];
        if(dfn[k] == 0){
            Tarjan(k);
            low[s] = min(low[s] ,low[k]);
        }
        if(dfn[k] != 0 && ins[k] == 1){
            low[s] = min(low[s] ,dfn[k]);//low[s] = min(low[s] ,low[k]);好像也是对的
        }
    }
    if(dfn[s] == low[s])
    {
        num++;
        while(!sta.empty())
        {
            int temp = sta.top();
            sta.pop();
            ins[temp] = 0;
            if(temp == s) break;
        }
    }
}
 
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)&&(n + m))
    {
        memset(dfn,0,sizeof(dfn));
        memset(ins,0,sizeof(ins));
        memset(low,0,sizeof(low));
        while(!sta.empty()) sta.pop();
        for(int i=1;i<=n;i++) gra[i].clear();
        int a,b;
        while(m--)
        {
            scanf("%d%d",&a,&b);
            gra[a].push_back(b);
        }
        num = Time = 0;
        for(int i=1;i<=n;i++)
        {
            if(dfn[i]==0) Tarjan(i);
        }
        if(num > 1) printf("No\n");
        else printf("Yes\n");
    }
}

HDU1269迷宫城堡(裸Tarjan有向图求强连通分量个数)的更多相关文章

  1. UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】

    Road Networks Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Stat ...

  2. HDU 1269 迷宫城堡 tarjan算法求强连通分量

    基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等, ...

  3. Tarjan 算法求 LCA / Tarjan 算法求强连通分量

    [时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarj ...

  4. Tarjan模板——求强连通分量

    Tarjan求强连通分量的流程在这个博客讲的很清楚,再加上我也没理解透,这里就不写了. 缩点:将同一个连通块内的点视为同一个点. 扔一道模板题:codeVS2822爱在心中 第一问很显然就是求点数大于 ...

  5. poj1236 Network of Schools ,有向图求强连通分量(Tarjan算法),缩点

    题目链接: 点击打开链接 题意: 给定一个有向图,求: 1) 至少要选几个顶点.才干做到从这些顶点出发,能够到达所有顶点 2) 至少要加多少条边.才干使得从不论什么一个顶点出发,都能到达所有顶点   ...

  6. 【算法】Tarjan算法求强连通分量

    概念: 在有向图G中,如果两个定点u可以到达v,并且v也可以到达u,那么我们称这两个定点强连通. 如果有向图G的任意两个顶点都是强连通的,那么我们称G是一个强连通图. 一个有向图中的最大强连通子图,称 ...

  7. [学习笔记] Tarjan算法求强连通分量

    今天,我们要探讨的就是--Tarjan算法. Tarjan算法的主要作用便是求一张无向图中的强连通分量,并且用它缩点,把原本一个杂乱无章的有向图转化为一张DAG(有向无环图),以便解决之后的问题. 首 ...

  8. (转)求有向图的强连通分量个数(kosaraju算法)

    有向图的连通分量的求解思路 kosaraju算法 逛了很多博客,感觉都很难懂,终于找到一篇能看懂的,摘要记录一下 原博客https://www.cnblogs.com/nullzx/p/6437926 ...

  9. tarjan算法求强连通分量

    先上代码: #include <iostream> #include <cstring> #include <vector> #include <stack& ...

随机推荐

  1. jmeter分布式压测(多台电脑一起压测)

    (1)在Windows下运行 操作步骤: 1)     有多台电脑,每台电脑上都有jmeter,而且这几台电脑都互相能ping通. 2)     在我的电脑的jmeter的配置文件bin目录下的jme ...

  2. 多线程系列之五:Balking 模式

    一,什么是Balking模式 如果现在不合适执行这个操作,或者没必要执行这个操作,就停止处理,直接返回.在Balking模式中,如果守护条件不成立,就立即中断处理. 二,例子: 定期将当前数据内容写入 ...

  3. docker vm 性能优劣

    Docker容器与虚拟机区别 - unixfbi.com - 博客园 http://www.cnblogs.com/pangguoping/articles/5515286.html docker与虚 ...

  4. 敏捷与CMM的恩怨

    模式不同,一种是灵活,一种是严肃.

  5. 转:Linux下查看tomcat占用端口

    https://blog.csdn.net/liufuwu1/article/details/71123597[root@server-crm mysql]# ps -ef | grep " ...

  6. webdriver原理、协议

    1.webdriver client的原理是什么? 当测试脚本启动firefox的时候,selenium-webdriver 会首先在新线程中启动firefox浏览器.如果测试脚本指定了firefox ...

  7. MySQL基础配置之mysql的默认字符编码的设置(my.ini设置字符编码) - 转载

    MySQL基础配置之mysql的默认字符编码的设置(my.ini设置字符编码) MySQL的默认编码是Latin1,不支持中文,那么如何修改MySQL的默认编码呢,下面以设置UTF-8为例来说明. 需 ...

  8. Quartz框架学习(1)—核心层次结构

    Quartz框架学习 Quartz(任务调度)框架的核心组件: job:任务.即任务调度行为中所要调度的对象. trigger:触发器.是什么促使了一个任务的调度?当然是时间.这也算事件驱动类型程序. ...

  9. Spark 数据倾斜

    Spark 数据倾斜解决方案 2017年03月29日 17:09:58 阅读数:382 现象       当你的应用程序发生以下情况时你该考虑下数据倾斜的问题了: 绝大多数task都可以愉快的执行,总 ...

  10. python之路--触发器, 储存过程, 事务

    一. 触发器 使用触发器可以定制用户对某一张表的数据进行 [增, 删  ,改] 操作时前后的行为, (注意 没有查询),在进行增删改的时候出发的某个动作叫做 触发器. 其实就是在增删改的时候另外执行了 ...