TensorFlow入门学习(让机器/算法帮助我们作出选择)
catalogue
. 个人理解
. 基本使用
. MNIST(multiclass classification)入门
. 深入MNIST
. 卷积神经网络:CIFAR- 数据集分类
. 单词的向量表示(Vector Representations of Words)
. 循环神经网络(RNN)、LSTM(Long-Short Term Memory, LSTM)
. 用深度学习网络搭建一个聊天机器人
0. 个人理解
在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗略理解,不对的地方请多指教
. deep learning神经网络本质是在lean什么,我觉得是在learn一个一组参数,或者说是选择模式,也就是我们常说的分类器,这个分类器可能是一个高维度分类器,由一组参数组成
. 拿图像验证码识别来说,这里的参数就是指图像区域中的权重分布情况(数字1和数字2的权重像素空间分布是不同的),如果我们选定图像的像素空间(例如32 * ) + RGB色彩通道()作为输入特征(本质上这就是特征工程),这些特征会被tensorflow当成神经元,并在每一层对这些神经元进行组合,并计算出结果,而下一层神经网络的神经元,会把这一层的输出再进行组合,组合时,根据上一次预测的准确性,会自动通过back propogation给每个组合不同的weight(比重),这个过程会一直进行,直到调整出一个最佳拟合的weight,这个weight往往就是最贴近真实图像的像素空间权重
. . 世界上的所有事物,都可以抽象为一个高维度矩阵,这个过程在不同的领域会有不同的提取抽象方式,即特征工程,值得注意的是,拥有对应领域的专业知识,非常有助于特征工程的实施
. 我们将特定领域的、需要分类/识别的对象抽象为高维度矩阵后,进入deep learn算法模型中就成为了神经元(节点),deep learn模型接下来要做的事称之为"拟合"
. 要完成分类和识别,deep learn的目标是找到一个拟合矩阵(具象来说就是"高维度-1分类切面"),要达到这个目的,需要3个元素
) 拟合函数(activation 激活函数): 用于生成拟合切面
) 误差函数(Loss Function): 用于在网络计算的过程中计算当前拟合参数得到的拟合切面离最优值的距离,以便随时调整参数
) 神经网络结构: deep learn深度学习和普通神经网络的区别就在于"层数"的不同,深度神经网络往往有3层以上(输入层、隐层、输出层),当层数增加后,在每一层选择怎样的组合的交叉结构就成了一个很难的事情,当前还没有完善的理论支撑能精确地计算出什么样的网络结构能输出最好的结果,通常的做法是根据不认同的业务场景去不断尝试不同的网络结构,直到"试出"一个相对较好的网络结构,然后再在这个网络结构的基础之上进行参数调整
值得注意的是,神经网络最大的魔力在于,就在于即使我们无法准确地提取出各种各样很多的特征,而只要给与足够多层的神经网络和神经元,神经网络自己会组合出有用的特征。之所以可以做到这点,我么可以来看一个实验
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8,8,8,8,8,8&seed=0.33671&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
对于输入来说,我们只给出2个维度的特征x1、x2,而选择1个6层的,每层有8个神经元的神经网络,在每层网络中,维度被扩展到了8,神经网络会自动在训练过程中,寻找对它有价值的维度,并给与一定的weight权重,根据loss函数来不断递归下降,直到找到一个最好的拟合权重参数。DL大大降低了特征工程的难度
0x1: 神经网络到底理解了什么
其一,神经网络理解了如何将输入空间解耦为分层次的卷积滤波器组
其二,神经网络理解了从一系列滤波器的组合到一系列特定标签的概率映射。神经网络学习到的东西完全达不到人类的“看见”的意义,从科学的的角度讲,这当然也不意味着我们已经解决了计算机视觉的问题
有些人说,卷积神经网络学习到的对输入空间的分层次解耦模拟了人类视觉皮层的行为。这种说法可能对也可能不对,但目前未知我们还没有比较强的证据来承认或否认它。当然,有些人可以期望人类的视觉皮层就是以类似的方式学东西的,某种程度上讲,这是对我们视觉世界的自然解耦(就像傅里叶变换是对周期声音信号的一种解耦一样自然)【这里是说,就像声音信号的傅里叶变换表达了不同频率的声音信号这种很自然很物理的理解一样,我们可能会认为我们对视觉信息的识别就是分层来完成的,圆的是轮子,有四个轮子的是汽车,造型炫酷的汽车是跑车,像这样】。但是,人类对视觉信号的滤波、分层次、处理的本质很可能和我们弱鸡的卷积网络完全不是一回事。视觉皮层不是卷积的,尽管它们也分层,但那些层具有皮质列的结构,而这些结构的真正目的目前还不得而知,这种结构在我们的人工神经网络中还没有出现(尽管乔大帝Geoff Hinton正在在这个方面努力)。此外,人类有比给静态图像分类的感知器多得多的视觉感知器,这些感知器是连续而主动的,不是静态而被动的,这些感受器还被如眼动等多种机制复杂控制
Relevant Link:
https://groups.google.com/a/tensorflow.org/forum/#!forum/discuss
https://stackoverflow.com/questions/tagged/tensorflow
http://www.tensorfly.cn/tfdoc/resources/overview.html
https://www.zhihu.com/question/41667903
http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=8,8,8,8,8,8&seed=0.33671&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
1. 基本使用
0x1: 综述
. 使用图 (graph) 来表示计算任务.
. 在被称之为 会话 (Session) 的上下文 (context) 中执行图.
. 使用 tensor 表示数据.
. 通过 变量 (Variable) 维护状态.
. 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.
TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op (operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算, 产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组. 例如, 你可以将一小组图像集表示为一个四维浮点数数组, 这四个维度分别是 [batch, height, width, channels].
一个 TensorFlow 图描述了计算的过程. 为了进行计算, 图必须在 会话 里被启动. 会话 将图的 op 分发到诸如 CPU 或 GPU 之类的 设备 上, 同时提供执行 op 的方法. 这些方法执行后, 将产生的 tensor 返回. 在 Python 语言中, 返回的 tensor 是 numpy ndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是 tensorflow::Tensor 实例.
0x2: 计算图
TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤 被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.
例如, 通常在构建阶段创建一个图来表示和训练神经网络, 然后在执行阶段反复执行图中的训练 op.
1. 构建图(将待分类对象抽象为高维矩阵)
构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.
Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它 op 构造器作为输入.
# -*- coding:utf- -*- import tensorflow as tf if __name__ == "__main__":
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[., .]]) # 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[.],[.]]) # 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的 结果, 必须在会话里启动这个图.
2. 在一个会话中启动图
构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数, 会话构造器将启动默认图.
# -*- coding:utf- -*- import tensorflow as tf if __name__ == "__main__":
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[., .]]) # 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[.],[.]]) # 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2) # 默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的 结果, 你必须在会话里启动这个图. # 启动默认图.
sess = tf.Session() # 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
#
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print result
# ==> [[ .]] # 任务完成, 关闭会话.
sess.close()
在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作
0x3: Tensor
TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor. 你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和 一个 shape.
0x4: 变量
变量维护图执行过程中的状态信息. 下面的例子演示了如何使用变量实现一个简单的计数器
# -*- coding:utf- -*- import tensorflow as tf if __name__ == "__main__":
# 创建一个变量, 初始化为标量 .
state = tf.Variable(, name="counter") # 创建一个 op, 其作用是使 state 增加
one = tf.constant()
new_value = tf.add(state, one)
update = tf.assign(state, new_value) # 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.initialize_all_variables() # 启动图, 运行 op
with tf.Session() as sess:
# 运行 'init' op
sess.run(init_op)
# 打印 'state' 的初始值
print sess.run(state)
# 运行 op, 更新 'state', 并打印 'state'
for _ in range():
sess.run(update)
print sess.run(state)
代码中 assign() 操作是图所描绘的表达式的一部分, 正如 add() 操作一样. 所以在调用 run() 执行表达式之前, 它并不会真正执行赋值操作.
通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中. 在训练过程中, 通过重复运行训练图, 更新这个 tensor.
0x5: Fetch
为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor, 这些 tensor
会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个 tensor:
# -*- coding:utf- -*- import tensorflow as tf if __name__ == "__main__":
# 启动默认图.
sess = tf.Session() input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.multiply(input1, intermed) with tf.Session():
result = sess.run([mul, intermed])
print result
0x6: Feed
上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制 可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor.
feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操作, 标记的方法是使用 tf.placeholder() 为这些操作创建占位符.
# -*- coding:utf- -*- import tensorflow as tf if __name__ == "__main__":
input1 = tf.placeholder(tf.types.float32)
input2 = tf.placeholder(tf.types.float32)
output = tf.multiply(input1, input2) with tf.Session() as sess:
print sess.run([output])
print sess.run([output], feed_dict={input1:[.], input2:[.]})
0x7: batch
深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式
. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。
. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent。这个方法速度比较快,但是收敛性能不太好,可能在最优点附近晃来晃去,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡的比较剧烈
为了克服两种方法的缺点,现在一般采用的是一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面因为批的样本数与整个数据集相比小了很多,计算量也不是很大
基本上现在的梯度下降都是基于mini-batch的,模块中经常会出现batch_size,就是指这个。
我们在代码中常见的优化器SGD是stochastic gradient descent的缩写,但不代表是一个样本就更新一回,还是基于mini-batch的
Relevant Link:
http://www.tensorfly.cn/tfdoc/get_started/os_setup.html
http://keras-cn.readthedocs.io/en/latest/getting_started/concepts/#batch
2. MNIST(multiclass classification)入门
0x1: MNIST数据集
https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/examples/tutorials/mnist/input_data.py#
下载下来的数据集被分成两部分:60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test)。这样的切分很重要,在机器学习模型设计时必须有一个单独的测试数据集不用于训练而是用来评估这个模型的性能,从而更加容易把设计的模型推广到其他数据集上(泛化)。
正如前面提到的一样,每一个MNIST数据单元有两部分组成:一张包含手写数字的图片和一个对应的标签(监督学习中,正确打标的样本特别重要)。我们把这些图片设为“xs”,把这些标签设为“ys”。训练数据集和测试数据集都包含xs和ys,比如训练数据集的图片是 mnist.train.images ,训练数据集的标签是 mnist.train.labels。
每一张图片包含28像素X28像素。我们可以用一个数字数组来表示这张图片:
我们把这个数组展开成一个向量,长度是 28x28 = 784。如何展开这个数组(数字间的顺序)不重要,只要保持各个图片采用相同的方式展开。从这个角度来看,MNIST数据集的图片就是在784维向量空间里面的点, 并且拥有比较复杂的结构 (提醒: 此类数据的可视化是计算密集型的)。
展平图片的数字数组会丢失图片的二维结构信息。这显然是不理想的,最优秀的计算机视觉方法会挖掘并利用这些结构信息,但在当前锁学习的简单数学模型,softmax回归(softmax regression),不会利用这些结构信息。
因此,在MNIST训练数据集中,mnist.train.images 是一个形状为 [60000, 784] 的张量,第一个维度数字用来索引图片,第二个维度数字用来索引每张图片中的像素点。在此张量里的每一个元素,都表示某张图片里的某个像素的强度值,值介于0和1之间(黑白图片)。
相对应的MNIST数据集的标签是介于0到9的数字,用来描述给定图片里表示的数字。为了用于这个教程,我们使标签数据是"one-hot vectors"。 一个one-hot向量除了某一位的数字是1以外其余各维度数字都是0。所以在此教程中,数字n将表示成一个只有在第n维度(从0开始)数字为1的10维向量。比如,标签0将表示成([1,0,0,0,0,0,0,0,0,0,0])。因此, mnist.train.labels 是一个 [60000, 10] 的数字矩阵。
0x2: Softmax回归
我们知道MNIST的每一张图片都表示一个数字,从0到9。我们希望得到给定图片代表每个数字的概率。比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值。
这是一个使用softmax回归(softmax regression)模型的经典案例。softmax模型可以用来给不同的对象分配概率。即使在之后,我们训练更加精细的模型时,最后一步也需要用softmax来分配概率。
softmax回归(softmax regression)分两步
1. 第一步
为了得到一张给定图片属于某个特定数字类的证据(evidence),我们对图片像素值进行加权求和。如果这个像素具有很强的证据说明这张图片不属于该类,那么相应的权值为负数,相反如果这个像素拥有有利的证据支持这张图片属于这个类,那么权值是正数。
下面的图片显示了一个模型学习到的图片上每个像素对于特定数字类的权值。红色代表负数权值,蓝色代表正数权值。
我们也需要加入一个额外的偏置量(bias),因为输入往往会带有一些无关的干扰量。因此对于给定的输入图片 x 它代表的是数字 i 的证据可以表示为
其中 代表权重, 代表数字 i 类的偏置量,j 代表给定图片 x 的像素索引用于像素求和。然后用softmax函数可以把这些证据转换成概率 y:
这里的softmax可以看成是一个激励(activation)函数或者链接(link)函数,把我们定义的线性函数的输出转换成我们想要的格式,也就是关于10个数字类的概率分布。因此,给定一张图片,它对于每一个数字的吻合度可以被softmax函数转换成为一个概率值。softmax函数可以定义为
展开等式右边的子式,可以得到:
但是更多的时候把softmax模型函数定义为前一种形式:把输入值当成幂指数求值,再正则化这些结果值。这个幂运算表示,更大的证据对应更大的假设模型(hypothesis)里面的乘数权重值。反之,拥有更少的证据意味着在假设模型里面拥有更小的乘数系数。假设模型里的权值不可以是0值或者负值。Softmax然后会正则化这些权重值,使它们的总和等于1,以此构造一个有效的概率分布。
对于softmax回归模型可以用下面的图解释,对于输入的xs
加权求和,再分别加上一个偏置量,最后再输入到softmax函数中:
如果把它写成一个等式,我们可以得到:
我们也可以用向量表示这个计算过程:用矩阵乘法和向量相加。这有助于提高计算效率。(也是一种更有效的思考方式)
更进一步,可以写成更加紧凑的方式
验证码识别体现了模式识别的一个很朴素的思想,就是人的认字过程是经历了一个"学习过程",在看过了很多人、各种写法、各种字体的字后,人脑中对某个字应该"长的样子"形成了一个权重认知模型,不管怎么潦草,只要基本形态在那里,人就能认出来。把这个认知过程抽象为数学概念,本质上就是特定像素区域给与较高的权重,根据像素权重划分出区域,只要大体在这个区域中,就应该有更大的概率是这个字
0x3: 实现回归模型
y = tf.nn.softmax(tf.matmul(x,W) + b)
TensorFlow不仅仅可以使softmax回归模型计算变得特别简单,它也用这种非常灵活的方式来描述其他各种数值计算,从机器学习模型对物理学模拟仿真模型。一旦被定义好之后,我们的模型就可以在不同的设备上运行:计算机的CPU,GPU,甚至是手机
0x4: 训练模型
为了训练我们的模型,我们首先需要定义一个指标来评估这个模型是好的。其实,在机器学习,我们通常定义指标来表示一个模型是坏的,这个指标称为成本(cost)或损失(loss),然后尽量最小化这个指标。但是,这两种方式是相同的。
一个非常常见的,非常漂亮的成本函数是“交叉熵”(cross-entropy)。交叉熵产生于信息论里面的信息压缩编码技术,但是它后来演变成为从博弈论到机器学习等其他领域里的重要技术手段。它的定义如下:
y 是我们预测的概率分布, y' 是实际的分布(我们输入的one-hot vector)。比较粗糙的理解是,交叉熵是用来衡量我们的预测用于描述真相的低效性。即如果我们的描述越不准确,则不确定性就越高,熵值就越大
TensorFlow拥有一张描述你各个计算单元的图,它可以自动地使用反向传播算法(backpropagation algorithm)来有效地确定你的变量是如何影响你想要最小化的那个成本值的。然后,TensorFlow会用你选择的优化算法来不断地修改变量以降低成本。 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
在这里,我们要求TensorFlow用梯度下降算法(gradient descent algorithm)以0.01的学习速率最小化交叉熵。梯度下降算法(gradient descent algorithm)是一个简单的学习过程,TensorFlow只需将每个变量一点点地往使成本不断降低的方向移动
TensorFlow在这里实际上所做的是,它会在后台给描述你的计算的那张图里面增加一系列新的计算操作单元用于实现反向传播算法和梯度下降算法。然后,它返回给你的只是一个单一的操作,当运行这个操作时,它用梯度下降算法训练你的模型,微调你的变量,不断减少成本。
0x5: 评估我们的模型
首先让我们找出那些预测正确的标签。tf.argmax 是一个非常有用的函数,它能给出某个tensor对象在某一维上的其数据(softmax预测出了一个类似[1,0,0,0,0,0,0,0,0]矩阵,对应为1的那个就是它预测出的最大概率的数字)最大值所在的索引值(对应的数字)。由于标签向量是由0,1组成,因此最大值1所在的索引位置就是类别标签,比如tf.argmax(y,1)返回的是模型对于任一输入x预测到的标签值,而 tf.argmax(y_,1) 代表正确的标签,我们可以用 tf.equal 来检测我们的预测是否真实标签匹配(索引位置一样表示匹配)
correct_prediction = tf.equal(tf.argmax(y,), tf.argmax(y_,))
这行代码会给我们一组布尔值。为了确定正确预测项的比例,我们可以把布尔值转换成浮点数,然后取平均值。例如,[True, False, True, True]
会变成 [1,0,1,1]
,取平均值后得到 0.75
.
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
最后,我们计算所学习到的模型在测试数据集上面的正确率。
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
0x6: mnist_softmax.py
# Copyright The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """A very simple MNIST classifier.
See extensive documentation at
http://tensorflow.org/tutorials/mnist/beginners/index.md
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import argparse
import sys import input_data
import tensorflow as tf FLAGS = None def main(_):
# Import data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # Create the model
x = tf.placeholder(tf.float32, [None, ])
W = tf.Variable(tf.zeros([, ]))
b = tf.Variable(tf.zeros([]))
y = tf.matmul(x, W) + b # Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, ]) # The raw formulation of cross-entropy,
#
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
# reduction_indices=[]))
#
# can be numerically unstable.
#
# So here we use tf.nn.softmax_cross_entropy_with_logits on the raw
# outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Train
for _ in range():
batch_xs, batch_ys = mnist.train.next_batch()
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model
correct_prediction = tf.equal(tf.argmax(y, ), tf.argmax(y_, ))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels})) if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='MNIST_data/',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[]] + unparsed)
Relevant Link:
http://yann.lecun.com/exdb/mnist/
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples
https://www.tensorflow.org/get_started/mnist/pros
https://www.tensorflow.org/get_started/mnist/beginners
3. 深入MNIST
0x1: 构建一个多层卷积网络(多层深度神经网络)
1. 权重初始化
为了创建这个模型,我们需要创建大量的权重和偏置项。这个模型中的权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度。由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项,以避免神经元节点输出恒为0的问题(dead neurons)。为了不在建立模型的时候反复做初始化操作,我们定义两个函数用于初始化
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
2. 卷积和池化(将低维特征扩展到高维空间)
TensorFlow在卷积和池化上有很强的灵活性。我们怎么处理边界?步长应该设多大?在这个实例里,我们会一直使用vanilla版本。我们的卷积使用1步长(stride size),0边距(padding size)的模板,保证输出和输入是同一个大小。我们的池化用简单传统的2x2大小的模板做max pooling。为了代码更简洁,我们把这部分抽象成一个函数。
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[, , , ], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[, , , ],
strides=[, , , ], padding='SAME')
3. 第一层卷积
现在我们可以开始实现第一层了。它由一个卷积接一个max pooling完成。卷积在每个5x5的patch中算出32个特征。卷积的权重张量形状是[5, 5, 1, 32]
,前两个维度是patch的大小,接着是输入的通道数目,最后是输出的通道数目。 而对于每一个输出通道都有一个对应的偏置量。
W_conv1 = weight_variable([, , , ])
b_conv1 = bias_variable([])
为了用这一层,我们把x
变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)
x_image = tf.reshape(x, [-,,,])
We then convolve x_image
with the weight tensor, add the bias, apply the ReLU function, and finally max pool. 我们把x_image
和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling。
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
4. 第二层卷积
为了构建一个更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5x5的patch会得到64个特征(上一层的输出是32个特征,作为下一层的输入)
W_conv2 = weight_variable([, , , ])
b_conv2 = bias_variable([]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
5. 密集连接层
现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU
W_fc1 = weight_variable([ * * , ])
b_fc1 = bias_variable([]) h_pool2_flat = tf.reshape(h_pool2, [-, **])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
6. Dropout
为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder
来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,在测试过程中关闭dropout。 TensorFlow的tf.nn.dropout
操作除了可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候可以不用考虑scale。
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
7. 输出层
最后,我们添加一个softmax层,就像前面的单层softmax regression一样
W_fc2 = weight_variable([, ])
b_fc2 = bias_variable([]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
注意这里和softmax regression的区别在于,softmax regression的输入维度是图像像素的768维,而该网络的输入是卷积后的1024高维空间,后者抽象度更好
8. 训练和评估模型
为了进行训练和评估,我们使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,只是我们会用更加复杂的ADAM优化器来做梯度最速下降,在feed_dict
中加入额外的参数keep_prob
来控制dropout比例。然后每100次迭代输出一次日志
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,), tf.argmax(y_,))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range():
batch = mnist.train.next_batch()
if i% == :
train_accuracy = accuracy.eval(feed_dict={
x:batch[], y_: batch[], keep_prob: 1.0})
print "step %d, training accuracy %g"%(i, train_accuracy)
train_step.run(feed_dict={x: batch[], y_: batch[], keep_prob: 0.5}) print "test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
9. tensorflow-deep_convolution.py
import input_data mnist = input_data.read_data_sets('MNIST_data/', one_hot=True) import tensorflow as tf def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[, , , ], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[, , , ],
strides=[, , , ], padding='SAME') sess = tf.InteractiveSession() x = tf.placeholder("float", shape=[None, ])
y_ = tf.placeholder("float", shape=[None, ]) W_conv1 = weight_variable([, , , ])
b_conv1 = bias_variable([]) x_image = tf.reshape(x, [-, , , ]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([, , , ])
b_conv2 = bias_variable([]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([ * * , ])
b_fc1 = bias_variable([]) h_pool2_flat = tf.reshape(h_pool2, [-, * * ])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([, ])
b_fc2 = bias_variable([]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, ), tf.argmax(y_, ))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) tf.summary.scalar('Training error', cross_entropy)
tf.summary.scalar('Training accuracy', accuracy)
tf.summary.scalar('sparsity', tf.nn.zero_fraction(h_fc1)) sess.run(tf.global_variables_initializer()) merged_summary_op = tf.summary.merge_all()
print merged_summary_op
summary_writer = tf.summary.FileWriter('./mnist_logs', sess.graph) for i in range():
batch = mnist.train.next_batch()
sess.run(train_step, feed_dict={x: batch[], y_: batch[], keep_prob: 0.5})
if i % == :
train_accuracy = accuracy.eval(feed_dict={
x: batch[], y_: batch[], keep_prob: 1.0})
print "step %d, training accuracy %g" % (i, train_accuracy)
summary_str = sess.run(merged_summary_op, feed_dict={x: batch[], y_: batch[], keep_prob: 0.5})
summary_writer.add_summary(summary_str, i) print "test accuracy %g" % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAACQkAAAnGCAYAAADu+tEnAAAgAElEQVR4nOzdf3iT9b3/8dvNAftx3Oa8/ELlmsd50HlwVQ5oNkGcM4gVx2QHYZuCHs+GOuePwVAUHB71WDllVhSnbigOD2jDpFKwFMJsBXJKC7SUFtuigdJSaUOattBQSKGv7x8s9xKStGlpGpo+H9f1/iN37vvOfYd80pD7lffHEAAAAAAAAAAAAAAAAICEZsT7AAAAAAAAAAAAAAAAAADEFiEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIAAAAAAAAAAAAAAAASHCEhAAAAAAAAAAAAAAAAIMEREgIA9GuHDh1SSkqKxo8fL6vVqsmTJ+v48eMdbrN161ZZrVZZrValpKRo2bJlvXS0QN9TV1cXNMZefPHFsOulpaUpJSVFVqtVt9xyiyZNmtTLRwoAAAAAAAAAAJDYCAkBACDpo48+MoM/WVlZHa776KOPymq16pFHHumlowP6Prvdbo6xLVu2RFxv6tSp+uyzz3rxyAAAAAAAAAAAAPoHQkIAAOhUSGj69OkaP368pk2bppMnT4Zd75NPPtG9995LSAjoIrvdrjvuuEPjxo3TpEmT5Ha7w65HSAgAAAAAAAAAACA2CAkBAKBTIaGZM2fqhRdekNVqVV5eXtj15s+fr5ycHEJCQBfZ7XbNnj1bS5culdVq1WOPPab29vaQ9QgJAQAAAAAAAAAAxAYhIQAA9I+QkNPplNVq1a9//euQdWpqavSLX/xCx44dixgSamho0B/+8AdNnjxZt99+u6ZPn66lS5fK5/MFrVdfX6/XXntN9957r+644w797Gc/07x587R3796Q4/JP0TRjxgwdOHBAs2fP1oQJE3T33XcrOzu7Z58IIEb8IaGTJ0/qkUcekdVq1cqVK0PWixQSinZsSZLT6dTs2bN16623atKkSXr++edVVFQkq9Wqm2++WSkpKTE5RwAAAAAAAAAAgLMZISEAAPSPkJAkzZkzR1arVcXFxUHrvPjii7LZbDpx4kTYkFBTU5PuvPNOPfroo+ZUSqWlpfr3f/93Pfnkk0FdU3JycnT77bervLxckuT1epWWlqaUlBRVVVUF7bO0tFT33HOP7rnnHj366KPKycmRw+HQQw89JKvVqtLS0pg8J0BP8oeEpFMhuZ/85CdKSUkJCQSFCwl1ZWzV1tbqJz/5ie666y6VlJTo0KFDysrK0l133SWr1SqbzRbjMwUAAAAAAAAAADg7ERICAEDBISF/x5E5c+aY9zc0NGjy5Mnyer0RQ0Lp6emyWq2qqakJWm6z2WS1WrV161Zz2datW0O6qPh8Pt16661atGhRyPE98MADIYGgvXv3ymq16o033uj+iQO9JDAkJEkff/yxrFar7r33Xh0/ftxcHi4k1JWx9fzzz8tqtaqkpCRo3cWLFxMSAgAAAAAAAAAA/RohIQAAFBwSkv4RynE6nZKkJUuW6M9//rMkhQ0Jtbe3a9KkSfrFL34Rsu/S0lJZrdaw4Z/T3X333Zo1a1bI8gceeECTJk0KWnby5ElZrValpqZGd5JAHJ0eEpJOdeeyWq16+eWXzWWnh4S6Mrba29s1ceLEkLEiSYWFhYSEAAAAAAAAAABAv0ZICAAAhYaEcnNzZbVa9fzzz8vr9Wry5MnmNEfhQkLNzc2yWq2yWq1KSUkJqZtvvllz58411z927Jjee+89zZgxw5x2KSUlRVarVb/5zW9Cju+BBx7Qf/7nf4YsT0lJ0bPPPtuTTwUQE+FCQq2trbr33ntltVpVUFAgKTQk1JWx1dTUJKvVql/+8pchj//ZZ58REgIAAAAAAAAAAP0aISEAABQaEjp58qTuvPNO3XzzzVq8eLHS0tLM+zoKCYULJ4Tz9NNPy2q1KisrS16v11x+zz33RAwJzZgxI2Q5ISH0FeFCQpLkdDqVkpKiyZMnq7GxMWJIKJqx5Q8JhQvUERICAAAAAAAAAAD9HSEhAAAUGhKSpMzMTLODyf79+83lHU03Fm6aI+lUQOHzzz+XJLW0tMhqterBBx8MWY+QEBJVpJCQ9I+xNnfu3IjTjUUztvzTjd1+++0h6zHdGAAAAAAAAAAA6O8ICQEAoPAhodbWVk2ZMkXz588PWh4uJCRJixYtktVqVUlJSdDyo0ePauLEiXI4HJKk48eP6+abb9YDDzwQtJ7P59Ntt91GSAgJqaOQkCQ99dRTZigvMCQkRT+2JOn5558Pu+7ixYsJCQEAAAAAAAAAgH6NkBAAAAofEookUkioublZd911l2bMmKEDBw5IkhobG/XUU09p1qxZOnnypLnu/PnzZbVatXLlSh09elSNjY1asGCBrFYrISEkpM5CQs3NzZo6dWrYkFBXxlZtba1+8pOf6K677lJJSYkOHTqkNWvW6NFHHyUkBAAAAAAAAAAA+jVCQgCAfi8lJUXjx4+X1WpVSkqKsrKyIq77zDPPKCUlxex4kpKSovfff9+8v7GxUS+99JKmTp2qyZMna/r06VqyZIlaWlqC9nPkyBG9/PLL+tnPfqZbbrlFd999t1atWqW7777b3G95ebmKi4tDHq+8vFwbNmwwl48bN04pKSnyeDwxe46A7qqrqzPHmP+1+r//+79h1925c6fGjRsXEhKSoh9bkuR0OvW73/1OKSkp+ulPf6pFixbpk08+MYN5AAAAAAAAAAAA/REhIQAAACS8bdu2yWq1av369fE+FAAAAAAAAAAAgLggJAQAAICEUVVVpf/5n/8JWb506VJZrVZzujIAAAAAAAAAAID+hpAQAAAAEkZlZaXGjRunDRs2qL29XSdPntTWrVs1ceJEvfjii/E+PAAAAAAAAAAAgLghJAQAAICEcfjwYS1ZskQzZszQHXfcoYkTJ+ree+9VRkaGTp48Ge/DAwAAAAAAAAAAiBtCQgAA4Iy0traqpKREmzZt6vEqKChQU1NTvE8RiLmmpiYVFBQwjgAAAAAAAAAAQMwQEgIAAN1WV1entLQ0PffcczGrtLQ0VVVVxftUgZjprXFUV1cX71MFAAAAAAAAAABxREgIAAB0m81mi2mwwV+vvPJKvE8ViJneGkfLli2L96kCAAAAAAAAAIA4IiQEAEAP8Xq9crvdcrvdcjqdqqysjFj+9bxeb7wP+4zEuvtJYKF/6I/jqLfGEOMIAAAAiC2fz6f6+nrV1NSotLSUomJWFRUVqq+vl8fjiffLHgAAAH0MISEAALrB7XarsrJShYWFstvtysrKOqPKzs6Ww+Ewgw8+ny/epxgVwg3oLp/P1+PjyG63M44YRwAAAECvamlpUUVFhbKzs7VixQqK6vVauXKl8vPzVVNTE+/hAKCfq3O79U5WllmBYr3ctn69CnbtUuvx4z14RgCQmAgJAQAQBZ/Pp+rqahUWFp5xkCHaysvLk9PpPKu7pBBuQFcwjsJjHAEAAAB9j8/nU2lpqVauXBn3kAhF+Wvjxo2qr6+P9/AAElJNTY2uvfZaGYah888/X1OnTg26v6qqShaLRV/60pdksVh09OjRM3q8JUuWKCkpSYcPH456m0WLFunKK6+UYRg6dOjQGa/XFXsbGrR+1y69nJFh1t8+/dSsWC9/cflyPffGG/rTypUEhQCgE4SEAAC9rqmpSZWVldq0aZMqKytVV1cX70OKyO12Rx1o8HcDcjgcZuvnSOVfL9ruKQ6HQ263O95PR4iuBhQ+/vhjswg39B/dHUcdjaHAcZSdnc04YhwBAAAAvaa+vj5iOCgnJ0d2u10FBQUUFbNyOBzKycnRqlWrwr4O8/Pz+0x3XaCvueaaazR06FCdPHky5L4dO3bo1ltv7ZHH2bFjh+bMmaMTJ050aTu73R5V+Cfa9TpT53arZN++oMBOvOq9TZtky80lJAQAnSAkBADoNXV1dfrzn/8c9sJ1Wlqaqqqq4n2IJrfbLYfD0WF3kqKiIlVXV6u5ufmMH8/r9ergwYMqLS3t8HHtdruqq6t74Ax7xpkEFAg3JL5oxlFpaWmPjqPq6upOx9HZFhZiHAEAAAB9h9PpDBsMKi0tlcvlksfjoaheraqqKjkcDtlstqDXZXZ2NkEhIAb++Mc/yjAMrVu3LuS+Bx98UCtXrozDUf1Db4eEPt6+Xc+98UbcA0KBBQDoGCEhAOgF7733nm688UaNHDlSI0aM0IgRI/Tzn/9cNptNx44d6/XjKS4u1rPPPtvl7TZv3izDMEJq1qxZnW5bUlKitLS0Ti9gb9iwoTunFJHL5VJra2uXtqmsrIz7tEWdTctUXFzc41/0NDU1qa2trUvbxDvccOmll+rb3/62Lr74Yl188cUaNGiQBg4caN7+9re/rUsvvbTbz0mg7rT47Ylt+6qysrKwr93CwkJVV1f3yheV0YyjntbXxhFjCAAAAIjejh07gkIYq1atUkVFRdxDIhTl8XhUW1sru90e9BpduXKlWlpa4j10gITS2NioQYMG6Y477ghafuzYMQ0bNkzH/97FZuXKlbr++utltVo1duxYpaSk6JNPPjHXT0tLM79fz8nJkdVq1cCBA2UYhl544QUlJyfLMAyVlpaa23S2T+kf4Z+cnBxdf/31uuiii3T55ZcrKysr7HqBIaH29nalpqZqxIgRuvHGG3Xddddp8eLFam9vj/h8LMvKCpn6K94FAOgYISEAiLFf/epXuvLKK1VeXm4ua2xs1H/8x39E/MVBrC1dulQDBw7s8nabN2/W3XffrW3btgVVTU1Nh9tVVVWFdA2y2Wz6+OOPZbPZ9Morr4RMpdNTioqKZLPZVFhY2OmXIj6fL2z3kaKiol4JBnV0XBUVFSFTKuXl5fXocRUVFSkzM1O7d++OOsBxNoSEjhw5Yt6+6aabdMMNN5i3jxw50mMBh+62+D3Tbfsan8+nvLy8kCnE4j2OvF5vxHHUk4GlvjaOGEMAAABAdE7vILRmzRo6B1FnZZWWltJRCIixn//85xo4cKAaGhrMZe+9954efvhh8/bUqVOVkZFh3n711Vd1ySWXBP2gtbS0VIZh6KabblJJSYk8Ho+Sk5NVWlpq3hcYEopmn/7wz5QpU3T06FFJ0oIFC3TuuecGXaMIFxJ64oknNGzYMPO86urqlJSUpPT09IjPxXqHQ0s+/DDuwaDAKcdKKiqi+4cEgH6KkBAAxNCSJUv0xS9+UZWVlSH3nThxQpdeemmfCwk9/vjjXdqmtbU1KAT0pz/9SU1NTSHrZGVlBV3Irqur6/LxheMPCfmro7BQaWlpSMeTeIYaTufz+UKO0eFw9Nj+A5+raEMO8Q4JPfXUU0HduE4POBw7dkxPPfVU958UdNnpXXsKCwvPqi8jfT6fioqKQo6xp/S1ccQYAgAAADrn8XiCQhd5eXlxD4JQVEd1eqgtPz8/3sMISCj+gM2iRYvMZePHj9fOnTvN27W1tTp58qR5u6mpSYZhqKCgwFzmDwItX77cXFZfX6/jx4+HDQlFs0//sW3evNlc1tbWpgsuuEC/+tWvQtbzh4SOHDmiQYMGKS0tLehcZ86cqaSkpA6fj3gHgwLr5YwM/clmU2NjY4fHDAD9GSEhAIihK664Iuhi6+m2bNmiAwcOSDrVynPhwoW66qqrNHr0aCUnJys1NdX80B/YfnTdunX64Q9/qC9/+csaMWKEioqKgvb78ccfa+zYsWbb0YkTJ5phkvT0dH3nO9/ROeecI4vFIovFotdffz2q8+lOSKigoMC8OP3KK690OPXXsmXLzHVPb3/aXaeHhCKFhdxud1BowOl09sjjx8LBgwdjcqzhnqvOQg5dDTFEs21XQkKnOz3g4NdR+97S0tJOW/UuX748pMVvtGPyTLaVToU0fv3rX+v888/XZZddpilTpuixxx7TgAEDZLFYVFVVFdVzE007Yv/7UHJyssaOHatRo0bprrvuUllZWVSPcfprs7q6Oqrt4qG6ujomx9rXxxFjKLLOWm539BzNmjWrw+cPAAAAZ7fVq1fTQYjqc3V6R6Gz+bsuoK85efKkvv3tb+vqq6+WJNXU1GjUqFFB65SXl2vatGkaNWqULBaLrr32WhmGoQ8++MBcxx8E2rFjR8hjhAsJRbNPf/jn888/D9qfxWLRD37wg5D1/CGhgoICGYahYcOGmdcNLBaLhg8frqFDhwZ1oj5dvINBp4eE/vDmm8rMzGS6RQCIgJAQAMRIQ0ODDMPQb37zm6jWnzdvnoYMGWJO3VVbW6uhQ4dq9uzZ5jr+/xikpKRoz549OnTokMaMGSOLxWKu4/P59PWvf112u91c9sgjj2ju3Lnm7TPpJHTTTTdp4sSJslqtuuWWW7R48WK1tbVF3Gb9+vXmxemSkpIO919XV2eu+9prr8nlcp1xORyOsCEhf23atEnV1dUqKCiISVeRWHE6nUHTJcX6uVq1apW2bdumzz//XC6Xy/wP1tkUbpAiBxykjtv3dqX9b+B/zKMZk2e67cyZM3XhhRdqz549kqTt27frvPPO08UXXxzVc+IXzTnOnTtXQ4YMMQMzra2tuu6660J+QRRJYBehij7Q1pdxFIoxFFk0LbejaRMe7j4AAACcvQI7sthsNgJCVJ8qh8Nhvn5Xr14d7+EEJJTf//73ZsDH/wNZP6/Xq8GDB2v69OlmB+fW1lYZhqHMzExzvXDfd0S6L9p9nmlI6M033+zS81DndmtNcXHcw0GB040t/fvf7A0bNpxVHc4B4GxBSAgAYuSzzz6TYRiaM2dOp+u2tLRo0KBBevLJJ4OWP/300xowYIDZGtP/H4P33nvPXOeNN97QgAEDzE4GLpdLhmHo1VdfNddxuVzmxVGp+yGhXbt26T//8z/l8XgkSVVVVfrXf/1XpaSkRNwmsDtQNN0aAi9mdxTuibYyMjKiWu+DDz4wwwJut7vLz01v8/l8QV1QevO5WrlypXbt2iXp7Ao3SNEFHMK17+1K+99wIYWOxuSZbOv1ejVw4MCQ95Fp06Z1OeDQ2Tn6Wwqf/j60cePGqKdFtNvt5muyubm5S8cXD16v1zze1atXM47EGIok2pbb0bQJD3cfAABAIgm8GOf1elVYWCiHwxFyAbS4uFiVlZVndQdS6VRXVn/IoqCgIO6hD4rqSrlcLtlsNroJATGwd+9enXPOOXrwwQc1fPhw80dF0qkfKBmGobVr15rL/N+VdDckFO0+I0039q1vfSuq6cZ+97vfBR2H0+nUww8/HPF5WJaVpZczMuIeDgqsxsZG8zu43NzciMcOAP0VISEAiBGPxxN1JyF/Sn/p0qVBy1esWCHDMLRp0yZJ4duPvv/++zIMI6h15ty5c/XFL35Rl156qebMmaPdu3cH7be7IaFwbDabDMMwpzM7HSGh2IhnSCgjI+OsDDdI0QUcwrXv7Ur733Ahhc7GZHe3LSkpCfve8Mwzz3Q5JNTZOUZ6H+oKQkJ9fxwxhsKLtuV2NG3Cw90HAAAQb4sWLdKVV14ZdLGwK5qbm1VcXCy73R70/YDb7VZeXl7YkFB2drbZ1TNQWVlZzP8/cfDgwajWq6mpMcMVq1atinvgg+pn1eCWx31IDW6XGtwueRoOnVrW0NCl/RQUFJiv440bN8Z0bAH9zY033qgvfelLmjJlStByj8ejr371q5oxY4b5o6r09PQzCglFu09/+GfChAk6evSoJGnBggU699xzVV5eHrJe4N/9efPm6YILLjB/cOzz+TR58mSlpqZGfA4+3r5dz73xRtyDQYElSfv27TO/h+sLMwcAQG8iJAQAMfTd73434sVWSTp+/Lja2tq6HBIK/E9DZmamDMMImRP4wIEDevHFF3X11VfrnHPOCZoOpSdDQkVFRTIMQ3/5y1/C3h843VhgR4lwAqcb+9Of/tRjxxfpIn1mZqbKysrk8/lUWlraZ6cbixTQ6qpon6tAPRVu+Pjjj82KdUjo9P90n0n732jHZHe3jRRw+K//+q8uBRyiOceeCAkFTjfWF6ZQqqio6PFx39fHEWMovGhbbnflyz0AAICzTbiLhdHyer3Kzs5WUVFRlzuVBH4+bm5u7vH/64Zjs9m0du1a7du3r8P1duzYYYYrHA5H/EMjVP+oBrcZDIpUHvchNUQZFnK5XObreMWKFUy9A/SgZcuWyTCMsF24161bp+TkZF166aUaN26cUlNTZRiGLrvsMr3++utavXq1kpOTZRiGkpOT9dBDD5nbLl++POg+f1fizvaZnp6uK664wuxkPGrUKCUlJenyyy8PmnIwcL2RI0fKbrdLktrb27Vw4UINHz5cY8aM0ZgxY/TCCy8EdXs+XVVtrRa/956yS0vjHg56b9Mmvf7Xv6rp8GFJp4LH/u/lAmdaAID+jpAQAMTQW2+9pS9+8Yv69O/p9UANDQ362te+pszMTLOV5xNPPBG0zvz588NON9bRBdHGxkbzQ73f9OnTdckll5i33377bTMk1N7eLq/XG9X5/P73vw/5sm/NmjUyDCPiL5EKCgrMi9NpaWlqbW2NuP/ArkNZWVlRHVNnwl2wD3eh3u12B3Xmqays7JHHj4Xq6uqgY+2pVtHRPleBeirc0NV9RtKdgMOZtP+NdcDBP1XS448/HnTMXZ0qKZpzjDTd2JYtW4K6wXTk4MGDMXltxsLp4yjaXxJ3pq+PI8ZQeNG23CYkBAAA+rKuhIQOHjwou90ek7CBz+dTdXV1TP8/Efh5vaOw0OrVq4OmaYp7eIRK/AroHHSq/N2D3GHDQ9F2FVqzZg1TjgGIqerGRjn27dOSDz/UyxkZejkjQ2uKi80AT6yX//H99/XcG2/oLwFhKOnU9Qn/3/zOwsEA0F8QEgKAGHvwwQeVnJwcFDqpqanRD3/4Q02aNMlM4c+bN09DhgxRTU2NJKm2tlZDhw4NuiAZzQXR8vJy/fM//7OamprMde68807ddttt5u2cnBwZhiGv16uCggL927/9W1TnMn78eN1///1mO9PDhw9rzJgxGjFihE6cOBF2m9bWVr3yyivmBeo///nPQcfmX8dmswWFierq6qI6ps4EXrDv7EJ9YDch/68Wow1Q9Qafz6eysrKQY+wpXXmu/M6mcIPUvYCDx9P99r+xDjhI0qxZs3ThhReav3bZvn27Lrrooi4FHKI9x3nz5ikpKUkHDhyQdCoYcfXVV5u/hlq2bJkGDx4cdMynLysqKtJvf/tbffOb39Qrr7yiwsLCs24cBXY86unuYX19HDGGIoum5XZXQ0LRjKlIywAAQP+SlpYmwzDMbgVjx47Vl7/8ZV1//fWqrq7W6tWrdckll+gb3/iGHnjgAfNz2YIFC/Sd73wnqJvwY489posuukjDhw8PeoxoQ0L+wH1eXl6vfdavrKzs0UBSuM6f4cJCgd1X4h4eoRK/QgJCfw8J+e9vaAjfVSiKoFDglGP+qa8BIBbWOxxalpWlZVlZqnO7e235x9u3q6SiQq3Hj4ce0/r15nd1/h9kA0B/RkgIAHpBRkaGxo4dqxEjRmjkyJG65ppr9NJLL6mtrc1cp729XWlpaUpOTtbo0aP1ve99T6mpqeYXe6e3H7Xb7Vq6dKkuu+wyGYaha665Rjt27FBzc7MeeughjRo1SlarVdddd51+8YtfBIVufD6fJkyYoJEjR+raa68N2w41nA0bNuinP/2pvv/97+tHP/qRrrnmGv32t7+Vx+PpcLuqqqqgi9RpaWl65513tGnTJtlstqAQUTTTknVFUVFR1Bfqw4UHsrKyVFxcHNeQg9frVWVlpbKzs4OOKy8vr0e/JO3Kc+V3toQbampqZLFYdN555+mf/umfZLFYzMCdFDp+Atv3Sp236g3X4jfaMXkm20rSsWPH9OCDD+r888/Xd7/7Xf3yl7/UU089pX/5l3+J6t8o2nOUgt+HbrjhBo0ePVpvv/22uY8lS5bo61//uoqLiyMu8/l8mjNnjr761a/qpZdeOqvGUXFxMeMoAsZQ5zprud3RcxTpvmjGVKRlAACg//GHjm+77Tbt3btXBw4c0He/+12NGTNGjzzyiBobG/W3v/1NX/jCF/T++++b24Wbcnzu3LndDgm53W4VFRX13Il1wuv1KisrS1u3bpXL5eqRijRFsM1m0+rVq7Vr1y59/vnnZqjCZrPFP0BCJXQ1RJxiLJqQ0KFO909ICEB/5vP5goJCLS0t8T4kAIgrQkIAgF5RUlKitLS0iBeu/bV+/foefVyv1xuxy1EkTqczJCjkDxM4nc5eCTr426uHCy1lZWWpqKiox9u6d+e5OhvCDYmusbFRx44dC1r261//WjfffHOcjig6FRUVcR9HXq9XTqdTeT9EgIMAACAASURBVHl5YY8lFl1ZGEdnn746hgAAAE7nDwnZbDZz2dy5c/WFL3whqGNvcnKy5syZY97u6ZBQPBQVFSkrK6vDcE9PV0ZGhhmqyMnJiXuIhErsCh8Qii4kFE03IafTab6eN27cGO8hDQC9rrGxUZmZmbLZbNqwYUNMpkwFgL6CkBAAoNc0NTVp2bJlYS9cv/LKK6qqqor3IZrcbnfEgE5WVpbsdruKi4vldDrlDmhr2l3Nzc2qrq5WWVlZxECDf3qxnni8nkK4Ifbmz5+vZ555xrxdXV2tCy64IOjCwNnK7XbL4XBEfD3n5eXFZBwVFxczjhhHpr48hgAAAAL5Q0KBXXzS0tJ04YUXBq13ww036P777zdvJ0pIaO3atb0aErLZbISEqN6pDsI/UYeE3B13EyIkBACngkL+v/G5ubnxPhwAiBtCQgCAXtfa2qqqqip9/PHHqqioCPrF49nG6/Wav1iMphwOh1llZWWqrKwMqcB1urLfsynU4BcpiLBp0yazzmR5fw83SNLGjRt1ww036MYbb5TVatUPfvADvfXWW/E+rC7pLHTXW+MoPz+fcdQPJcIYAgAAkP4REgrsiJmWlqaLLrooaL0bbrhB9913n3n77bffDgkJPf74490OCRUWFsrhcHT3NLqsubnZ7KjbUzoKBq1du1b79u1TfX09ISGqd8qcauyQPA3u0DLXbQh7vxkU6uAxCAkBwCn79u0z/+YXFhbG+3AAIC4ICQEAJEkPPvhgxPrwww/jfXhx19n0X7Go3pyWqbs6mz6uJwuR9ZXxG49xVFhYqOrqam3atEm5ublyOp3xfhpCMI7ir6+MIQAA0L91NySUmZkpwzB0/Phxc9nPf/7zboeEqqurzf+z9obm5mY5HI4enRako3CQHyEhqreqwX3o71OGubu+fUB3oY7WIyQEAP9QVlZm/v3fs2dPvA8HAHodISEAALrB7XbL6XSqqKiow2mNuhIIKiwsVEVFxVnZ6SQSwg04E/5xVFhY2KPjKNz0Zfn5+bLb7bLb7crPz5fH44nTWYdiHAEAACAa3Q0J7du3T1/4whe0du1aSdKnn36qiy666IymG/N/lvfryQCPz+eT0+ns0X2erqNwkB8hIaq3ipAQAPS+goIC87NAuM8BAJDICAkBANCD3G63WU6nUxUVFcrOzlZ2draKi4vNEJC/YvmlZ29IS0sj3IAe5fP5wo6jwPKHgLoyjtra2lRRUWEGhex2uyorK9XW1tYLZ9UxQkIAAADozOrVq5WcnCzDMJScnCy73a5nnnlG3/72tzVgwABZLBYdOXJE48eP1z/90z/pwgsv1LRp08ztX375Zf3zP/+zvv/97+vhhx/W7Nmz9eUvf1kWi0Uul0vp6em64oorZBiGRo4cKbvd3qXjKy0tVXZ2tgoLC8/ohy8VFRXmjwCqq6u7vZ/OdBQO8iMkRPVaMd0YAMTF+vXrZbPZlJmZqcbGxngfDgD0GkJCAADEmD+Q4PGcPZ1LeorNZuuVYMMrr7wS71NFgjh8+HBQV6Hc3Fy5XK64HlNvjSObzRbX8wQAAEDicrvdKioqkt1u18GDB83l/mUOhyMo9OOfsiwrK0sVFRXm8oMHD6qioiLm025HcyGQkBDVaxXQDSi0DkW1nidwvTBFSAhAb6hvOKgV2UvNChTr5as2vqttu/N17Hhr1Mfr8/kICgHolwgJAQAQY4kcEmpqaop5N6G0tDRVVVXF+1SRYPbv36/c3FxzfO7cuVOtrdF/idCT6urqemUc1dXVxeX8AAAA0H9VV1erqKhIDocjKDxUXV2t0tLSs3rKbUJCVK9Ww6EzCwk1NHS4f0JC6KsWLVqkK6+8MurpMDtTXFysZ5999oz28c477+iCCy7Q3Llzz/h4Ekl186fKq1ij1zIXmuWozjYr1ssX2xZowVvz9dYHf+xSUKixsVGZmZmy2WzasGFDn+/8DwDRICQEAECMJXJISJJaW1tVUlKijz/+uMerpKRETU1N8T5FJKjW1lbt3LkzqKvQ/v3743YssRxH8QpAAQAAAH0VISGqN6shYNqwroaEPA0ddxHyeAgJoW+z2+09FhJaunSpBg4c2K1tm5qadMstt+j+++/Xl770JUJCf1ffcFBFe/ODAjvxqlVbl+mDLcu7FBKSQoNCAJDoCAkBABBjiR4SAvo6l8sV1FUoPz9fhw8fjvdhAQAAAIgjQkJUr5c7XDehKDoJddJFyOMhJIS+7WwJCdXW1mrLli2SpIEDBxIS+ruNW7O14K35cQ8IBVZ37Nu3TzabTTabTYWFhT38LAHA2YWQEAAAMUZICDj7tbW1qaKiwhyvdrtdlZWVamtri/ehAQAAAIgDQkJUXCokKHRInga3WV2dZsxfhITQl/lDQjk5Obr++ut10UUX6fLLL1dWVlbQeu3t7UpNTdWIESN044036rrrrtPixYvV3t4uSUpPT9d3vvMdnXPOObJYLLJYLHr99dclSStXrtT1118vq9WqsWPHKiUlRZ988knEY+puSCg9PV1XXHGFDMPQ8uXLNWrUKCUlJUU8n4ULF+qqq67S6NGjlZycrNTUVJ08eVKSNGPGDA0cOFBJSUmaMWOGJOnkyZMaPHiw3nnnHUmS0+nUyJEjdd5552n+/PlRPU9paWkyDMN8zq1WqwYOHCjDMFRaWhpyTiuy3wqZ+ive1V179uwxg0JlZWXd3k80PB6PampqVFpaSlExr71796q+vj6mr2n0LYSEAACIMUJCQN/h8XiUn59vjtvNmzfL5XLF+7AAAAAA9DJCQlTcKuLUYwHhIPehqDoI+YuQEPoyf0hoypQpOnr0qCRpwYIFOvfcc1VeXm6u98QTT2jYsGFqaGiQJNXV1SkpKUnp6enmOpE6CU2dOlUZGRnm7VdffVWXXHJJxOnbz6STkP98JkyY0OH5zJs3T0OGDFFNTY2kU52Mhg4dqtmzZ5vr3HHHHRo3bpx5e/PmzTIMQz/96U/NZevWrdPMmTPN29E8T6WlpTIMQzfddJNKSkrk8XiUnJys0tLQkNDGrdlaZv9j3INBgVOO7dpT3K1/G0kqKCgwg0L79u3r9n7Cqa+vV35+vlavXm2+J1NUb9bKlSuVn59vvq+g/yIkBABAjBESAvoep9MZNAXZzp07I34xBAAAACDxEBKi4l4N7r93EjpkBoNOdRSKPhzkL0JC6Mv8oZrNmzeby9ra2nTBBRfoV7/6lSTpyJEjGjRokNLS0oK2nTlzppKSkszbkUJCtbW1ZoceSWpqapJhGCooKAh7TD0REurofFpaWjRo0CA9+eSTQds+/fTTGjBggBobGyVJ7777rs4991x5PKe+d/7tb3+rSZMm6Stf+YoZQPrlL39pTpMW7fPkDwktX77cXFZfX6/jx4+HPad4B4MC67XMhfrzyle0e/fubv37SFJubq4ZFPI/12eipaVFGzdujHtAhKICa+PGjXQX6scICQEAEGOEhIC+qbW1Vdu2bTPHcG5urvbv3x/vwwIAAADQCwgJUYlUhITQl/lDNZ9//nnQcovFoh/84AeSTnV/MQxDw4YNM6cSs1gsGj58uIYOHaojR45IihwSKi8v17Rp0zRq1ChZLBZde+21MgxDH3zwQdhj6omQUDTns3Tp0qB1VqxYIcMwtGnTJknS4cOHNXDgQL399tuSpJEjR2r//v0655xzlJmZqRMnTig5OdkMQEX7PPlDQjt27IjqnOIdDDo9JLToLwtks9n017/+VRs2bFBhYaF2796t3bt3q7a2Vi6Xq8PO4T6fT+vXr5fNZlNmZuYZBYVKS0vDBjRsNpvsdrsKCgooKuaVl5enVatWhX0t5ufnd/v1jb6LkBAAADFGSAjo21wuV1BXofz8fB0+fDjehwUAAAAghggJUYlUhITQl3UlVPPmm292uK9wISGv16vBgwdr+vTpOnbsmKRTPxwzDEOZmZlh93O2hIQkacKECZo4caJ27Nihe+65R5L0/e9/X9OmTVNubq7uv/9+c91onyd/SCjc9GKnq284qA2f/DXu4aDA6cbW2D8wOwFFU/5wVKCWlhZlZmbKZrNpw4YN8vl8nT4XgXw+n/Lz80MCGXl5eaqqqor73wWqf1ZVVZUKCgrCdhXq6mscfRshIQAAYoyQEND3tbW1qaKiwhzPdrtdTqdTbW1t8T40AAAA4KwSeIHB6/XK4XDI4XCEXGgsLi5WZWWlqqure/34cnNztW/fvg7XIyREJVIREkJfFml6rm9961sh04397ne/C9rW6XTq4YcfNm+//fbbZkiovb1dXq9X27dvl2EYWrt2rbmef7qxWIaEojmfJ554Imjb+fPnB003JklvvvmmBg0apEcffVRZWVmSpP/5n//RN7/5Td13333asGGDuW60z1NXQkIrst/Sa5kL4x4OCixJqqysjCogVFRUFPHcGhsbg4JCp8vPz1dTU1PYbbOzs4NCGDk5OaqtrY373wOK8ng8qq2tld1uD3qNZmdnExTqRwgJAQAQY4SEgMTh8XiUn59vjuvNmzcztgEAALrJ6XTKYrHoa1/7mr7xjW/IYrHommuu0bBhw/SjH/1IDodDkrRo0SJdeeWVMgxDhw4d6tVjfPfddzVixIioL5R1JNrz+M1vfqOLL75YF1988Rk9Xm9qbm5WcXGxsrOzzX83SXK73crLywsbErLb7crKylJeXl7Q8rKyMjU3N8fsWH0+n3lhMDMzU8XFxWppaQlZj5AQlUhFSAh9mT9UM2HCBB09elSStGDBAp177rkqLy8315s3b54uuOAC7dmzR9Kp9/vJkycrNTXVXCcnJ0eGYcjr9aqgoED/9m//Jo/Ho69+9auaMWOGOS1Xenp6zENCU6dO7fR8hgwZopqaGklSbW2thg4dGhLwcbvd+uIXv6hvfvObZiekzz77TIZh6MILLwz5gVs0z1NXQkJbij7Sgrfmxz0YdHpISJJyc3M7DQmdOHGiw/Pbt2+fuW5hYaEk6cSJE/roo49ks9lUVlYWss3pHYTy8vLi/neAosJVcXFxSEch9A+EhAAAiDFCQkDicTqdQVOQ7dy5k65CAAAA3WSxWDRhwgTzts/n05133qmvfOUr5sUy/wW13g4JSV27UNaZaM8jNTW1T4WEvF6vsrOzVVRUJKfT2aVtA3+x3NzcrKysLGVlZQWFjXpSYEgosE7vLkRIiEqkIiSEvio9PV1XXHGFDMPQ8uXLNWrUKCUlJenyyy/X6tWrg9Ztb2/XwoULNXz4cI0ZM0ZjxozRCy+8oPb2dnMdn8+nCRMmaOTIkbr22mu1bt06SdK6deuUnJysSy+9VOPGjVNqaqoMw9Bll12m119/3dz+9ttvl8Vi0TnnnKOLLrpIFotFq1at6tI5+T8LrFu3TqNHj+7wfNLS0pScnKzRo0fre9/7nlJTU80gU6Af/ehHmjJlStCy5ORkTZ8+PWTdzp6n1atXKzk5WYZhKDk5WQ899FCH57P/4D698deXtGnvmriHg1ZtXaa3sl5V05FTnZYCpwwLVwcPHozq32zPnj3mNrt27dLatWuDPj8EqqioCApdlJaWxv1vAEV1VKWlpUGv2R07dkQ1LtC3ERICACDGCAkBiam1tVXbtm0zx3hubq72798f78MCAADoc04PCUlSUVGRDMMwf9VOSOjscvDgQdnt9phMSeDz+VRdXd3lsFFXdNRRYNWqVXI4HCooKCAkRCVMERICzh7x/EwTS7WH92l77UdaZv+jXsv8g17L/IM2fPJXM8AT6+Vvrn1ZC96ar+XZbwYdV1lZWcS/+WvXrpXL5Yrq/AoKCiLux6+lpUUrV66kgxDV5+r0jkL19fU9+v6Asw8hIQAAYoyQEJDYamtrg7oKbd++XYcPH473YQEAAPQZ4UJCW7dulWEYWrhwoaTwF9RWrlyp66+/XlarVWPHjlVKSoo++eSToP34fy2fnJyssWPHatSoUbrrrrvMqSHa29uVmpqqESNG6MYbb9R1112nxYsXB3Ud8IeE1q1bpx/+8If68pe/rBEjRqioqCjsY1111VUaPXq0kpOTQ37xH+48jh07pl//+tc6//zzdcUVV+i+++7T/PnzQ0JCnR1rWlqaDMOQYRjKycmR1WrVwIEDeyzg5FddXW12+vF6vT22345UVlZ2OZDU0tIil8sll8ul2tpa7d69W7t371ZxcXGnU4/4i5AQlShFSAg4eyRqSMhv49Zsrch+Syuy31J9w8FeW76l6CPt2lOsY8dbQ44psPNPuNqyZUvYqUcDHThwIOL2/qBR4DRjfHag+lrZ7XY+K/QjhIQAAIgxQkJA4mtra1NZWZk53u12u5xOJ1OQAQAAROH0kFBjY6NuueUWnX/++WanxnAX1KZOnaqMjAzz9quvvqpLLrlEra3/uDg0d+5cDRkyRNXV1ZJOdYO87rrrlJaWJkl64oknNGzYMDU0NEiS6urqlJSUpPT0dHMf/pDQrbfeqj179ujQoUMaM2aMLBZL0HnMmzdPQ4YMUU1NjaRTYfKhQ4dq9uzZ5jrhzmPmzJm68MILtWfPHknS9u3blZSUFBIS6sqx3nTTTSopKZHH41FycnKPhoTcbneP7q8zXq9XWVlZ2rp1qxn62bNnjxn62bJli3Jzc5Wbm9vpRcCu1Pvvv8+FPiphipAQcHYInD5t5MiRstvt8T6kfsHlcgX9jS8vL1dLS4tyc3PNZZmZmeZnsdPt3bu3w88MZWVlamlpCerE4nQ64/7eT1FdqdraWroJ9SOEhAAAiDFCQkD/4fF4tHnzZnPcb968mbEPAADQCYvFom984xuyWCy65pprdNVVV2n69OmqqKgw1wkXrqmtrQ3q0tPU1CTDMFRQUCBJOnLkiAYNGqQnn3wy6PE2btyodevWmff7A0N+M2fOVFJSknnbH7wJDCT96U9/0oABA8wuPi0tLWEf6+mnn9aAAQPU2NgY9jy8Xq8GDhyoOXPmBG03bdq0oJBQV491+fLl5rL6+nodP35cfVlRUZGysrK6HfjJzMw0g0RbtmzRunXrOp16pL6+npAQlTBFSAjoHQ8++GDE+vDDD+N9eP2af7qwNWvWBHWMPHDggDIzM83PARs2bDA/t0mnugMFfk7IyMgI+eyQm5uriooKPjdQ8amGBnka3Gpwu4LK0+A+dV8X9pWXl2e+jvPz8+MxVNFLCAkBABBjhISA/sfpdAZ1Fdq5cyddhQAAACIIN93Y6cKFhMrLyzVt2jSNGjVKFotF1157rQzD0AcffCDp1MUgwzC0dOnSsPv03z9s2DBZLBazhg8frqFDh+rIkSOS/hG8CZxe7P3335dhGObUFJEea8WKFTIMQ5s2bQp7HiUlJWG3e+aZZ4JCQl091h07dnT4fPY1RUVFQV2C1q9fb4Z+iouLVVZWprKyMu3bt8/sNtTRtCFFRUVhg0T+aegkERKiEqoICQHo73w+nzIzM4MCQIH3nT4daXFxsY4fP67PPvvM/AyycuXKiEGh7Oxs8322tLQ07u/7VD8p96GQcFBIWMh9KOr9VVVVma/j1atXx2GkorcQEgIAIMYICQH9U2trq7Zt22a+B+Tm5prTZQAAAOAfuhMS8nq9Gjx4sKZPn65jx45JOvX5yzAMZWZmSoo+JPTmm292+Nj+4E3gFFuZmZkyDMMM5/R0SOi//uu/woaEunOsPa2wsFAOhyNm+z9dc3OzsrKygkJaZ+r0kNCWLVtCQkWEhKhEKkJCACAdPny4w/tdLpfWr18fFCA+cOCAJKm6urrDroWB0zS5XK64v+9TiV0NDQ3yNBwK3zkoYmeh6LoKBb6ePR6uaSUqQkIAAMQYISGgf6utrVVubq75XrB9+3a1trbG+7AAAADOGt0JCW3fvl2GYWjt2rXmOv7pxvwhoUjTjW3ZskUffPCBef/vfve7oPudTqcefvhh83Y0ISH/vp544omgfc2fPz+q6cYef/zxoO0iTTfWnWPtadXV1crKylJeXl7MHiNQc3OzHA6HfD5fj+1z7969QVOLhUNIiEqkIiQEANHbs2dP0BRkubm5KiwsDAoF+bsKnR4S4jMD1SvVENpByNPgDrg/NCTU4I4uvJaTk2O+nuvr6+M9HBEjhIQAAIgxQkIA2traVFZWFjQFmdPpjPdhAQAAnBW6ExLyeDz66le/qhkzZujkyZOSpPT09KCQkCTNmzdPSUlJ5q/Ajxw5oquvvlrr1q0z77/gggu0Z88eSaemm5g8ebJSU1PNfUQTEvLva8iQIaqpqZF0Kiw+dOjQoGBPuGnTZs2apQsvvNA8hu3bt+u8884LCgmdybEuW7ZMgwcP7taySNxud9Dn2Z4M8Ph8Pjmdzh7d5+ncbnfQ1GLhEBKiEqkICQFA17S0tGjLli0ddg/atm2bGSbiMwPVW9UQYYqxqEJCUUw95nA4zNdzRUVFvIciYoSQEAAAMUZICICfx+PR5s2bzfeFzZs3894AAAD6LafTKYvFoq997Wv6xje+IYvFotWrV4esl56eriuuuEKGYWjkyJGy2+2SpHXr1ik5OVmXXnqpxo0bp9TUVBmGocsuu0yvv/66JKm9vV1paWlKTk7WDTfcoNGjR+vtt982993e3q6FCxdq+PDhGjNmjMaMGaMXXnhB7e3tkqTVq1crOTlZhmEoOTlZdrtdS5cu1WWXXSbDMHTNNddox44dIY81evRofe9731NqampQiCnceRw7dkwPPvigzj//fF1++eWaMmWKHnvsMQ0YMEAWi0VVVVXdOtaHHnpIkrRkyRJ9/etfV3FxsXne0S6LVmlpqbKzs1VYWCi3293l7f0qKiqUlZWlrKwsVVdXd3s/PYGQEJVIRUgIALrnwIEDIV2DAqcj8/l8ysrKMt9j8/Ly4v6eTyVuNTQ0hA3/RBsSimbasYKCAvP1vGvXrngPQcQIISEAAGKMkBCAQG1tbXI6nUFdhcrKytTW1hbvQwMAAAC6xe12q6ioSHa7XQcPHjSX+5c5HI6g0I9/yrKsrKygXygfPHhQTqdTXq+3V48/HEJCVCIVISEAvaG+4aBWZC81K1Csl6/a+K627c7XseOtPXMyf+efojRSFRcXq7i42HyPLSgoiPt7fm9UamqqrFarfvzjH6uurq5H9vnSSy/JarUG1c6dO+N+rmdVdRj+iTYk5O7wMQgJ9Q+EhAAAiDFCQgDCOXz4sLZt22a+R+Tm5urzzz+P92EBAAAAPaa6ulpFRUVyOBxB4aHq6mpVVFSooqLijDoPxRIhISqRipAQ+qpFixbpyiuvDJmqs7uKi4v17LPPdmvb7OxsTZo0ST/60Y/0wx/+UKNGjTI7F0Kqbv5UeRVr9FrmQrMc1dlmxXr5YtsCLXhrvt764I89FhTy+XwdBoT8lZ+f369CQvX19frJT35iBnk+/PDDHtnvli1b9Je//EULFiwgJBSh/jHV2KFTYZ+gCugQ1NAQ5n7330NCHU85RkiofyAkBABAjBESAtCR/fv3Kzc313yv2L59u1pbe/ZXTwAAAAC6hpAQlUhFSAh9md1u77GQ0NKlSzVw4MBubfv//t//08KFC83b27dv14ABA/Tiiy+e8XH1ZfUNB1W0Nz8osBOvWrV1mT7YsjzqkFBtbW1QiPl0H330UVQhoYyMjH4VElq3bl1Qt5/HH3+8R/e/efNmQkIRKtpuQGErYKqyjtYjJNQ/EBICACDGCAkB6ExbW5t27twZNAWZ0+k07z969KhWrVqlY8eOxfEoAQAAgP6DkBCVSEVICH3Z2RISmjhxoo4fPx607NZbb9VVV111xsfVl23cmq0Fb82Pe0AosDri8/m0e/durV27VjabTXv37g273okTJ1ReXi673a4PP/xQH330kdavXx82JPTuu+/2q5DQk08+qZSUFN12222yWq0aP3689u/f32P7JyTUQTUcIiSEHkFICACAGCMkBCBa/v8I+983Nm/ebL53rFmzRk8//bT27NkT56MEAAAAEh8hISqRipAQ+jJ/SCgnJ0fXX3+9LrroIl1++eXKysoKWq+9vV2pqakaMWKEbrzxRl133XVavHix2tvbJUnp6en6zne+o3POOUcWi0UWi8WcLmzlypW6/vrrZbVaNXbsWKWkpOiTTz7p9NgmTZqk7373u1GfS3p6uq644goZhqHly5dr1KhRSkpKing+Cxcu1FVXXaXRo0crOTlZqampOnnypCRpxowZGjhwoJKSkjRjxgxJ0smTJzV48GC98847kiSn06mRI0fqvPPO0/z586N6ntLS0mQYhvmcW61WDRw4UIZhqLS0NOScVmS/FTL1V7wrHJfLpcLCwpCAj8vl6vDfrKioSDabTZmZmdq3b5+5vKWlRS6XS59++qlsNlu/CQnV1NQoJSVF8+bN09NPP22Ged59990eewxCQpGrR6YbczPdGAgJAQAQc4SEAHRFW1ubnE6ncnJygqYgmzVrllwul7xerxobG3XixIl4HyoAAACQsAgJUYlUhITQl/lDQlOmTNHRo0clSQsWLNC5556r8vJyc70nnnhCw4YNU0NDgySprq5OSUlJSk9PN9eJ1Elo6tSpysjIMG+/+uqruuSSSzqcDr6trU2DBw/Wc889163zmTBhQofnM2/ePA0ZMkQ1NTWSTk2NNXToUM2ePdtc54477tC4cePM25s3b5ZhGPrpT39qLlu3bp1mzpxp3o7meSotLZVhGLrppptUUlIij8ej5OTksCGhjVuztcz+x7gHgwKnHCsu3y7pVNegffv2mV2DwlVnIaHT18/NzVVjY2PQOrt27eo3ISGbzSar1ap169Zp48aNZpjngQce6LHHICTUQf096BOugroLRbtemCIk1D8QEgIAIMYICQHoqs8//1yvv/66tm3bpg0bNmj+/Pl69dVXzS8uqqqqlJqaqubm5jgfKQAAAJCYCAlRiVSEhNCX+UM1mzdvNpe1tbXpggsu0K9+9StJhjIw8wAAIABJREFU0pEjRzRo0CClpaUFbTtz5kwlJSWZtyOFhGpra80OPZLU1NQkwzBUUFAQ8bjS0tJ09dVXd3lq+GjOp6WlRYMGDdKTTz4ZtO3TTz+tAQMGmCGVd999V+eee648nlPfO//2t7/VpEmT9JWvfMUMIP3yl7/Uli1bJEX/PPlDQsuXLzeX1dfXh0y35hfvYFBgvZa5UIv/d2HEUNDp9emnn8rlcsnlcsnn84WcW6TtiouLzfX7U0joN7/5jX784x+rrq5OLpdLt99+uxnoKS8vj3o/mzdv1mOPPabbb79dt956q+6++2699tprqq2t7TQk5Ha7tXHjRj3//PO65557dNttt2n8+PGaMmWKnnzySX300UdhH7Ours7cr79mzZolj8cjh8OhRx55RD/+8Y91xx13aN68eWZAzuPxaP/+/XrxxRf1s5/9TCkpKZo2bZqWLFmiQ4c67soTizrTkFBDYMehMEVIqH8gJAQAQIwREgLQVS6XS2lpaXr//fe1aNEiPfbYY1q/fr3ZVeijjz7SY489pnXr1ikjI4OwEAAAABClxsZGHTlypNP1CAlRiVSEhNCX+UM1n3/+edByi8WiH/zgB5KkgoICGYahYcOGmVOJWSwWDR8+XEOHDjXf9yOFhMrLyzVt2jSNGjVKFotF1157rQzD0AcffBD2mHJycnTZZZeptrY2puezdOnSoHVWrFghwzC0adMmSdLhw4c1cOBAvf3225KkkSNHav/+/TrnnHOUmZmpEydOKDk52QxARfs8+UNCO3bsiOqc4h0MOj0ktOgvC5SRkRF1UChcZWZmKjc3t8N1Vq1apV27dvWbkFBlZaWsVquee+45c9kLL7xgBm7eeOONqPbz1ltvmdv87Gc/07PPPqtnnnlGU6dO1b333qv169d3GBJ68cUXzfuffPJJvfPOO1q+fLmef/55paSkyGq1auHChSHb1dfX684779Sdd96pCRMmmCGh9evXa/z48br99ts1ceJEc98TJ07Uzp07VV1drf/4j/8wg0iBIaPU1NTe/7eIEACKLiTUeaiJkFD/QEgIAIAYIyQEoLtaW1uVlpam//u//9POnTtlt9u1Zs0aPfTQQ9q6daskae/evUEtoQEAAABE5nK5ZLPZtHbtWhUXF0e8wEtIiEqkIiSEvqwroZo333yzw32FCwl5vV4NHjxY06dPN7sCtba2yjAMZWZmhuxjw4YNuvLKK1VdXR3z8+ksJCRJEyZM0MSJE7Vjxw7dc889kqTvf//7mjZtmnJzc3X//feb60b7PPlDQuGmFztdfcNBbfjkr3EPBwVON7a9rEAul0vFxcV6//33zygsFE29++67/SIk9Oabb8pqtQZ16tmyZYsZmJk2bVqn+9iwYYO5/n//93/L5XKZ99XX1+u///u/NX369A5DQmlpabJarVq5cmXIfSUlJbrttttktVqVmZkZ8Tgee+wxWa1W3Xfffbrzzjv1t7/9TR6PRw0NDbLb7WaIaM6cOUpNTdXTTz+tmpoaeTweVVdXa9asWeYxlpaW9v6/h/tQl0NCnobouh4REuofCAkBABBjhIQAnInjx4/r//7v/ySduqDxhz/8QbNnz9Y777yj/Px8bdq0Sb///e8lSX/729+63OYaAAAA6EmBU3V4vV45HA45HI6QC43FxcWqrKyU0+ns1eM7cuRI2G4BhYWFQYEhQkI9Uy+99FLI1B7hLvgdOHBA9913n6ZMmaIdO3bE/bgTrQgJoS+LND3Xt771rZDpxv4/e/ceF1W19w98a+Xl1Dmn0/HxVebvnGOerB6LLprzdLzVOVsQ71aimaCPlZRmN9Q0LckbKiXmJaUSwwIFVGTk6mCAMCK3GRCQSw7oAOJMwwwgIzgon98fPrOa7VwYLsMAft+v1/f1ir3X3nvtDe0ZZ39mrRUrVgi2VSgU+OCDD9jPP/74IwsJtbS0QK/XIzs7GxzHITo6mrUzTjd2Z0goLi4OzzzzDCoqKtiyvXv3Qq/XO+R81qxZI9h2/fr1gunGAODAgQMYMGAAPvroI4jFYgDA9u3b8Ze//AXe3t44deoUa2vvdWpLSCg0Ngj7Ir9yejjItEwZDAbI5XKrAR/T9y06nY5NPVZeXo7z589TSMikFi1ahNdeew0aze9hFI1GIxhdx9b519TUYMGCBeB5HnPnzoVKpTJro1KpMG/evFZDQgsWLLB6nH379oHnebz99ttW2xhDQjzP49ixY2brjaMVubq6YtGiRWbTil28eJFtHxwc7JzfiVlQ6LfbQaEaDWruWGdvQEirpZDQ3YJCQoQQQoiDUUiIENKZNmzYgLy8PHz33Xf48ssv8dFHHyEmJgbNzc04ffo01q1bh4KCAuh0Oty8edPZ3SWEEEIIIZ1AoVBAJBLhgQcewIMPPgiRSISamhpnd4upq6uDXC5HbGwspFIpW67RaKyGhCQSCcRiMZKTkwXLCwoKHDqdrsFgaPVhX1xcHGJjYykk1AmVlpaG4OBgbNu2zeYDv5iYGLY+ICDA6f22VlVVVQgMDERgYCDkcrnT+2NvUUiI9GTGUM3UqVNx/fp1AMC2bdtw7733oqioiLVbt24dBg0ahNLSUgC37/evv/46/Pz8WJv4+HhwHAe9Xo+MjAy88MIL0Gq1uP/++7FkyRI2LVdAQIBZSOjkyZMYPHgwoqKikJWVxerpp5/Gb7/91ubzmTt3bqvn88gjj7BAUlVVFYYOHWoW8NFoNLjnnnvwl7/8hX1x7OLFi+A4DoMHD0Zzc7OgvT3XqS0hoTTZL9gWtN7pwSBrISEjnU5ncfqwlpYWq+fW2nuGjIwMVFdXIz09vdeHhHJycqxO42UaCP7666+t7kMqlbJ2e/bssdpuz549rQaLjaP6WCrT6coqKysttjGGhKZMmYKrV6+arTd9X/L9999b3Icx8OSUKceMZXVaMSsjDNlRFBK6O1BIiBBCCHGQ0tJSFBYWIiEhgUJChJBOExUVhaKiItTX1+PMmTMsiJiQkIAVK1bg0qVL0Ol0uHTpEvz8/Bz6gIUQQgghhHQtkUiEqVOnOrsbZvR6PSQSCWQyWZtHBjL9Bn9dXR3EYjHEYrEgbNSZ7AkJGYtCQp1XqampNh/4Xbx4ER4eHnB3d0dKSorT+2utFAoFO48TJ044vT9t6TeFhEhPFBAQgKeeegocxyEkJASjR4/GkCFD8MQTTyAqKkrQtqWlBV999RVGjhyJcePGYdy4cdi6dasgBGIwGDB16lSMGjUKY8aMQVxcHIDbIwS5uLhg+PDhmDRpEvz8/MBxHEaMGIH9+/cDAAYOHAiO4yxWe0JCcXFxGDt2rM3z8ff3h4uLC8aOHYtnnnkGfn5+LMhk6t///jc8PDwEy1xcXODl5WXWtrXrFBUVBRcXF3AcBxcXFyxfvtzm+VyuLkfg0Z04U3bS6eGg4+cOIUi8F7XXdFb7W15ejsjISPZab0tjY6PZe4Po6GiUlpYK3r+cP3++14eEAgICwPM80tPTzdZlZWWx18bXXnvNbNQdYwUFBbF2cXFxVo8VHR1t8z2DaWk0GpSVlaGoqAiFhYUoLCxEVFQU276wsNDidsaQkLXRhkzftyQmJlpss3TpUvA8j88//9zpv5+a/xs9SPt/xUYVase+KCR0d6CQECGEEOIAYrEYq1evxtq1a/H555/j1KlT0GopJEQI6RzJyckIDAzEwYMHcfnyZSQlJWHr1q3w9/dHdnY2GhsbkZqailWrViEuLg5hYWEUFiKEEEII6QW6S0iouroaEolE8ICssxgMBiiVyg5PQ9bQ0AC1Wo3S0lLI5XIkJSWxh4JhYWGtBoQSEhIoJNSJ1VpISKvV4rfffsOVK1ec3ldbRSEhQkhHGUNCbQkW9QRV9eWQV6fikORb7Iv8Gvsiv8apC0dZgMfRyw9E78K2oPU4Kvm51b6aTkFmi1qtZu8L0tLSUFlZabFdbw8JaTQazJkzB2+88QZqamostvH09Gw1VLN161a7piVLTk5u9T1DYmIifHx8MHXqVLNpTVub4lSr/T0k9PHHH1tcf/bsWbaPc+fOWWzzwQcfgOd5rF271um/o84sCgndHSgkRAghhDhAYGAg+/bFjh07EBISAq1Wi+vXr+PixYtO7h0hpLcwfnussLAQPj4+iI2NhUQiQVxcHD766CP24UVZWRkCAgKc2VVCCCGEENIJ7AkJGUcIePbZZzF27Fi4uLiYjTzQ1NSEpUuX4qGHHsKIESPg4eGBVatWoV+/fhCJRLh06ZLV/SuVSjbSj16v77Rzs6WkpMRqIEmn00GtVqOwsBCZmZkWpxK5s2yFhBISEqDT6aBSqSgk1IllT0ioJxSFhDrGYDBApVKxMv3/WqvVOnR5Q0ODg8+OEPv01pCQUeK5WITGBiE0NgiqmuouW54m+wXnS+VoutFod19v3LhhdV1zczNycnKQnJyM3NxcFBYWorS0FGq1WlClpaWIjIzs1SGhpKQk8DyPzZs3s9F67izTaUW/+OILi/vx9fVlbWxN2dnae4bdu3ez9d7e3ggKCoJYLEZMTAxiYmIQGBhod0jIx8fH4nrTkFBWVpbFNhQSIj0ZhYQIIYQQBwgLC2P/HRsbi40bN+L48ePIzs7G2rVrndgzQkhvc/PmTaxfvx5yuRxqtRqpqanYtm0bVq5ciYiICNTX10Mmk+GLL75wdlcJIYQQQkgH2RMSWrduHR555BFUVFQAAKqqqjB06FCsXLmStfnkk08wePBglJaWAgCys7Pxpz/9CX//+99b7YNGo0F+fn77T6KN9Ho9xGIxzp49i6qqKhQWFiItLQ2nTp2ya8qwhIQEpKWloaCgAOXl5VCr1aisrLTYVi6Xs1ABhYQ6tygk5Px+Ozsk1NLSgqqqKtaP0NBQVFRUoLGxEY2NjTh16pTDl0dERHR4lDJCOsJ0+rRRo0ZBIpE4u0vEhpMnT9r1XuPw4cO9OiS0ceNGm6P13FlTp05FZWWl2X5MRxKyNjqPVmt7JCHT8I6vr6/F7e15z0EhIetFIaG7A4WECCGEEAfYvXs3MjIyANz+dohEIoFWe3u6MdN5sAkhpKNiYmLw7bffsp+bm5uxdu1axMTE4LvvvsOXX36JFStWICcnBy0tLSgrK4NSqXRijwkhhBBCSHu1FhJqaGjAgAED8NlnnwmW+/r6ol+/ftDpdNDr9ejfvz9Wr14taOPp6WlXSMgZZDIZxGKxzQd0SUlJyMjIQEFBASorK6HT6azuT6fTCbaNjIw0m0LEmSEh49TBs2bNgru7O+bPnw9/f39cvHhR8ODLWIGBgbh69arZcuODr6ysLKxduxavv/46W/faa6+x42k0GiQmJmLLli1YtGgRpk2bBjc3N3h4eOCzzz7DL7/80uZ+T5kyBQsXLsS+fftQVVVl9YGdrX5bq/LycuzevZv1derUqfD09ISfn5/Fh4G2jnH27Fn4+PhgxowZmDZtGt577z1ER0eb7ePcuXOtPhSdNWuWxYeMn3/+OebOnYvJkydj2rRpWLx4MbZt24ZffvkFGo2mS/6mHBESio6ORnl5uV1tW1paUFtby/piLLVazfp46dIlhy5XKBSQSCSIiIiwe1ShXbt2geM4yOVyu9q///77+Pvf/95t76XE8ZYtW2a1YmJinN090kam0421Vr01JFRdXY3p06dj8eLFbKQea7V48WL2mnj8+HGzfQUFBbH1sbGxVo8ZHR1tNeSzc+dOti4nJ8fq+xEKCbW/KCR0d6CQECGEEOIAarWafVByZ0iIEEI6i0ajYXNnm4qKikJOTg7S09MRFxcHiUSC1NRUnD59GlFRUZBKpQgLC8PNmzed1HNCCCGEENIerYWEMjIywHEcDh48KFgeGhoKjuNw5swZ5OXlWWyzYcOGbvtgWyaTISYmBpGRkUhKSoJcLkdBQQHUanW7phAyGAyCcJGlqcycFRIyfYA2b948bNy4ERs2bMDcuXMxa9YshIaGsvUBAQEICgrC2bNnoVKp8Oabb+LNN9/E1KlT2YOvxMREuLu7Y8qUKfDw8LAYEtqxYwdb/tlnn+Gnn35CSEgItmzZAnd3d/A8j6+++qrd/V68eDESEhIsPrDTaDQICgpCUFAQFi5c2GpIKCUlBTNmzGAP5Y4cOYIjR45g/fr1mDRpEiZNmoSffvpJsI21axMfHw83NzfMmDEDs2bNEgR+jhw5ItjHxYsXERQUhG+//Za1+fzzz1nfg4KC8PPPPwu2CQkJAc/zmDlzJnbs2IGwsDAcOnQIa9euZfvoqgeLjggJGf8fai0spFAokJCQ4PSHnsa6cuWK3ef4wgsvoG/fvli+fLnd2/j5+XXbeykhpO1aCwdFRUVBLpf32pDQyZMnwfM8wsLCWm0bHh7OXt+Mn1eaVnp6Olu/a9cuq/vZs2eP1ZDPhg0b2Lry8nKL2586dYpCQh0oCgndHSgkRAghhDgYhYQIIY7S0tKClJQU5Obmmq1LTk5GYGAgdu3ahaSkJHYvys3NRWNjI1JTU3H27Fkn9JoQQgghhLSXI0NCX375pV0PtjMzMyGVSi0Gaxyhrq4OYrEYMpms0/bZ0tKC8PBwFBQUWG3jjJCQ6UOtzZs3C0ZBUalU2Lx5Mwvt2PPg691334WHhwcOHz4MlUoFrVaL8+fPY8aMGYKQkL+/P3ieR0REhNm+8vLyMG3aNPA8j8jIyHb328vLq8MP7HJzc9n5W+prXFwcO4a1UIrxGN7e3pg3bx5iY2NRU1MDrVYLuVyOefPmsWCP8ZqZlr3TjZWWlsLNzc3q+UZGRto1alJnlSNDQq2Fhc6fP4/Q0NAuOU97y54vzOTm5mLixImYNGkS/vrXv+LGjRt2XRcKCRHSexgMBpw7d85mSEin07H7XG8MCa1atQpTp05FRUVFq20rKyvZe4ZJkybh4sWLZm2M7wc8PDwsvs6qVCr2WmzpNdQ0QHTmzBmL/di7dy+FhDpQFBK6O1BIiBBCCHEwCgkRQpzp1q1baGxsRHh4OLsfJSUlISQkBCdOnDBrRwghhBBCui9rIaGzZ89i+/btuHbtGgYMGIA1a9YI1q9fv95surFPP/1U0Mbe6caUSiXEYjGSk5M7dC72qqurc0goqbX3vl0dEqqpqcGCBQvA8zzmzp3brgdndz744nkeP/zwg9n67du3m4WEFixYYLVv+/btA8/zePvtt7uk39Ye2L333nvgeR7Lly+32tdPP/0UPM/D09OThX+sXZvDhw+brTeOmMDzPFJTU83W2xsSOnr0KHsIaq2Nl5dXrwoJWQsLdceQUHNzc6vn98EHH+DHH39kIcuwsDCzNk1NTVi6dCkeeughPPXUU/D29sb69evN7qUREREYP348eJ7HhAkT4O7ujgsXLrD1/v7+4DgOHMchLi4OEyZMwMCBAzF+/HgolUpERUVh2LBhePDBB/Hee+/h1q1b7f69EUJaZzAYUFhYiMjISJsBIeO9LjY2tleGhC5dugRXV1ds3LjR7m02b97MXieDg4PN1p8+fZqt37hxo+B9gz2B6OzsbLbO29vbLLx07tw5TJkyhUJCHSgKCd0dKCRECCGEOBiFhAghznb+/HkEBQVBrVYjKSkJMTExWL58OY4ePYr6+nrU19dj3bp1OHToEI4cOYLa2lpnd5kQQgghhFhgLSR08uRJvPXWWwCAdevW4ZFHHkFFRQUAoKqqCkOHDsWKFStYex8fHwwePBilpaUAgOzsbDz66KN2j36h0WigUCjYz50Z4DEYDFAoFF02UpE1XR0Skkql7GHUnj17rLazNQXHnQ++3NzcLH7zv6amBhqNhv1cWVlpc4QA06nCKisrHd5vSw/scnJyrE4FZlqmU52kp6dbPYa7uzuuXLlitv7XX39l24eHh5uttzckFBERAZ7n4erqiqKiIottZDIZZDJZlzzwMw0JHT16FElJSR2u1qbgOXr0KOLi4pCYmAiFQtEl52lPGR9+2nLjxg384x//gF6vR2NjIx588EG4ubmZtfvkk0/M7qVDhgwxu5fOnTtXEDLau3cvhg0bJggr5ufng+M4TJs2DWVlZaisrMSTTz6JcePG4cMPP4ROp8Pp06fRt29fHDt2rAN3N0KINQ0NDZDL5YJwUGRkJE6fPm12j0tPT0d5eTlOnjyJw4cP96qQkFKpRHBwML788ksW5gkODkZeXp7VbXJzcxEcHIxNmzax10lPT08EBwfj5MmTgrbBwcGsjYeHB3x9feHr6wsPDw/MnDlTMLXqzp07ERwcLHhN379/P1s/e/ZsbN68GXv27MGaNWvg6uoKb29vs+0LCgqg1WoRFhaG4OBgLFq0CDzPw8vLC8HBwTh27Bi0Wi3y8/MRHBzMRlnkeR47duxAcHAwCgsL2Wt8cHAw5s+fD57nsXjxYgQHB1sc5bAnFoWE7g4UEiKEEEIcjEJChBBnu3nzJg4cOICLFy9CrVZj48aN+PLLL3Hq1ClIJBKIxWJs27YNwO1vQu7cuRMNDQ1O7jUhhBBCCDFSKBQQiUR44IEH8OCDD0IkEgnqiSeeYCGhlpYW+Pv7w8XFBWPHjsUzzzwDPz8/wcgTTU1NWLZsGR566CE8+eSTePvtt/H555/jn//8Z7v6l5+fj9jYWGRmZkKj0bT7PIuLiyEWiyEWi6FUKtu9n87Q1SGhoKAg9jAqLi7Oarvo6Gi7wzaLFy9ucz80Gg3KyspQVFSEwsJCFBYWIioqih3T+IDMkf22FBIyfaAYHR3N+nZnHTt2zOYIBsZjvPXWW1bP39b29oaE8vLyMGnSJPYANCwszCxg1ZVlGhI6fPhwqwGfzi5Lozo5q+wJCUVERLB7KgB4e3ujb9++LHwJgI3Ktnr1asG2lkZlq6qqEtyDa2trwXEcMjIy2DJjSCg8PJwtW7t2Lfr27Sv4Io+Li4vZMQkhHdPQ0IDMzEzBfSsyMhIFBQUwGAxsmtLw8HBERESYjTDU20JC58+fZ691pmUM0lgqYzjWUi1btsysfVpaGlatWoVZs2bB3d0db7zxBrZu3YrS0lKkpqaa7SMwMFCwfWJiInx8fDBz5ky4urpi9uzZ8PHxQXx8vMXtY2JioNVq4eHhYbGPixYtglYrHFHwzjK+H3zzzTctrn/zzTed/rvrzNdJCgn1bhQSIoQQQhyMQkKEkO7g1q1bkEql+PHHH3H69Gmo1Wqkp6dDIpEgNjYWPj4+SE1NBQAcOHCAph4jhBBCCOnFdDodmpqaBMuWLl0KV1fXdu1Po9FAJpNBIpGgurqaLTcuk0qlgtCPccoysViM4uJitry6uhoKhQJ6vb5d/ehMXR0S2rp1K3vIZOsBY3Jyst1hm48//tju4xsftk2dOtXqwzFLx3REvy2FhLZt22azX5bq66+/bte1mTx5MnieR1BQkNk6e0NCWq0wQGUcvWjVqlU4evSozZGbHFGmIaGoqCgUFBR0uFoLBkVGRkIqlaKgoAC1tbVder62yp6QkLu7O9LS0tjP586dA8dx2LhxI1uWl5cHjuNw8OBBwbYbNmwwCwkVFRXB09MTo0ePhkgkwpgxY8BxnGAKcGNISCaTsWX+/v4YPHiwYF8TJ07Eu+++a++tjJAuZXw9MZYpRy8/c+YMiouL2zQSoU6nMwsHRUdHs3CQUVVVFeLi4qze73pbSIjq7i4KCd0dKCRECCGEOBiFhAgh3dn+/fsRExODo0eP4sMPP0RaWprTp3YghBBCCCGOtX79emzYsIH9rFQqMWjQIMEIFp1BqVRCJpNBKpUKwkNKpRLFxcUoLi7u0MhDjtTVISFfX18WJpHL5VbbmX47vj1hG0u1e/dutk9vb28EBQVBLBYjJiYGMTExCAwMtHrMruq3ccoT4wg/xr7ZqqysrHZdG3d3904JCWm1Wpw7dw6ff/45Cx4Za8qUKdixY4fFKc8cUaYhoTsfrLeXtYfl0dHRKC8vZ+0UCgUSEhK65DztrebmZqvnVVVVhQceeMBsxLYBAwZg+PDhrJ21kNCXX34pCAnp9Xo8/PDD8PLyYuHMxsZGcByHyMhI1s4YEsrPz2fL/P398eijjwr2P3HiRHh7e7flV0W6uffffx9///vfzcJlP/zwA4YMGYL6+nqHHFculwuCbx3V2NiIy5cvIz4+npXp/3eOXn7y5EmEhoYiNja21c+11Gq12bSJd967AODq1atmowZZquPHj1NIiKrXFIWE7g4UEiKEEEIcjEJChJDu7Pjx48jKykJWVhY2bdqE/fv3IykpCZcvX3Z21wghhBBCiIMkJiZi4sSJeOWVV8DzPF566SUEBQU5u1vdijNHEjp37pzVdh0dkefOOnv2LNufr6+vxTa2Aj5d1e/t27fbdZzWqqtDQsZSKpWIiIjAhx9+KAgLffLJJ13ywK8rQkKWHrADwPnz5xEaGtol52lv3bx50+p5bdmyBdu3bzdbvm3bNnAch+TkZAC/Tzf26aefCtrdOd1YdnY2OI5DdHQ0W2acboxCQsTIz8/PLCSUk5OD1atX2/x77YiDBw+if//+Hd6PVqt16nSKppWfn4/s7GyrfbU3HGTq7NmzrYaExGIxu8cmJyc7/TpQUXWkKCR0d6CQECGEEOJgFBIihHR3ycnJOHToEDZv3ozY2Fh238rOznbYN9YIIYQQQgjpzro6JGQ6NVVsbKzVdtHR0Z0aEtq5cyfbX05OjsU2tkJCXdXvQ4cOse2jo6PbfZ2dFRIyrdzcXLz11ltsP2fOnHH435cjQ0KtPWA3HvvSpUsOP8/WSq1WQ6FQ2DyvkSNHQqVSmS1XqVS477774OXlxZb5+Phg8ODBKC0tBXA7EPSnP/1JEPbQarW4//77sWTJEty6dQsAEBAQQCEhImApJORonRUSysnJ6XZBwDuVl5cjOjpaEOxJSkqCWq226xztCQp15XsGKipHllQqZX/PptMCk96FQkKEEEKIg1FIiBDSkzQ3N6O4uJjduyQG11a6AAAgAElEQVQSCRQKhc3h2AkhhBBCCOltujoklJ6ezkIju3btstpuz549nRoS2rBhA9tfeXm5xTanTp2yesyu6rdMJmPb79y50+Y5rVq1Cu7u7jh79my7ro2tkFBZWZldIaG0tDQEBgZaXZ+Xl8f2ExIS4vC/L0eEhFoLB5mqqKhAbW0ttFotqqqqcPHiRVy8eBFVVVWsj45YrlarBdcgMTERoaGhFkNANTU1GDVqFAYOHIixY8earReJRBg4cCD69+/P1jc1NWHZsmV46KGH8MQTT8DDwwOrVq1Cv379IBKJcOnSJQBAXFwcXFxcMHz4cEyaNAl+fn7gOA4jRozA/v37ERUVBRcXF3AcBxcXF0gkEmzYsAF/+9vf2L6uXbsGNzc3/PGPf8TgwYPh6enZ/l8esaipqQlLly7FQw89hBEjRlj8ffr7+4PjOHAch/j4ePA8j/79+7OAV0REBMaPHw+e5zFhwgS4u7vjwoULVo/z1FNPwdvbG+vXrxeEhEJCQtjfhGlwrKWlBX5+fnj++efxyiuv4F//+hf27NmDlpYWABD0Ly4uDi+//DIGDhyI559/HjKZjO0nICAAjz32GPr06cOm1Nu/fz8AICUlBRMmTGDnMGPGDEilUqvXLTExsdsFY4w6Gg4ylZWVZVdI6OTJk04/fyqqjlR8fDz7e7b0ekl6BwoJEUIIIQ5GISFCSE+k1d7+xrDxHpaamkr3MUIIIYQQctfo6pCQVquFl5cXeJ6Hh4cHVCqV2XqVSoV58+Z1akjINLxjbUSbvXv32jxmV/X7/fffZ8e5evWqxTbFxcVwdXXFvHnzoNFo2nVtbIWEKisr2XkcO3aMLc/KyoKXlxcLBn3//ffgeR6lpaUWj6FUKtl+IiMjHf635YiQUFu1tLTAYDCwUUdCQ0ORk5OD69ev4/r16w5ZXlFRwZZnZmbixIkTrY4kRO5en3zySasjQwG/j/r0n//8B3l5edBqtXBxcUF+fj7mzp2LsLAw1nbv3r0YNmwYGhsbbR5nyJAhVo9jGhJas2YNHn/8cdTU1AAArl69iiFDhiAgIMBsO3d3d5SWluK3337DuHHjIBKJBPu3NJKQwWDAn//8Z0gkErbsww8/xNq1a61et5ycHEil0i55nbSn8vPzkZqaisjISEGIJyMjAzqdzup52FJeXo7w8HBERES0GhIKDQ0VBBSpqHpamf49a7X0WXBvRSEhQgghxMEoJEQI6ckUCoVgVKHc3FwaVYgQQgghhPRYZ86cQVJSEgoLC22OJOCMkNDp06dZcGTjxo2CwI1KpcLmzZuxaNGiTg0JZWdns/15e3ujoqJCsP7cuXOYMmWKzWPa029j8KYj/c7Ly2N92bx5s1kIqKKiAt7e3uB5HmKxuN3XxlZISKvV4rXXXgPP84KRgkJCQgSjAhlDQr6+vhbDSsbp06ZPn94l03B1h5CQUUNDA1QqFVQqFRoaGhy63GAwsOWm/03InfR6Pfr374/Vq1cLlnt6eloN74SEhLBlKpUKN27cQFVVFZtWDgBqa2vBcRwyMjLafRxjSOjatWsYMGAA/P39Be0++eQTDBkyxGy7I0eOsGWBgYHo168fG3EIsBwSUqvV4DgOe/fuFSwzBpqs6YrXSHsrPj4ehw8fFoSDTO8RbWUaELIVEoqJiWH32fz8fKdfByqq9tSlS5fY3/GJEyfa/f8N6f4oJEQIIYQ4GIWECCE9XWNjI7Kystj9LCkpCZcvX3Z2twghhBBCCGmzsrIyswd7p06dglwuR1VVFXuQ6IyQkFarRXBwMAvTeHh4wNfXF76+vvDw8MDixYuRkJBgNWwTFhaG4OBgFiTy8vJCcHAwgoODbY7ysH//frbP2bNnY/PmzdizZw/WrFkDV1dXFrwxTvUVHByMgoICu/s9c+ZMhIaGmu0jPT0dGo2G9dFSv2tqagTHSUtLw6xZs8DzPBYvXozvv/8eR44cQUBAAF599VWz8E5r18Y4GpBKpWLHdHV1Bc/zWLlyJYKDg5GYmCjY1zfffAOe5zFr1iwcPHgQ33//PWbMmIFZs2bh8uXL0Gp/Dw3xPI9FixZh3759OHLkCA4ePIiVK1eC53m4u7t32d9WdwoJEdId5eXlgeM4HDx4ULB8w4YNVsM7OTk5ZvspKiqCp6cnRo8eDZFIhDFjxoDjOPawvT3HMYaEMjIywHEcHn/8cTZFmEgkwsiRIzF06FBcu3bNav+OHTsGjuMEYRlLISEAWLt2Le655x4MHz4cq1evRmFhoc1rB3S/kNCJEycgl8s7FA4CbgeEbAWDTEsulzvlfQMVVWdWcnKyYJQ+0ntRSIgQQgixQ0pKCtasWYPXXnsNbm5ueO2117BixQqEhISgsrLS5rYUEiKE9BZVVVVISkpi97Xs7GzU19d3eT+ampoQERGBd999F7Nnz8aMGTOwePFibNy4ESdPnmz38NGEEEIIIaT3u3btWqsP+o4ePYqIiAinPexLS0vDqlWrMGvWLEyZMgVeXl7Yt28fqqqqkJKSwsIn58+fF2zn4eHB1t1Zu3fvtnnMxMRE+Pj4YObMmXB1dcXs2bPh4+OD+Ph4pKammu0vJibGZr/d3d3xxhtvYOvWrSgtLbW4j8DAQFy9etVqn3mex2+//WZ2HKVSiX379uHtt9/G9OnTMXnyZMybNw++vr44d+6cxfOzdm0WLVoErfb2KETW+uDr6yvYl0qlwu7duzFv3jy4ublhzpw5+Oyzz8xGjpDJZNizZw+WLl2KWbNmwdXVFVOmTMHChQvx9ddf48KFC132N0UhIUJssxbe+fLLL+2aBgy4PUrQww8/DC8vLzQ1NQG4/aUrjuMQGRnZ4eMYQ0IHDhyweS6W+hcZGQmO41iQCLAeEgKAyspK7NixA8899xz69OkjmM7sTlqttktGRLO38vPzO2VaQeMIQuHh4Th27Fir7x0aGhoEU44pFAqnXwsqqrZUVVWV4G9YpVJ1+P8j0n1RSIgQQgixoampCV988QVeffVVxMfHo76+HgaDAZWVlfjhhx/g5uYGnufZkLGWdDQkdO3aNfA8LxjmlRBCnKW5uRkFBQWCKcg648MXe926dQvLly+Hh4cH0tPTodfr0dTUhJKSEvaNXIlE0mX9IYQQQgghQqZT+uj1ekilUkilUrOHqXK5HCUlJV36XhIAWlpa7BoRIDw8vFuOCBAXF8fCK2VlZU7vD1XPKAoJEWKbcRqwTz/9VLDcnmnAjLKzs8FxHKKjo9ky43RjxpBQR45jnG5sxYoVgnYKhQIffPCBzf5ZCgn9+OOPLCTU0tICvV4PnU5n9pmKl5cXhg0bBmsSExO71eukVtvxL+qaBoQSEhJgMBhQVFRk9f1CQkICACA9PZ3da0+ePAm1Wu30a0FFZW8lJibSe4W7CIWECCGEEBv8/Pzg5uaGixcvWlwvFovB8zxSUlKs7oNCQoSQ3kir1SI1NZXd41JTU9t9n2sLqVQKnucRHx9vtk6v12P27NkUEiKEEEKIQxw+fBj/8z//g9GjR2PUqFF49tlnsXDhwnZ9iB4SEoIXXngBbm5ueO6553D8+HHI5XJs3LjRAT13vLq6OsjlcsTGxkIqlbLlGo3GakhIIpFALBYjOTlZsLygoAB1dXWd3keDwYCqqirI5fJWRwQ4evQozp071+UhocrKSmRlZdlsc+DAAfA8j9dee83pD5Ooek5RSIiQ1vn4+GDw4MEoLS0FcDv08+ijj9odEtJqtbj//vuxZMkS3Lp1CwAQEBAgCAlZO86f/vQnu46zbt06DBo0iG1rMBjw+uuvw8/Pz+Z2lkJC8fHx4DgOer0eGRkZeOGFF1BUVIR//OMfqK2tZe3efPNNTJs2zep1O3/+PEJDQ51+nzOtjrAUEDLKzs62+L4hLS2N/T5MRyJMTk52+rWgorKnMjIyBKMIabU0K0ZvRyEhQgghxIr8/HzwPI+vv/7aaptbt27h9ddfp5AQIeSupVAoBKMKFRQUoLm52WHHCwsLA8/zVufF/vnnn3H+/HmHHZ8QQgghd6eIiAj88Y9/hFwuZ8uuXr2KF198EQsXLmzTvurq6nDfffdBLBYDALKysiCRSGxO+9Hd6fV6SCQSyGQyKJXKNm1r+vCtrq4OYrEYYrFYEDZqj4aGBpSXlyMzMxOnTp0SPMyLiIiwGhCKjo6GTqeDSqXq8pCQRCIBz/OQy+VW27z77rvgeR5btmxx+gMlqp5TFBIipHVNTU1YtmwZHnroITz55JN4++238fnnn+Of//wnaxMVFQUXFxdwHAcXFxcsX75csI+4uDi4uLhg+PDhmDRpEvz8/MBxHEaMGIH9+/ebHeeJJ56Ah4cHVq1ahX79+kEkEuHSpUsICQkRHCckJATA7RF/vvrqK4wcORLjxo3DuHHjsHXrVrS0tFjsn/H9xYgRI8BxHF588UX2eYrBYMDUqVMxatQojBkzBnFxcairq8Py5csxevRo8DyPf/3rX5g/fz6uXr1q9bqpVCrExMR0i1Fz8vPzkZCQgIaGhnb9DdgKCKnVarYuNjZW8N6hoKCAtTO934aGhkIqlTr9ulBR2ar8/HzB36y1z1xJ70IhIUIIIcSK7du3g+d5nDt3zma70tJSaLW/B4BUKhX27duHxYsXY86cOZg9eza8vb2Rm5trtm1TUxN++OEHeHp6Ys6cOXjzzTexYcMGdszDhw/D3d0dPM/D1dUV7u7ucHd3x86dOzv3ZAkhpAMaGxvZwy2JRIKkpCRcuXLFIcdKTEwEz/P46quvWm176NAhdg81DVp+/fXXmDx5MnieR0xMDFv+yy+/sKkblixZgoqKCnz00UeYMmUK3nnnHfaP5Pj4eMyfPx8zZ86Er6+v4Bt2hBBCCOmd5s6dC57nzZZHR0cLpviwR0FBgcURCHpSSKi6uhoSiUTw8KyzGAwGKJXKNk9DZhoKio6OthoCSkpKsjoSgOkDQWeGhFavXo2amhqz9SEhIeB5HtOnT0dRUZHTHypR9ZyikBAhrdPpdGhqahIsW7p0KVxdXZ3Uo56lqakJdXV1kEqliI+PR3x8PC5dusTuQ45ebpwq6c4RCu1lKyBkMBjYewvj1GJlZWWsfWVlpWBfptOO0YhCVN25srKyBH+rtr4MT3oXCgkRQgghVixcuBA8z9v8poQl8fHxmDVrFoqKigDc/tD4448/hru7Oy5duiRou2PHDixcuBAqlQrA7W9Nrl69GkuWLGFtaCQhQkhPcfnyZSQlJbGwUHZ2NhobGzv1GPX19Zg5cyZ4noePjw9SU1PNPsQzZe0eeuHCBbOQUG1tLfLz87Fo0SIsWrQIK1asQGJiIlJSUuDp6YmpU6ciPj4evr6+SE9Px+HDh+Hq6ootW7Z06jkSQgghpPvx9PTEf/3Xf0GtVttsZ/yG/7PPPouxY8fCxcUFfn5+bNqRO0cGEIlEiI+PR0BAAB577DH06dMHIpEIIpEI+/fvh7+/PziOA8dxiIuLw4QJEzBw4ECMHz8eSqUSUVFRGDZsGB588EG899577DjA7dGPxo8fD57nMWHCBLi7u+PChQuCc3rggQfwhz/8AevWrcP169cxatQoDBgwAK+88orVc1QqlWykH71e38Era5+SkhKzQJJOp0NpaSnS0tIQGRlpMfQTGRmJpKQkFBQUCH53N2/eNGubkZEh2L8zQkLGQDzP81i0aBECAwNx9OhRHDp0CD4+PiwglJSU5PSHSlQ9qygkREjr1q9fjw0bNrCflUolBg0ahPDwcCf2qufJyclBYmIiEhMTodVqu2x5cXExFApFuwLMtgJCAJCWlsbeV5iOUtTY2IiTJ09a/FwqJSVFEL44efIkFAqF018PqKi0Wi2qqqpYsM5YsbGxDvkCAOmeKCRECCGEWDFt2jTwPN/m4UnPnTuHiIgI9rNEIkFcXBymTJmCb775RtB2zpw58Pf3FyxTKBT44osv2M8UEiKE9CTNzc3Izc0VTEHW1m+Bt+b8+fNYsGABe4AyZcoUrFu3DsnJyYIHY0DbQkJG7733HnieZ2FPADh9+jR4nsfChQsFx1i7di3c3d3Z0N6EEEII6Z3Onj2L/v374y9/+QuWL1+O06dPW/wQfd26dXjkkUdQUVEBAKiqqsLQoUOxcuVK1iY/P79NIwkZ20+bNg1lZWWorKzEk08+iXHjxuHDDz+ETqfD6dOn0bdvXxw7doxtN3fuXISFhbGf9+7di2HDhglC3D///DP69u2L06dPAwDWrFmDb7/91ua10Gg0Zn13JL1eD7FYjLNnz6KwsLDVUFBaWhpKS0uh0+ls7vfkyZNsu9LSUrP1zggJ1dTUIDk5Gdu3b8c777yDmTNnwtXVFdOmTcPixYvxzTff4OLFi05/sETV84pCQoS0LjExERMnTsQrr7wCnufx0ksvISgoyNndIg5WWVlpMyBUWlrK1peXl5ttb+vzoDtHFDLeg4uLi53+ukB1d9bFixeRnJxs9neZkpJCAaG7DIWECCGEECumT5/erpDQnYwPyT09PeHj4yNY984772D69Ok2h2mnkBAhpCfSarVITU1l98DU1FRotdrWN7TTzZs3kZaWhs2bN2PGjBksMOTt7Y2amhrWrr0hoVdffVWw7NdffwXP89i9e7dgeWBgIHieb/UhFCGEEEJ6vvz8fCxYsAD3338/OI7DX//6V6xYsQLXrl0DcHu6qwEDBuCzzz4TbOfr64t+/fqx9wvtDQmZjmSwdu1a9O3bVzDtqYuLC1avXs1+rqqqEoSba2trwXGc2Yg58+bNw5AhQ3DkyBFMnz69rZelS8hkMojFYrNQUHR0NDIyMlBeXt7m92NFRUWIjIw0myLEyBkhISoqRxWFhAghxJxOp2PBY0sBIZ1OZ3XEQXuZ3n9NKzw8HPHx8ZBKpcjKyqKiclgZp+gLDw+3+LeYk5PTGf87kR6GQkKEEEKIFe2dbqypqQlHjhzBkiVLMHPmTLi5ucHNzQ08z+P9998XtC0qKsL8+fPB8zxmzpyJLVu2QCaTCdpQSIgQ0lM1NzdDoVAIRhUqKChAc3Nzpx7HYDAgLS0NS5YsAc/z2LRpE1vX3pDQW2+9JVh2+fJl8DyPn3/+WbA8ODgYPM+jurq6E8+IEEIIId1ZU1MTEhISsGDBAvTt2xcTJ04EAGRkZIDjOBw8eFDQPjQ0FBzH4cyZMwDaHxIy/beiv78/Bg8eLGg3ceJEvPvuu+znoqIieHp6YvTo0RCJRBgzZgw4jsOJEycE2+l0Ovy///f/8Ic//KHN//7tKjKZDDExMUhISGChoI5+oefatWs290EhIareVBQSIoQQodYCQgaDAadOnbK6vi0aGhosjipEReXMunPKPnJ3oZAQIYQQYsX27dvB8zzOnTvXpu18fX3B8zzEYjH0ej17MO7l5WUWEgJuj4YhlUqxadMmuLu7g+d5bNu2ja2nkBAhpKerr69HVlYWux8mJSXhypUrnX6choYGzJw5E7Nnz2bLrN1DCwoKbIaElixZIlhmDAkdPnxYsJxCQoQQQsjdQa1WC6bpMtq0aRM4jkNlZaXDQ0Km7f39/fHoo48K2k2cOBHe3t4Abk/R9fDDD8PLywtNTU0AgMbGRnAch8jISMF2LS0tcHV1Rd++fRESEtLqtcjMzIRUKu2yKQk0Gg3EYnGXTnEGUEiIqncVhYQIIeR3rQWEgNvvd4yjCHXW6NENDQ3IycnBiRMnnB4Qobo768SJE8jJyYFKpeqUv2nSc1FIiBBCCLHC+AB5x44dVttoNBosXrwYYrEYwO03+jzPY9myZayNrZCQ6dDvwO1/oHz00UfgeR4lJSUAKCRECOk9Ll++jKSkJHZfzM7OtviwzZbU1FR89NFHVtcvXboUkydPZj9fv34dPM/jm2++EbRLS0ujkBAhhBBC7PbWW29ZDNAcPnwYHMfhypUruHbtGgYMGIA1a9YI2qxfv96u6cZ+/PFHFhJqaWmBXq+32r61kFB2djY4jkN0dDRbb5xu7M6Q0M6dO+Hr64tVq1bhwQcfhFKptHktlEolxGIxkpOTbbbrLHV1dV0aSjKikBBVbyoKCRFCyG32BITKy8tZQKi0tNQh/WhoaIBKpUJxcTHOnz9PReWwKi4uhkqlglZLowaR31FIiBBCCLHB398fkydPRllZmcX1O3bswJQpU9gbrBs3bsDV1RXvvfceayORSBAXF4dp06aZhYQmT57MPvg1iomJAc/zbCh5g8EgeMCt0+nw7bffdvkHpIQQ0hmam5uRm5srGFVIoVDYvX1KSgqmTZtm8R+2169fx8yZM7F8+XLB8hkzZmDt2rWCZfv27aOQECGEEELs9tZbb+GZZ54RBGhUKhX+9a9/4eWXX2bL1q1bh0ceeQQVFRUAgKqqKgwdOhQrVqxgbayFhOLj48FxHPR6PTIyMvDCCy9Ybd9aSEir1eL+++/HkiVL2JdTAgICzEJCBQUF+Pe//42bN2/ixo0beO655/Dyyy+bfaHlThqNRvAerjP/farX66FQKJz+b14KCVH1pqKQECGE2BcQamhoYG3S0tKc0EtCCHE8CgkRQgghNhgMBvj6+uL1119HQkIC6uvrYTAYUFZWhm3btsHd3R1ZWVmCbdavXw+e5xEREYHr16/jxIkTbHSgO0NCrq6u2LFjBwsK6XQ6fPzxx5g/fz4bEh4AFixYAB8fH7S0tCA2NhZeXl6OP3lCCHEgrVaL1NRUFhZKT0+HVtv6N1pSUlLA8zyWLl2KvLw86PV6NDU1obi4GCtXroSbmxsLWRpt2bIF7u7ukMlkMBgMSE9PZ/dlCgkRQgghxB6ZmZlYunQpnnvuOYwePRovvPACnnnmGaxZs0YwBUVLSwv8/f3h4uKCsWPH4plnnoGfnx8L3YSEhMDFxQUcx8HFxQVTpkxh2xoMBkydOhWjRo3CmDFjEBcXh6ioKEF7iUSCDRs24G9/+xv69esHkUiEa9euwc3NDX/84x8xePBgeHp6AgDi4uLg4uKC4cOHY9KkSfDz8wPHcRgxYgT279+PNWvW4OGHH8bw4cORnp6OlJQUDBs2DBzH4ZlnnkF6errd1yc/Px+xsbHIzMyERqNp93UuLi6GWCyGWCxudUQjR6OQEFVvKgoJEULudqYBocjISKtTiJ06dQrh4eGIjo52emCZEEIchUJChBBCiB1SUlKwatUqzJ49G1OmTMHChQvx9ddfs2+Hmrp27Rp27dqFefPmYfLkyZgzZw78/Pzg6ekJnufh7u6OoqIiAEBiYiLWrl2L+fPnY86cOZg/fz78/f3N5oTNysrCokWL8Oqrr+Ltt99GXl5el5w3IYQ4UnNzMxQKBQsKSSQSlJSUoLm52eo2jY2NSE5OxpYtW7B48WLMnDkTbm5umDt3LjZu3MimajRVX1+PLVu24NVXX8Xs2bOxa9cu5OXlged5uLq6Yu7cuQAAuVwOd3d38DwvuF8HBgZi8uTJrP3ChQsBAPPnz4erqyt4nsfkyZPx7bffOuQ6EUIIIYR0dxqNBjKZDBKJRBCelslkiI2NhVQqFYR+jFOWicViFBcXs+XV1dVQKBRmI+46A4WEqHpTUUiIENIVrmo0+EksZmXK0cvDExKQcf48Gm/cMOuXvQEhuVzOphlTq9V2nzchhPQ0FBIihBBCHMz44FurpTlfCSHEkvr6eqSnpwumIKMPYwghhBBCej6lUgmZTAapVCoYYUipVKK4uBjFxcWoq6tzYg+to5AQVW8qCgmRu1lFRQXGjBkDjuPw0EMPsS8KGV26dAkikQj33XcfRCIRrl+/3qHj/fDDDxgyZAjq6+vt3uabb77B008/DY7j8Ntvv3W4XUf89NNPGDRokNm07a0pq6lBbF4edoWFsTr966+sHL18x88/Y1NgIL6LiBAEhewNCFVWVrKAUEFBQYeuISGEdHcUEiKEEEIcjEJChBBin8uXLyMpKYndN7Ozs9HY2OjsbhFCCCGEkLsQhYSoelNRSIgQ4MUXX8TQoUPZFKCmcnJyBFOAdkROTg5Wr16Nmzdvtmk7iURiV/jH3nZtVVtbi8mTJ+Pdd9/FfffdZ3dI6KpGg6ySEkFgx1l15MwZhCclsb7ZGxAyGAysXZLJ9oQQ0ltRSIgQQghxMAoJEUKI/RobG5GbmysYVUihUDi7W4QQQggh5C5DISGq3lQUEiIE+Pbbb8FxHOLi4szWLVu2DBEREU7o1e+cHRKqqqpCWloaAKB///52h4QSpFJsCgx0ekDItAD7A0IAkJSUxNoZDIaOX0xCCOnmKCRECCGEOBiFhAghpO3UajVSU1PZPTQ9PZ3uo4QQQgghpMMUCgXUajUaGhpstqOQEFVvKgoJEXI7NDJgwADMmTNHsLypqQmPP/44bvzfFFUREREYP348eJ7HhAkT4O7ujgsXLrD2/v7+4DgOHMchPj4ePM+jf//+4DgOW7duhYuLCziOQ35+PtumtX0Cv4d/4uPjMX78eDz66KN44oknIBaLLbYzDQm1tLTAz88Pzz//PF555RX861//wp49e9DS0tKua9WWkNAhsdhs6i9nV1sCQgUFBWyascrKynZdL0II6WkoJEQIIYQ4GIWECCGkfZqbm1FcXMzuoxKJBCUlJWhubnZ21wghhBBCSA919uxZ9jAwPDwcp06dQlpaGgoLC1FeXg61Wg0AglAFhYSoenpRSIiQ29544w30798fNTU1bNmRI0fwwQcfsJ/nzp2LsLAw9vPevXsxbNgwwXTo+fn54DgO//nPf5CXlwetVgsXFxfk5+ezdaYhIXv2aQz/eHh44Pr16wCAbdu24d5770VRUZFZO9OQ0Jo1a/D444+z87p69SqGDBmCgICAdl2nto4k9ENMjNODQaZTjh0MDbUrIKRWq9n7Ablc3q5rRQghPRGFhAghhBAHo5AQIYR0TH19PdLT09n9NDU1lT28IYQQQgghpC1MHwi2VhQSouotRSEhQr+0nG4AACAASURBVG4zBmy++eYbtszNzQ25ubns56qqKty6dYv9XFtbC47jkJGRwZYZg0AhISFsmUqlwo0bNyyGhOzZp7FvqampbFlzczMGDRqEd955x6ydMSR07do1DBgwAP7+/oJz/eSTTzBkyJC2XaD/05aQEACnB4NMa1dYGL4+cKDVgJDBYEB0dDTCw8ORkJDQrutECCE9FYWECCGEEAejkBAhhHSOy5cvIykpid1Xc3NzBd+6I4QQQgghpDU3b96kkBDVXVcUEiLktlu3buFvf/sbnnvuOQBARUUFRo8eLWhTVFQET09PjB49GiKRCGPGjAHHcThx4gRrYwwC5eTkmB3DUkjInn0awz9XrlwR7E8kEuGll14ya2cMCWVkZIDjODz++OMQiUSsRo4ciaFDh+LatWttvk49PST0XXi4zYAQAKSlpbHRhlqbgpQQQnobCgkRQgghnUSv10Oj0aC6uholJSWs4uLiEBcXh7y8PLZMqVRCo9Ggrq7O2d0mhJAepbGxEbm5uSwolJSUhMuXL9vcpq6uDhqNBkqlUnB/tlTG+7Ner++iMyKEEEIIIV3JYDAgNjbWZjjo2LFjKCoqopAQVa8pCgkR8rsvvviCBXw2bdqE3bt3s3V6vR4PP/wwvLy80NTUBOD25xAcxyEyMpK1sxQEsrbO3n12NCR04MCBjl4api0hoasaDU7K5U4PBxnrpFyOqxqNzT6Xlpay1/zy8vJOuGKEENKzUEiIEEIIaSODwQCNRoOSkhJkZmYiNjYWYrG4QxUbGwupVIqSkhJUV1fDYDA4+zQJIaRbU6vVglGFiouLYTAYWFBTKpV2+v1Zo9HQ/ZkQQgghpBWm75f0ej2kUimkUqnZg9TMzEyUlJRAoVB0SZ/Ky8vZqAG2yjg9iUqlopAQVa8pCgkR8ruysjL06dMHy5Ytw8iRI1FTU8PWZWdng+M4REdHs2XGqcHaGxKyd5/Wphv761//atd0YytWrBD0Q6FQ4IMPPmjz9QHaFhI6JBZjV1iY08NBpmWLTqdjr/mm070RQsjdhEJChBBCiB0MBgOUSiWSk5M7/MDZ3kpOToZCoaDRLAghxIrm5mbk5+cjLi4OCQkJdH8mhBBCiEU5OTkQiUR44IEH0KdPH+Tm5lptu2DBAnAch+eeew7btm2z+xhyuRwbN27s8uN+8803ePrppwUPC9vip59+wqBBg9o0pYgler0ecrmcBayNNBqN1ZCQRCJh761MFRQUdMqouw0NDSgtLcWpU6fsnl7MGBACQCEhql5VFBIiROiVV17BfffdBw8PD8FyrVaL+++/H0uWLMGtW7cAAAEBAR0KCdm7T2P4Z+rUqbh+/ToAYNu2bbj33ntRVFRk1s70dX/dunUYNGgQSktLAdz+LPv111+Hn59fu65PW0JCKdnZ2BQY6PRgkD0hIYPBwN4XREdH0xfBCCF3LQoJEUIIITZoNBpkZmba9dBYIpFAKpUiMzMTxcXFNksmk0EqlbIPRe15IK1UKp19OQghvdzVq1dRUlKCM2fOoKSkBFevXnV2l6wyPnBqy/1ZJpO1en/OzMxs0/1ZKpVC08ow1oQQQgjpHkQiEe677z68/vrrFtf/+uuvGDhwIDiOw6+tfAv9TgcPHkT//v27/LiA5YeFramtrcXkyZPx7rvv4r777uuUkJBEIoFMJuvQv13r6uoE77PaylYwKDIyEhkZGaisrAQAnD592mpACKCQEFXvKgoJESJ06NAhcByHuLg4s3VxcXFwcXHB8OHDMWnSJPj5+YHjOIwYMQL79+9HVFQUXFxcwHEcXFxcsHz5crZtSEiIYF1ISIhd+wwICMBTTz0FjuMQEhKC0aNHY8iQIXjiiScQFRXF9m/abtSoUZBIJACAlpYWfPXVVxg5ciTGjRuHcePGYevWrWhpaWnTdZk1axZEIhH69OmDRx99FCKRCMePH7e5zaWqKuw5cgQJRUVODwcdOXMG3x07htr6eot9zczMZK/7pq/5hBByt6GQECGEEGJBaw+fjd+CVCqVnTKShF6vR3V1NYqLi20eVyKRUFiIENLpLl26hN27d2PTpk1mtXv3bly6dMnZXWSqq6vtuj9XV1d36v05Pz+/1eNSWIgQQgjp3kQiERYvXow+ffqgsLDQbP2iRYvw1ltvOSQk5KjjAu0LCVVVVSEtLQ1A20YLMKquroZEInHIN/CNI/naOw2ZTqeDXC5HdHR0q8EgU5WVlaxdQkICGhoaBOspJETVm4pCQoQQR1PqdMi4fBk/xMRgV1gYdoWF4aRczgI8jl6+//hxbAoMxBELwS8AKC8vZ6/7xhGXCCHkbkUhIUIIIeQOJSUlFh8AZ2ZmQqlUdskwpMYPRa2NYpSZmUnDoRLSCY4cOYJXXnkFo0aNwvPPP4/nn38eb7zxBsLDw9HU1NTl/bE0TUVbKRQK3H///Zg6dapd7RMSEiyGg+6sM2fOdKhfd6qtrUVzc7Pd7Q0GA+Ryebe/PxcUFDi8D4QQQghpH5FIhNzcXPz5z3/G/PnzBevKysowfvx4HD582CysExERgfHjx4PneUyYMAHu7u64cOECWx8QEIDHHnsMffr0gUgkgkgkwv79+zt03G3btuGxxx4TBI9WrVqFRx99FCNHjhTsoz0hIVNtDQkplUoWku6q6VcLCgoE7/VsBYOio6Mhl8tbHSGgsbGRBYQsvY+kkBBVbyoKCRFCukqCVIpDYjEOicW4avJlKkcvzzh/HnnFxWi8ccOsTw0NDYiMjER4eDgLSRNCyN2MQkKEEELI/zEYDGajRMTGxkImk3XZB5/W+lVcXIzY2FizKcic2S9Cerp33nkHTz/9tGBed51Oh//93/+1OuS0o9n6Bro9WlpaMHHiRDz44IN2hYTy8vIEQSB/f3+Eh4cjJSUF4eHh8Pf3F6wvLi5ud9/uJJPJEBkZicLCwlbDPQaDAcnJyWb35+LiYqcGJvV6vdX7MwU5CSGEkO5HJBKhvLwc69atwz333CP4Fvk777yDmJgYiyGhuXPnIiwsjP28d+9eDBs2DI2NjWxZayMJtee4lva5du1ap4eENBoN8vPz23Ws9tDr9YiNjUVaWhoyMzPZQ772BIPudObMGavBdQoJUfWmopAQIeRuZpyGNDIykj6vIYQQUEiIEEIIYfLz87v1aD0Gg8Gsj1Kp1NndIqRH+uGHH3DPPfegpKTEbN3NmzcxfPjwHhkSCggIgLe3N8aOHdtqSKi2tlYQAgoPDxc86AJ+/3a1aYiotra23f0zJZPJBNNA2AoL3RngzM/P73b35ztHFsrMzHR2twghhBByB2NYR6PR4IEHHsDChQsB3B4Z56WXXgIAi2Gdqqoq3Lp1i/1cW1sLjuOQkZHBltkTEmrrcbtrSMgZZDIZxGKxIBiUkJCA0tJSs2nCOguFhKh6U1FIiJC727Jly6xWTEyMs7vnUHK5nL13UKvVzu4OIYR0CxQSIoQQQgBUV1cLHu4qlUpnd8kqjUYj6GtnjuxByN3iqaeewsSJE62uT0tLQ2VlJYDbo/N89dVXePbZZzF27Fi4uLjAz8+PPSjy9/cHx3Fs9KGXX34ZAwcOxPPPPw+ZTCbYb0pKCiZMmMCmqpgxYwYL+7U2TUVrSkpK8N///d+4du2aXSGhlJQUFv757rvvbLb97rvvWNuUlBS7+2SLaUjIVljIOJ1FT7g/39nX6upqZ3eJEEIIISaMYR3g9tRd9957L8rKyrB06VJERkYCsBzWKSoqgqenJ0aPHg2RSIQxY8aA4zicOHGCtbEnJNTW41JI6HcymQyxsbEODwaZopAQVW8qCgkRQoDbo/OtXr0aEyZMwMsvv4zHHnsM06dPb9N08D1JZWUl+8yJpocnhJDfUUiIEEIIgXAUoTsf6ndHCoWCRhMipJ1qamrAcRzef/99u9qvW7cOjzzyCCoqKgDc/ib50KFDsXLlStYmPz8fHMfB3d0dpaWl+O233zBu3DiIRCLWxmAw4M9//jMkEglb9uGHHwoeyLR3JKFbt25h7Nix+OWXXwDArpDQoUOH7J5GrLi4mLU9cOAA1Gp1h0sqlZqFhIx1/PhxZGVl4cqVK4JpxhQKRZuvTVcrLi6m0YQIIYSQbso0rKNSqTBw4EDMmDEDL774IlpaWgCYh3X0ej0efvhheHl5oampCcDt0RY5jmMBH8D+kJC9xwWAH3/80Wyfn376qdNDQpmZmZBKpV02sqPxizJdOcUZQCEhqt5VFBIihNy6dQsvv/wyVq5cyd5/XLhwAf369TMbWbo3MBgMbIrSpKQkZ3eHEEK6FQoJEUIIIYDgIXRdXZ2zu9Mqg8EgGK2CEGK/ixcvguM4rF69utW2DQ0NGDBgAD777DPBcl9fX/Tr1w86nQ7A7yGhI0eOsDaBgYHo168f++BFrVaD4zjs3buXtVGr1SgtLWU/tzcktH37dixbtoz9bE9IyHSqsdY+DGpsbGRtt2zZYjXc05YKCwuzq11UVBS71+n1+jZfm66m1+tZf00DYYQQQghxPtOwDgB89NFH4DgOYWFhbNmdYZ3s7GxwHIfo6GjWxjjdmGlIyDTQ09LSInjf0p7jAkBkZCQ4jsONGzfYsjfeeMPpISHjSLzJycntOl5b1dXVdWkoyYhCQlS9qSgkRAj58ccfMXjwYLPX0+TkZMG0qr1FUlISG7W6K0YgJP+fvXsPb7K+/z8emQhec5vXxsUccLk5h4cfW6cT7aYI81o4FJinr4fpPHDtoDIGnh0MD4wxCtaJIAp1CgijQhkWCrSFgCm0XW16ptUeMEALBRpLCi0lkEBfvz9Ybnu3aZuWpinwfFzX+7rMJ/f9ySchd2zuvO7PB8C5hJAQAACSMjIyjB91a2pqwj2cdhESAjrP7XYHPZNQVlaWLBaLli5damqPi4uTxWLRjh07JH0VEsrNzTW2Wbt2rSwWi+lExPTp0/W1r31NV199taZOnarPPvvM1G9nQkKff/65/t//+3+mx+nqkNCRI0eMbefOnUtIqA1Hjx4lJAQAQA/VPKxTXV2tJUuWmH4Yax7Wcbvd+vrXv64nnnjC2G7evHktQkIpKSmyWCxqaGhQVlaWfvazn53V40rSnj171KtXLyOgtGvXLg0cODDsISHpzOw+TWd57MoAT0NDg5xOZ7eHgpojJESdT0VICMDo0aN13333dXi/mJgYWSwWWSwWJScna/jw4br00kt1++23q7KyUuvXr9dVV12lyy+/XBMnTjT9fdPY2Kg33nhDP/3pT3XbbbcpIiJC0dHRxjZN+05JSZHValWfPn1ksVhUVFSkxsZGRUdH68Ybb9Qdd9yhW2+9VQsXLjQuyGtNcXGxcV5p//79HX7OAHC+IyQEAIDMy42dC8vDsNwYcHauu+46jRgxotX7T548KZ/P1+GQUNMlEPxXftfX15v23b9/v958803dcMMNuuiiizRv3jzjvs6EhKKjo3X99dcrMjLSqG984xu6/PLLFRkZqQkTJgTcr7PLjS1fvrxD42tNXl5eq8GghIQEFRcXy+v1yuFwGJ937Y2zJ8jPzz+nlq8EAOBC4HQ6FRkZqcsuu0w33HCDFi9eHHC7yZMn60c/+pEsFotuuOEGYwbI5ORkRURE6Oqrr9bIkSMVHR0ti8Wia665xujL6/Vq3Lhxuummm3TLLbcoOTn5rB9XkhYsWKAf/OAH+vnPf64pU6boxRdf1KWXXqrIyEi5XC7NmzdP119/vSwWi2666aYOhZTvvvtuRUZG6qKLLtLAgQMVGRmpjz/+OOj9myoqKlJSUpIcDsdZXXjTdOnWysrKTvfTFQgJUedTERIC8N3vfleTJk3SjBkzZLVaNWLECE2aNEnV1dXt7us/7zV+/Hjt3r1b+/fv13XXXadhw4bp6aefVm1trbZt26ZevXpp7dq1xn4vv/yyvve972nfvn2SpKqqKg0aNEgvvvhii75/9atfqbCwUG63WxERESoqKtK0adM0ePBgHT58WJJ06NAhDRgwwHQurTmXy2WcX8rPz+/sywUA5zVCQgAA6MxVkE1n5ikrKwv3kFpVWVlpGmvTqzcBBGfJkiX62te+ZrpS2+/w4cO67LLLlJCQoPr6evXt21fTpk0zbfPaa68FXG6srZBQbW1tix9tHnvsMV111VXG7baWqeiIYGYS2r59uxH8+de//tXqbEIej0dvv/22se327ds7NabmAoWEmoaD/PzLWfSUH4va0jTAmZiYqIMHD4Z7SAAAAN2ipqZGeXl5stlspr+B8vLylJSUpIyMDNPfcU3/bmoaBD948KCcTmdIZ5BsunxbWwgJUedTERICcPHFF6t3796KiYmRdCbg/NBDD+n73/++6urq2tzXf94rPj7eaJs+fbp69eqlI0eOGG0RERGaOnWqJOnYsWPq27ev/vrXv5r6mjFjRsBzaitXrjS2qa6u1uHDh9W3b19jvH7PPfecBgwY0OpYy8vLFR8fr82bN7f5nADgQkZICACA/2k6m5B/hp6etLRN8xk1mEUIODuTJk1SRESEKRS4b98+/fKXv9Q999xjTF3c2lVPL7zwgrFfMCGhkpIS/eAHPzCdPPntb3+r8ePHG7fbWqaiI4IJCXk8HtOSYytWrDCNTTqzzNiKFSuMbWJiYtpdmixYTUNCgcJBTTX/7HM4HD3q87mhocG0bCWzCAEAAJxRWVmpoqIiZWRkmGYYqqysVGlpqUpLS3X06NFuHVNJSYkSEhKUnp6u8vJy07K9TRESos6nIiQEoG/fvrriiitMS3VVVlbKYrFo0aJFbe7rP+/V9FxHTEyM+vfvb9puxIgReuqppySpw7Nz5+bmmrbz7z948GDT7NlDhgzRoEGDWszc3ZTL5TJCSACAlggJAQDQRPMfohMTE5Wfn9/tJy2bamhoUH5+vpKSkkzjSk1NbfUHdQDBWb16tYYPH64bb7xRN910k26++Wa99dZb8vl8xjaNjY2KiYlRRESEbrvtNv3kJz8xrZ++fv16RUREyGKxKCIiQjabTUuXLtU111wji8Wim2++Wbm5uTp69KgmT56soUOHymq16tZbb9XDDz+sQ4cOGY8VaJmKjli8eHGL5caaXonVXNNlxPwhoBUrVmjHjh1asWKFKUQUzLJkHZGXl9duOMjP6/W2COH4P5/DGRbyfz43H1dGRgafzwAAAD1U02VI/LVx40Y5HA5VVVUZf8cREqLOpyIkBOCaa67R0KFDW7RffPHFevbZZ9vcN9DFcTExMRo4cKBpuxEjRujJJ5+U1PGQUNO+m+7/wQcfBP0cAQDBISQEAEAzzZeLaRrKCfW0534NDQ1yOp1KTU0NOBZmqADQVZouO9ZWddUyY34NDQ06depUh/ZpPuNbT/x87sogFQAAQGdMmjSp1dq0aVO4hxd2Xq+3RUioea1bt07r1q0jJESdN0VICMDEiRNbLNPlcrlksVg0d+7cNvftTEiovr5effv21bRp00zbvPbaawGXG2seEvLv33Qmb+nMufspU6YE8YwBAK0hJAQAQAANDQ3Ky8sL+ANwYmKibDabHA6HnE6nampqznrGiJqaGlVWVio/P7/VH579s1M0naIdALrCoUOH9N577wUMB7333num2Y7CraamJuCsQk0/n/Pz843P5654PKfTqfz8fNlsNj6fAQBAt1qxYoX69eun6dOnt7pNQ0ODpk6dquHDh+uXv/ylfvjDH+rXv/61aXZMfKWxsbHdkJC/CAlR50s1DQl19QUgAEJj+fLluuKKK0zhmWDbAnE6nbrsssu0bNkyo+35559Xv379dPDgwTb37UxISJJefvllfe9739O+ffskSVVVVRo0aJAp+NNaSMi/f79+/VReXi7pTND3vvvuU3R0dJvjBQC0jZAQAABtaC8sFGg2i4yMDGVkZMjhcKisrMxU+fn5xv1t/cjdvBwOBz8+Awg5j8ejvXv3avv27dq7d688Hk+4h9Sqmpoapaend9nns8PhMO5vK6wZaGY3Pp8BAEBXO3LkiMaMGaOnnnpKvXv3bjUkdPr0af3yl7/Uiy++qMbGRknS559/rksuuaRH/y3X3Vwul8rLy+VwOLRlyxatXr26zXDQmjVrlJ6eboQq4uPjwx7yoKizqaysLOP9vHPnznAfkgCC8P777+tb3/qW8vPzO9zWGofDoREjRujnP/+5hg8frvvvv19ffPFFm/usX79eERERslgsioiIkM1m08yZM3XllVfqkksuUWRkpOrr6zV69Gh94xvfUP/+/fXoo49KOhPMjYmJUUREhG677Tb95Cc/UXR0tE6fPh2w78mTJ5seu7GxUW+88YaGDBmiYcOGadiwYZozZ47xNw8AoHMICQEAEASv16vKyko5HI6gfzg+23I4HKqsrDzrWYoAnNtYLqIlj8ejgoIC2Ww2bdmyRXv37uXzGQAAnFeqqqqUnp4uSerTp0+rIaFly5apf//+Lf4uSU1NNX6Au9A0DwQFCgG1FRLavHmzsQSKP1QRFxcX9pAHRZ1NERICAACAHyEhAAA64ejRo3I6ncrLy+vQjEBtzXDRdPkyAEBgFRUVstvtstlsstlsstvtpqvk/cuDddXnc0ZGhvLy8uR0OnX06NEwPnMAAHChaiskNHr0aN13330d7jMmJkYWi0UWi0XJyckaPny4Lr30Ut1+++2qrKzU+vXrddVVV+nyyy/XxIkTTYEj/1X9P/3pT3XbbbcpIiLCNCtA075TUlJktVrVp08fYymRxsZGRUdH68Ybb9Qdd9yhW2+9VQsXLuzUrADBBIL8tXHjRqWnp6u4uFi7du0KuE16eropcLVu3TojWOF0OsMe9KCoztaGDRuM97J/2R8AAABcmAgJAQDQhWpqaow6ePCgSktLlZSUpKSkJOXn56uystK0DQAgOHV1dcrMzDTCQTabTdnZ2UEvoxHo87lpHTx4kM9nAADQI7UVEvrud7+rSZMmacaMGbJarRoxYoQmTZqk6urqdvstKiqSxWLR+PHjtXv3bu3fv1/XXXedhg0bpqefflq1tbXatm2bevXqpbVr1xr7vfzyy/re975nBA2qqqo0aNAgvfjiiy36/tWvfqXCwkK53W5FRESoqKhI06ZN0+DBg3X48GFJ0qFDhzRgwADNmzevzfF2NhDkcrlazLTk8Xha7FNeXt7iMXNzc41gRUZGRtiDHhTVmaqqqjLNisWMqAAAABc2QkIAAISY/8dst9sd7qEAwDnH5/OprKzMFA6y2+2qqqoK99AAAAC6RVshoYsvvli9e/dWTEyMpDNLZT/00EP6/ve/r7q6ujb79Qd54uPjjbbp06erV69eOnLkiNEWERGhqVOnSpKOHTumvn376q9//auprxkzZuiSSy4xluny971y5Upjm+rqah0+fFh9+/Y1xuv33HPPacCAAW2Od/PmzZ0KBAXS2Nho7J+QkCCXyxVwu3379hnBCv924Q58UFRHq+lSY9u3b2/3+AAAAMD5jZAQAAAhRkgIADrH5XIpLS3NFBAqLi6Wz+cL99AAAAC6TVshob59++qKK64wLdVVWVkpi8WiRYsWtdmvP8iTl5dntMXExKh///6m7UaMGKGnnnpKkpSVlSWLxaKlS5eatomLi5PFYtGOHTtMfefm5pq28+8/ePBgRUZGGjVkyBANGjRI9fX1rY43KyurU4Gg1mzYsEGbN29ut4+mS45lZWWFPfBBUR0pl8ul+Ph407J5AAAAuLAREgIAIMQICQFAx/h8PhUUFJjCQWlpaXyOAgCAC1JbIaFrrrlGQ4cObdF+8cUX69lnn22zX3+Qp6ioyGiLiYnRwIEDTduNGDFCTz75pKSOh4Sa9t10/w8++KDNsXUH/6xH7XE6nUbAIj4+XlVVVWEPflBUsJWammq8f9etWxfiowoAAADnAkJCAACEGCEhAAheRUWF7Ha7KSDE1a4AAOBC1lZIaOLEiS2W6XK5XLJYLJo7d26b/XYmJFRfX6++fftq2rRppm1ee+21gMuNNQ8J+fd/4YUXTO1Op1NTpkxpc7zh1HQ2oQ0bNrDsGHVOVFFRkfG+jYuL0759+8J9KAEAAKAHICQEAECIERICgPbV1dUpJyfHFA7Kzs5WXV1duIcGAADQruXLl+uKK64whWKCbWtPWyEhp9Opyy67TMuWLTPann/+efXr108HDx5ss9/OhIQk6eWXX9b3vvc9I3BQVVWlQYMGmYI/rYWE/Pv369dP5eXlkiSv16v77rtP0dHRbY43nNxut9asWWOELbZu3UpQiOrR1TwglJmZGe7DCAAAAD0EISEAAEKMkBAAtM7n88npdJrCQXa7XRUVFeEeGgAAQNDef/99fetb31J+fn6H21pz9913KzIyUhdddJEGDhyoyMhIffzxxy22czgcGjFihH7+859r+PDhuv/++/XFF1+02ff69esVEREhi8WiiIgI2Ww2zZw5U1deeaUuueQSRUZGqr6+XqNHj9Y3vvEN9e/fX48++qgkqbGxUTExMYqIiNBtt92mn/zkJ4qOjtbp06cD9j158mTTYzc2NuqNN97QkCFDNGzYMA0bNkxz5sxRY2Nju69JODVddowZhaieXPn5+ab3alJSkrxeb7gPIQAAAPQQhIQAAAgxQkIAEJjb7VZaWpopIFRQUCCfzxfuoQEAAAAtlJaWmsIX8fHxKi4uDnsohKLcbreqqqq0detW03t03bp1BIQAAABgQkgIAIAQIyQEAGY+n08FBQWmcFBaWhqfkwAAAOjxms8oFBcXp4SEBBUXF6uqqirsQRHqwqsvvvhCqampLd6XzCAEAACAQAgJAQAQYoSEAOArFRUVstvtpoCQ0+lk9iAAAACcM9xut9asWdMilOFfhiwlJUUZGRnKzs6mqJDU1q1blZKSovj4+IDvw9zc3HAfJgAAAOihCAkBABBihIQAQKqrq1NOTo4pHJSdna26urpwDw0AAADoMK/Xq507d7YaKyyZegAAIABJREFUFqKocNTWrVtVXV0d7sMDAAAAPRghIQAAQoyQEIALndPpNIWD7Ha7Kioqwj0sAAAA4Kx5vV6VlpZq+/btYQ+IUBdmrVu3Trm5uYSDAAAAEBRCQgAAhBghIQAXKrfbrbS0NFNAqKCggKXFAAAAcF7yer2qrq5WdXW1SktLtXPnTooKSe3bt0/V1dWcawIAAECHERICACDECAkBuND4fD4VFxebwkFpaWlyuVzhHhoAAAAAAAAAABcsQkIAAIQYISEAF5IDBw7IbrebAkKlpaXMHgQAAAAAAAAAQJgREgIAIMQICQG4EHg8HuXk5JjCQZmZmaqrqwv30AAAAAAAAAAAgAgJAQAQcoSEAJzvnE6nKRxkt9tVUVER7mEBAAAAAAAAAIAmCAkBABBihIQAnK/cbrfS0tJMAaGCggJ5PJ5wDw0AAAAAAAAAADRDSAgAgBAjJATgfOPz+VRcXGwKB6WlpcnlcoV7aAAAAAAAAAAAoBWEhAAACDFCQgDOJwcOHJDdbjcFhEpLS+Xz+cI9NAAAAAAAAAAA0AZCQgAAhBghIQDnA4/Ho5ycHFM4KDMzU3V1deEeGgAAAAAAAAAACAIhIQAAQoyQEIBzndPpNM0eZLfbVVFREe5hAQAAAAAAAACADiAkBABAiBESAnCucrvdyszMNM0elJ2dLY/HE+6hAQAAAAAAAACADiIkBABAiBESAnCu8fl8KisrM4WD7Ha7XC5XuIcGAAAAAAAAAAA6iZAQAAAhRkgIwLnE5XKZlhaz2WwqLS2Vz+cL99AAAAAAAAAAAMBZICQEAECIERIC0FPU1taqvr4+4H0ej0c5OTmmcFBmZiafXQAAAAAAAAAAnCcICQEAEGKEhACE26lTp7Ry5UrFxcXp1VdfVVxcnE6dOmXc73Q6TbMH2e12OZ3OMI4YAAAAAAAAAAB0NUJCAACEGCEhAOH23//+V9u2bZMknTx5Uq+//rqWLVsmt9utzMxM0+xB2dnZ8ng8YR4xAAAAAAAAAADoaoSEAAAIMUJCAMJt/fr1Sk5ONm7X1NRoypQp+vDDD02zB7lcrjCOEgAAAAAAAAAAhBIhIQAAQoyQEIDu1tjYaLqdl5en1157TadPn5bL5ZLdbte7776rl156STabTaWlpfL5fGEaLQAAAAAAAAAA6A6EhAAACDFCQgC606pVq7R161ZTm8/n04svvqiVK1can0mbN2/Wn//8Z+3Zsyc8AwUAAAAAAAAAAN2KkBAAACFGSAhAd6mtrdVbb72lyZMn6/Dhw0Z7RUWFPvzwQ/3pT39SQkKCbDabnE6n5s+fr+rq6jCOGAAAAAAAAAAAdBdCQgAAhBghIQDd5dNPP1VNTY1WrFihhQsXqq6uTpmZmcbn0JtvvqnnnntO5eXl+vLLL7Vo0aJwDxkAAAAAAAAAAHQTQkIAAIRIeXm5PvvsM23evJmQEIBudfToUT3zzDNaunSpERCy2+2qqqrSzp07tXTpUiUmJur48ePhHioAAAAAAAAAAOgmhIQAAAiBxMRETZ06VdOnT9crr7yiLVu2EBICEDI1NTVG4MflciktLU1LlizRlClTtGnTJhUXF8vn84V5lAAAAAAAAAAAIJwICQEAEAKxsbFqbGyUJL355ptauXKl3G63jh8/ri+++CLMowNwvnnvvff02WefqaCgwJg5yGazacaMGVqyZIl8Pp++/PLLcA8TAAAAAAAAAACEESEhAABCYPXq1cZ/JyUl6e9//7s+/vhj5eTkaPr06WEcGYDz0V/+8hdt3brVFBByOp2qqanR5MmT9d5772n//v3hHiYAAAAAAAAAAAgjQkIAAITA22+/raysLEkyfrD3Lzfmn2EIADrLZrMpLS1N5eXlstlsmjZtmvFZk52dLY/HI0lKSEjQtm3b+NwBAAAAAAAAAACEhAAACAWXy6U9e/ZIahkSAoBgHT16VKtWrdI//vEPxcbG6sSJE5Kk8vJyLV++XK+88oomT56sZ599VgsXLlRaWpqxjSR5vd5wDR0AAAAAAAAAAPQwhIQAAAgxQkIAOqOurk5vvfWWGhoadOrUKf3zn//Uxx9/LLfbrbS0NOOzZe7cufrwww9lt9v1wQcfaM6cOeEeOgAAAAAAAAAA6IEICQEAEGKEhAB0RmVlpZYsWWLc/vTTTxUdHW18pviXHPvb3/6murq6MI4UAAAAAAAAAACcCwgJAQAQYoSEAHTW0aNHJUkVFRV655139P777xufKU6nU8eOHdOrr74a5lECAAAAAAAAAIBzASEhAABCjJAQgM6qq6tTTk6ONm/erOnTp8tmsyk7O9uYOai+vl7Z2dlhHiUAAAAAAAAAADgXEBICACDECAkB6Cifzyen02laWmzx4sVyOBzhHhoAAAAAAAAAADhHERICACDECAkB6Ai32620tDRTQKigoEA+n0/5+fkqKSkJ9xABAAAAAAAAAMA5iJAQAAAhRkgIQDB8Pp8KCgpM4aC0tDTTZ8emTZu0Y8eOMI4SAAAAAAAAAACcqwgJAQAQYoSEALSnoqJCdrvdFBByOp3y+XzhHhoAAAAAAAAAADhPEBICACDECAkBaI3H41FOTo4pHJSdna26urpwDw0AAAAAAAAAAJxnCAkBABBihIQABOJ0Ok3hILvdroqKinAPCwAAAAAAAAAAnKcICQEAEGKEhAA05Xa7lZaWZgoIFRQUyOPxhHtoAAAAAAAAAADgPEZICACAECMkBECSfD6fiouLTeGgtLQ0uVyucA8NAAAAAAAAAABcAAgJAQAuaFFRURo9erSsVqtGjRqlqKioFjVq1Ci98847nX6MUIWEPvroI0VFRclqterVV1/t0r6B80FPOkYOHDggu91uCgiVlpbK5/OFdVwAAAAAAAAAAODCQUgIAHDB++STT2S1WhUfHx/w/iVLlvTIkJDfPffcE/YABNCThfMY8Xg8ysnJMYWDMjMzVVdXF5bxAAAAAAAAAAi9zRkZWpGYqBWJiSosLTXaC0tLQ96+5b//1d6qqhA/QwDnKkJCAIALHiEh4PwWrmPE6XSawkF2u10VFRXdPg4AAAAAAACgK+3bt0+33HKLLBaLvv3tb+vBBx803b93715FRkaqd+/eioyM1PHjx8/q8d5//30NGDCgQxfezZ8/Xz/+8Y9lsVj05ZdfnvV2wao/cUK5+/fr/U2btGD1ai1YvVqrduzQtl27tG3XLq3asSPk7XM++ECzYmNN4SEA8CMkBAC44LUXEvJ6vfJ6vZ3un5AQEF7dfYy43W6lpaWZAkIFBQXyeDzdNgYAAAAAAAAg1G6++WYNGjRIp0+fbnFfbm6uxo4d2yWPk5ubq6lTp+rUqVMd2s9mswUV/gl2u/ZkFhZqW1mZEdgJV20uKVHs+vWqrK4+q+cD4PxESAgAcMFrLSRUUFCg3//+9wH3cTqdevHFFzV27Fjdc889mj17tvLy8mS1WjVq1ChFRUVJkpYvX67Ro0fLarXqzTffNPb/5z//qTFjxshqtWrTpk2mvqurq7Vo0SL97ne/0/3336/f/OY3evnll7V79+6AYyEkhHOB/zizWq164okntG/fPj3zzDMaO3as/vjHPyo3N1eSlJKSoocfflh33XWXZsyYoSNHjhh9LF++XFFRUbJarabZvdo6nqTuO0Z8Pp/KyspM4aC0tDS5XK6QPzYAAAAAAADQ3d59911ZLBYlJye3uG/SpElas2ZNGEb1le4MCXlOntSs2Fj9+5NPwh4S8tfuw4c7/XwAnL8ICQEALngdDQlVVVXprrvu0iOPPKLCwkJ9+eWXSkxM1COPPBKwnw0bNrQICUnS559/HjDUkJKSorvvvlslJSWSpIaGBsXExCgqKkp79+5tMR5CQjgXHDlyREVFRZowYYImTJigF154QVu3btX27dv16KOPaty4cUpJSdGMGTOUmZmpjz76SKNGjdLs2bNN/dTX17cICUmtH09S9xwjLpdLdrvdFBAqLS2Vz+cL6eMCAAAAAAAA4VJbW6u+ffvq/vvvN7WfOHFCgwcP1smTJyVJa9as0e233y6r1arhw4crKipKn3/+ubF9TEyMLBaLLBaLUlJSZLVa1adPH1ksFs2ZM0cRERGyWCwqKioy9mmvT+mr8E9KSopuv/12DRw4UNdee60SExMDbtc0JNTY2Kjo6GjdeOONuuOOO3Trrbdq4cKFamxsDPha7K2q0qzYWCU4HGEPBxESAtAWQkIAgAuePyQ0ZswYjR8/3qioqKiAIaHZs2fLarWqsLDQ1L5w4cIuCQl9+umnLa6w8Hq9Gjt2rObPn99iPISEcC6ZOHGirFarEYKTpG3btslqterxxx83TU08ffp0RUVFmb5497SQkMfjUU5OjikclJmZGbLlBQEAAAAAAICe5KGHHlKfPn10uEkgZdWqVZoyZYpx+8EHH9Tq1auN2++8846uuuoqeTweo62oqEgWi0W/+tWvVFhYKLfbrYiICBUVFRn3NQ0JBdOnP/zzwAMP6Pjx45KkuXPn6uKLLzadnwwUEpo2bZoGDx5sPK9Dhw5pwIABmjdvXsDX4VBNjd5bu1Yb8vPDHg7atmuXNuTn619r1+pQTU3w/5gALgiEhAAAFzx/SOj999/X/v37jdq6dWuLkFBjY6PuvPNO3XPPPS36cTgcXRISas3jjz+u559/vkU7ISGcSyZOnKh7773X1LZr1y5ZrVa9/fbbpvbY2FhZrVbV1tYabT0pJOR0Ok2zB9ntdjmdzi5/HAAAAAAAAKCn8gdsml7gOnr0aBUUFBi3q6qqTBcHHjlyRBaLRVlZWUabPwi0cuVKo626ulonT54MGBIKpk//2NLS0ow2n8+nfv366Y9//GOL7fwhofr6evXt21cxMTGm5/rcc89pwIABrb4Wuw8fDns4yF8JDodmxcYqw+FodbwALkyEhAAAF7zWlhurqqpq0XbkyBFZrVb94Q9/aNHPF1980SUhoRMnTmjVqlV64okndNdddykqKkpRUVGyWq3685//3OJxCQnhXDJx4sQW4buKigpZrVb9+9//NrV/+OGHslqtOnjwoNHWE0JCbrdbmZmZptmDsrOzTVcpAQAAAAAAABeC06dP68orr9QNN9wgSdq3b5+GDh1q2qakpESPPvqohg4dqsjISN1yyy2yWCxat26dsY0/CJSbm9viMQKFhILp0x/+OXDggKm/yMhI/eIXv2ixnT8klJWVJYvFosGDBysyMtKoIUOGaNCgQaqvrw/4WvTEkNCHcXFyuVzB/nMCuAAQEgIAXPBaCwkF4g8JBVqGrKMhoeLi4oChhhkzZshqtSoxMVENDQ1G+4QJEwgJ4Zw3ceJEPfHEE6Y2f0joo48+MrV3JCTU2vEkdd0x4vP5VFZWZgoH2e12vmQDAAAAAADggvbqq68aAZ9Zs2aZZgxvaGjQFVdcoccee0wnTpyQJHk8HlksFiUkJBjbBQoCtXZfsH2ebUjogw8+CPo18Jw8qU/LyrS5pCTsAaFtu3Zpc0mJ1qWm6qPVq7Vx40Z5vd6gnwuA8xshIQDABa+9kNDRo0e1f/9+SV8tN3b33Xe32K615cY2bdokq9Wq119/3dSenp7eItRw7NgxWa1WTZo0qUX/hIRwPjjbkNDx48dltVpN0xdLgY8nv644Rlwul2lpMZvNptLSUvl8vrPqFwAAAAAAADjX7d69WxdddJEmTZqkIUOG6PDhw8Z9OTk5slgs2rhxo9HmXxqssyGhYPtsbbmx73znO0EtN/bCCy+YxuF0OjVlypSAr8HeqirNio1VgsMR9oCQv8oOHdLmzZu5yBGACSEhAMAFr72QUEpKiqZPn27cnj17tqxWqwoLC03bLVy4MGA/NptNY8eO1UsvvWRqX7RoUYtQw8mTJzVq1ChNnDjRtK3X69X48eMJCeGcd7YhIUm68847TcekFPh48jubY8Tj8SgnJ8cUDsrMzJTb7e5UfwAAAAAAAMD56I477lDv3r31wAMPmNrdbre+/vWv64knntDp06clSfPmzTurkFCwffrDP+PGjdPx48clSXPnztXFF1+skpKSFtv5Q0KS9PLLL6tfv34qLy+XdOYc/X333afo6OiAz99z8qRmxcbq3598EvZwkL92NwlrAYAfISEAwAWvoyGhqqoq3XXXXXrkkUdUWFioL7/8Uhs2bNAzzzzTakhoypQpioqKUl5enrxerzIzM43tm4caXnvtNVmtVq1Zs0bHjx9XbW2t5s6dK6vVSkgI57yuCAnNnj076ONJ6vwx4nQ6TbMH2e12OZ3ODvcDAAAAAAAAnO+WL18ui8Wi5OTkFvclJycrIiJCV199tUaOHKno6GhZLBZdc801Wrx4sdavX6+IiAhZLBZFRERo8uTJxr4rV6403bdy5cqg+pw3b56uv/56WSwWrVy5UkOHDtWAAQN07bXXav369Ub/Tbe76aabZLPZJJ1ZVeCNN97QkCFDNGzYMA0bNkxz5sxRY2Njq6/BquRkrU1PD3s4aHNJid5evVoZBQWm8e3Zs+ds/okBnCcICQEALmhRUVEaPXq0rFarRo0apaioqBY1atSoFrOWOJ1OvfDCC4qKitK9996r+fPnq7S0tNWQUGJiombMmKF7771X99xzjxYsWKDCwkLjcR988EFj+/r6ei1YsEC/+c1vNGbMGD3++OP6+OOP9fjjj8tqtSoqKkolJSX66KOPFBUVJavVqpEjRxrtQE+Un59vvF+bvo9jY2M1ZswY41h4/PHHJUkPP/ywRo0aJavVqjFjxujdd981+qqrq9Ps2bPbPZ46e4zU1dUpMzPTNHtQdna2PB5PSF4bAAAAAAAAAOcHj8+nwgMHtKmwUAtWr9aC1av1/qZNRoBnQ35+yNtnxcbq9aVLdaimxhjXli1bFB8fr+Li4jC+OgB6AkJCAAB0kd27d7caErLZbCxPBPRwPp9PZWVlpnCQ3W5nzW4AAAAAAAAAHXKopkbLExO1PDFRmzMyurU9a+dOHamrM42nuLhY8fHxio+PV21tbSieMoBzBCEhAAC6CCEh4NzlcrmUlpZmCggVFxfL5/OFe2gAAAAAAAAAcFa8Xq82btzITEIACAkBANBVCAkB5x6Px6OCggJTOCgtLY3jFQAAAAAAAAAAnHcICQEA0AVeeeUVjRo1SlarVSNHjtSoUaOM+wgJAT1TRUWF7Ha7KSDkdDrDPSwAAAAAAAAACCmXy6Vjx46FexgAwoCQEAAAIUZICOhZ6urqlJmZaQoHZWdny+PxhHtoAAAAQI9zpL5WlQf3qGhXvtLz7RQV0qo8uEeVB/eE+20PAMB5rbi4WPHx8bLb7eEeCoAwICQEAECIERICegafz6eysjJTOMhut6uqqircQwMAAAB6lCP1tUrPt2vpukWau+Q1iur2euvf0dq0I0FFu/LDfTgAAHDe2b9/v+Lj4xUfH689e/aEezgAuhkhIQAAQoyQEBB+LpdLaWlppoBQcXGxfD5fuIcGAAAA9BgnTnqUnm8Pe0CEoprWovh5qmB2IQAAulR6errS09Pl9XrDPRQA3YyQEAAAXeTo0aOqqamR0+lUWVmZUcnJyUpOTlZhYaHR5nQ6VVNTo5qamnAPG+hRWjuOApX/ODp69Gir/fl8PhUUFJjCQWlpaYT2AAAAgGbK95borX9HBw5pJLyhpclv6yN7LEWFtBYlvKG3Vv4j4Pvw460f6cRJlokGAAAAzgYhIQAAOsjr9aqmpkZlZWXKyMhQUlKSEhMTz7oyMjJUXFysgwcPqqGhIdxPEwgpr9ergwcPGsdRVxxD/uOorKzMOI4yMzNNASGn0xnupw4AAAD0ONmfZQYMBiXmrNSO3RuUUZlEUd1aWz7/jz6yx+qND2ea3pdL1y3SkfracB8yAAC0a3NGhlYkJmpFYqIKS0uN9sLS0pC3b/nvf1XagWXEvF6vXC5XJ58pgHMNISEAAILQ0NAgp9Op1NTULgsztFepqalyOp0EhnDeCMdx5J/J69NPP1VdXV24XwIAAACgx9n6aZIphPHWyn8oMWdl2EMiFJVRmaQduzdoue1d83v039GqPnww3IcOAJyT9u3bp1tuuUUWi0Xf/va39eCDD5ru37t3ryIjI9W7d29FRkbq+PHjZ/V477//vgYMGNCh83Lz58/Xj3/8Y1ksFn355Zdnvd3ZWLFihfr166fp06cHvU/9iRPK3b9f72/apAWrV2vB6tVatWOHtu3apW27dmnVjh0hb5/zwQeaFRtrCg+1Zv/+/UpISNDGjRu7demxw4cP64EHHtCyZct6RD/AhYSQEAAAbaipqQl6lhObzaaMjAzl5eWptLS0zSoqKlJGRkbQYYnU1FRVVlaG++UAOqUjx1FqamrQx1FeXl6HjqOMjAwdPMiJZAAAAMBvZ3m+KXzx9uo5zBxE9cj6+NPlplmFlq5bxNJjAHAWbr75Zg0aNEinT59ucV9ubq7Gjh3bJY+Tm5urqVOn6tSpUx3az2azBRX+CXa7jjpy5IjGjBmjp556Sr179w46JJRZWKhtZWVGYCdctbmkRLHr16uyurrdMR87dkwJCQmKj49Xfn7+2b50QTt06JDGjRunBQsWhKSf+vp6Wa1WvfPOO2fVP3A+IiQEAEAA7YUaMjIyVFRU1GVLg/mXXiotLW1zCTObzUZYCOeMYI6j0tLSLjuOGhoaTMdRW4G+nhYW2rp1q1FNl0RzOp0hb8/NzZXb7Q7xMwQAAEBPU334oHkZp+S3wx4Eoai2asvn/zEFheKSlob7MAKAc9a7774ri8Wi5OTkFvdNmjRJa9asCcOovhLukFBVVZXS09MlSX369AkqJOQ5eVKzYmP1708+CXtIyF+7Dx8O6vmWl5dr48aN3b7kmMfjUWNjY0j6ISQEtI6QEAAAzRQXFwcMFjgcDlVWVnbblJsHDx5UXl5ewMCQw+Ho1qk/gY7Kz88P+3Hk9XpVWVkph8MRcCz5+fldPg6XyyWPJ/irWX0+n44cOaKMjAylpKQoJSVFRUVFcrvdcrvdKioqCnl7fHy81qxZ0yODQn/+85/1/e9/X9///vdN7Z2Zqroj8vPz9fe//z0kfQMAAPQUi+LnMYMQdc7Vx58uN4XbdpZ334wHrTlw4IDi4uKMOnDggHw+n3w+n2w2W8jbN23a1CO/zwHo2Wpra9W3b1/df//9pvYTJ05o8ODBOnnypCRpzZo1uv3222W1WjV8+HBFRUXp888/N7aPiYmRxWKRxWJRSkqKrFar+vTpI4vFojlz5igiIkIWi0VFRUXGPu31KX0V/klJSdHtt9+ugQMH6tprr1ViYmLA7ZqGhBobGxUdHa0bb7xRd9xxh2699VYtXLiw02GUYENCe6uqNCs2VgkOR9jDQR0NCUk6735vICQEtI6QEAAA/+P1elvMPpKUlKSioqIumeXkbMZVWlraIiyUmpoa1nEBgXi93hbLfyUlJam0tDSsXzS76zjKy8tTfHy8HA6Hjh071ua2TqdTX375pRHYCVe5XC5t3749ZIGbsxUdHd0iJNTZqaqDtXTpUvXp0yckfQMAAPQETZcZe+PDmQSEqHOqPrLHGu/fRfHzwnYcNTY2qq6uTm63W1lZWUZVVVWZLswIdfuGDRu0Zs2aoL9zL1iwQBaLJeglZVq7eAPAue+hhx5Snz59dLhJkGTVqlWaMmWKcfvBBx/U6tWrjdvvvPOOrrrqKtNFckVFRbJYLPrVr36lwsJCud1uRUREqKioyLivaUgomD794Z8HHnhAx48flyTNnTtXF198sUpKSlps1zQkNG3aNA0ePNh4XocOHdKAAQM0b17n/p8RbEjoUE2N3lu7Vhvy88MeDtq2a5c25OfrX2vX6lBNTYefc6hnFEpNTVVUVJSsVqueeOIJo/2TTz6R1Wo12vfv368XX3xR48aN0+OPP66kpKSg+vnoo4+M9lGjRikqKkpRUVF66623Qvq8gHMFISEAAP6n+cwnPXG2ntLS0hYBB6AnaT5rT1FRUY86jrxer4qKilose9ZV/CEhf7UWFqqurlZcXJxKS0vDHhLy14kTJ7rsdehKgUJCoUZICAAAnO+aziL0kT027KEPiupI7di9wbTsWHZxZlDv+/Yu5Kivr5fdbldVVVW7fTmdTqWlpYX9e5z/wo+my0q352c/+5l69eqlyZMnB71POL6XAQg9f8Bm/vz5Rtvo0aNVUFBg3K6qqtLp06eN20eOHJHFYlFWVpbR5g8CrVy50mirrq7WyZMnA4aEgunTP7a0tDSjzefzqV+/fvrjH//YYjt/SKi+vl59+/ZVTEyM6bk+99xzGjBgQMdeoP8JNiQkSbsPHw57OMhfCQ6HZsXGauPmzUGfnz127Ji2bNmi+Ph41dbWdur16oiJEyeawj1HjhxRUVGRJkyYoAkTJuiZZ55RSkqKMjIyNHnyZFmtVtN7qbV+JGYSAtpCSAgAAJ1Z2qtpaKCysjLcQ2pVTU2NaaylpaXhHhIg6dw6jkI11uYhodbCQv6QkNPpDPsJZX/5r8oK5MSJE/rTn/6kb3/727rmmmv0wAMP6KWXXtIll1yiyMhI7d27t83ppYuKioKaSrrp41x//fV68skn9dprr5lORq9cuTLgVNXtTSXddHzJycn65S9/qUsvvVQ33nij8vLyjH7mzZunH/7wh7rooosUGRmpyMhILV68WJK0fft2DR8+3HgOd955Z5eGzAAAALpD+d4SI1zx1sp/MIsQ1X1VsUkZFRvP1N4NX1XFxjP3daCvpsuOLV23qM33vNfrlcPhUHx8fLvb+b/Dbdy4UZ999lmrwaKdO3cqLi4u7N/jmlYwM60WFBRoxIgRGjlypL7zne8Yywm1h5AQcH46ffq0rrzySt1www2SpH379mno0KGmbUpKSvToo49q6NChioyM1C233CKLxaJ169YZ2/iDQLm5uS0eI1BIKJg+/eGfAwcOmPqLjIzUL37ibQz3AAAgAElEQVTxixbb+UNCWVlZslgsGjx4sHFeJzIyUkOGDNGgQYNUX1/f4dfpXA8JfRgXpy1btrQblvXbvHmz4uPjtWXLlg6/Vh0VKNzjb28eCNq9e7esVqtiY2OD6oeQENA6QkIAAOjMD/v+sEDTH4t7KqfTGZJZUICz0XQWoXMhvNb0OEpNTZXL5TrrysjICBgS8teOHTtUWVkpp9OplJQU7d27N+wnkt1ut/bu3astW7bI7XYHfK2ee+459e/fX+Xl5ZKknJwcffOb32xxkrit6aWDmUo60OMMGDCg1cdpeqIgmKmk/ftFRUWpvLxcX375pYYNG6bIyEhT/4FmEvJ6vfrWt74lm81mtD399NNBnyQCAADoKbZ+mmSEK5bb3g1/cIS6MKp5MChQdSAstGP3BuN9PHfJazpx0hPw/V5eXq6EhATjO1lbMyk0DQk1rfT09BazC/XEkJDP52v3+J8yZYqWLVumuLg4WSwW03c0v2Au3pDU7oUgzS/UGD58uC699FLdfvvtqqys1Pr163XVVVfp8ssv18SJE02zigDoPq+++qoR8Jk1a5befvtt476GhgZdccUVeuyxx4wZqD0ejywWixISEoztAp2nae2+YPs825DQBx98cLYvjSHYkJDn5El9WlamzSUlYQ8Ibdu1S5tLSrQ1J0cfrV6thISEoGcGcrlcSkhIMM7PhVJbIaF77rnH1Hb69GlZrVZFR0cH1Q8hIaB1hIQAANCZtWv9YYGjR4+Gezjt8nq9pllQgJ7AZrMZ78mGhoZwD6ddDQ0NxnjXr1/fZrgn2Fq9enXQ2/aUgJDb7ZbT6VRcXJyqq6sDvk59+vTR1KlTTe2PPvpoq+GdQNNLtzeVdGcex3+CKdippP37rVq1ymiLjY3VJZdcYsw4JAUOCblcLlksFtOJBZfL1S0nTAAAALpS06XGEnNWhj88Qp3/tbd5QGijMiqS/lebAoSFggsKLUp4w3gv7yzPN73PXS6XsVxK02orJHTq1Kk2v8OtX79e2dnZqqyslMPhkMPhCPt3OX9lZWUpLi6uzWP/5MmT+sEPfqCGhgZ5PB5dfvnlGj16dIvtgr14I5gLQfzfwcaPH6/du3dr//79uu666zRs2DA9/fTTqq2t1bZt29SrVy+tXbu2zfEDCI3du3froosu0qRJkzRkyBDj4ivpzPFvsVi0ceNGo81/PqezIaFg+2xtubHvfOc7QS039sILL5jG4XQ6NWXKlA6/PlLwIaG9VVWaFRurBIcj7AEhf+0+fFi1tbXas2dPh55zsMuTna22QkK///3vW7RHRUXp73//e1D9EBICWkdICAAASRkZGUZYoKamJtzDaRchIfRETUNC50LYLpwhodWrV58zIaHCwkJZLBYtXbrU1D5z5sxWwzuBppdubyrpzjyO/wRTsFNJBxrf2rVrZbFYTFMuBwoJSdL06dP1ta99TVdffbWmTp2qzz77rMU2AAAAPV3T2VdW2T+Q1Wo11Yx/Tgt/qKSb65PydZr692dltVr167vGh30851W1CAj9LyRUmXymKpJamVWo/aDQR/ZY472cnveJJPPSYoHK6/Xq2LFjxmywVVVV+uyzz4zqyPe/w4cPh/27XEdCQmvWrDH94Prkk0+qV69e2rdvn9HWkYs32rsQRPrqO1jTpd6mT5+uXr166ciRI0ZbREREi8cE0H3uuOMO9e7dWw888ICp3e126+tf/7qeeOIJ43ifN2/eWYWEgu3TH/4ZN26cjh8/LkmaO3euLr74YpWUlLTYzh8SkqSXX35Z/fr1M8KOXq9X9913X8AZaILRkZmEZsXGatmWLWEPBzUNCTXncDg6dE4r2BmIOqOtkFCgdkJCQNcgJAQAgM58WfGHBRwOR7iH0y6WG0NP1HTZvvz8/PZ3CLNQHPd5eXmtnkBOSEhQcXGxvF6vvF6vKisr5XK5wn4y2e12y+Vyad++fQGvEmotvPO3v/0tqGXApOCmkj6bxwl2KulA40tISJDFYjGtSd9aSEiS9u/frzfffFM33HCDLrroItNyZgAAAOeCpiGh5MJ4vf7eTL3+3kyNv3NcWENCn5Sv06y3X9Gst1/R2owPu+1xV9pidf9D/2eEpAgJdWG1usRY+yGh/1ZsbLf/NelLvpoV65P/KCcnR//5z3+65AKQtmrNmjXaunVr2L/HdTQkFBUVpfT0dOP2p59+KovFYvqxtSMXb7R3IYj01XewvLw8oy0mJkb9+/c39TVixAg99dRTwX6MAehiy5cvN5YGbC45OVkRERG6+uqrNXLkSEVHR8tiseiaa67R4sWLtX79ekVERMhisSgiIkKTJ0829l25cqXpPv/M0+31OW/ePF1//fXGbNVDhw7VgAEDdO2112r9+vVG/023u+mmm4wl4hsbG/XGG29oyJAhGjZsmIYNG6Y5c+aYZpEOxt13363IyEhddNFFGjhwoCIjI/Xxxx+3uc+q5GStTU8Pezhoc0mJ3l69WhkFBabxuVwu4/9nDoej3RmD/MHbUM2kTUgICA9CQgAASKqpqTHNzNOTAw6VlZWmsTqdznAPCZDU8jjqye/NpkG7xMREHTx4sEv6DRQSahoO8quurlZcXJycTmfYTyb7y39VVnP+K0n/8pe/mNqDWQbML5ippM/mcYKdSjrYkNCyZcuMkFBjY6MaGhpUW1trnGzye+yxx3TVVVcJAADgXFFxcI8RqliU8IYpcHHPfXeFNSSUsjPeCOq8u+qNkD9e6heJennuSxo5cqQeePg+PfDwfYSEuroCBoSCnElo74YzIaM2+k/audp4P8//cG7QAZ/m39fsdrtRbe27ceNGuVwuSWe+0+Xm5ob9e1zT8vl8rR77VVVVuuyyy0wzr0ZGRqpv3766+uqrje2CvXgjmAtBpMDfwWJiYjRw4EBT/yNGjNCTTz7Z4c80AOiJPD6fCg8c0KbCQi1YvVoLVq/W+5s2GQGeDfn5IW+fFRur15cu1aEAqyZkZWUpPj7eNPNba/zbJiQkmGbh7iqhDAl5vV5ZrVbNnz9f0pkZkd59991uW0oN6MkICQEA8D+lpaWm0EBGRoYaGhrCPSyDf8rs5mMEepKms/P0xOOooaGhxXGUlJSknJwclZWV6cCBA6qrq+t0/01DQoHCQX5ut1txcXEqLS0N+4lkf508ebLV5/X888+rf//+xlVDOTk5GjhwYNAhIbc7uKmkAz3ON7/5zaAeJ5ippIMNCaWkpMhisaihoUFZWVn62c9+ppKSEv3gBz8wTYn/29/+VuPHj2/1dQMAAOhpCAl9Vc9OnySr1aq/zn5e9l3r9MSU3xES6sqq2NQjQ0K7du1q80fOti78aGrnzp2Ki4sL+/e4YENCs2fP1uuvv96ife7cubJYLEpNTZUU/MUbwVwIIhESAnBhO1RTo+WJiVqemKjNTc7jd0d71s6dOtLGOc49e/YEFZbxer1KSEhQenp6SMI1oQwJSdIjjzyi559/Xo2NjUpKStJjjz3WNQMHznGEhAAAaKLpcklNZxWqCZC47y4NDQ3Kz89vMa5t27bpk08+UU5OjjEbCRBugcJs/uMonGGh1o6jlJQUbdmyRTabrUV1JjiUl5fXZjioqaSkpB4xk5DL5dKGDRtUWlra6lhPnDihSZMm6dvf/rauu+46/eEPf9Arr7yiH/3oR8Y2bU0vLbU/lXTzx7n22mv1wAMP6KWXXtIll1yiyMhI7d27t9WpqtubSrr5+Gw2m5YuXaprrrlGFotFN998s3JzcyWdeR+PGzdON910k2655RYlJyfr6NGjmjx5soYOHSqr1apbb71VDz/8sA4dOhTUewMAAKAnICT0VU37x/NakbLYuE1IqIvLWGps45nAUPPyh4QqkwLc32SZsjYeo2lIKC5piaQzywOnp6e3GhLavXt3m8dI85BQenp6wFBRaWmp4uLiVFVVFfbvdG63W1VVVW0+ryFDhqi6urpFe3V1tXr37m360TSYizeCvRCEkBAA9Hy1tbWm2fKaC0U4KDU1VVFRUcbfflFRUUpNTVV+fn6L9pKSEm3ZssVoHzlypKKiouR2u1vtxy87O1sTJkzQvffeqz/84Q8qLCzs8ucCnIsICQEA0EzzZYj8ZbPZVFxcrKNHj4Z8DA0NDXI6nUpNTQ04lqKiIlVUVAQMNmRmZqqsrEwul0sejyfkYwUCaT4zl79SU1PldDq7JTDU3nHkn8WnoKBAaWlpAY+n1oJDFRUVAYN5DQ0NOnXqVNBjPHXqlOrr61VRUaGUlBSlpKQoIyPDONG7d+/ekLY7nU7FxcVpzZo1bQYNa2trjSnk/f70pz9p1KhRwf+DAAAAIOwICX1V6RWbTLcJCXVx7d3YctagYKvp7ELN/p2aVqCQkN+xY8dUXFysjRs3mkI/eXl5bR4j/pBQWz+WSmd+MM3JyVFtbW1Yw0F79+5VamqqMatRc4cPH9ZNN92kSy+9VLfddluL+yMjI3XppZeqT58+xv3BXLwhtX8hSKALNWbOnKkrr7zS6Ku+vl6jR4/WN77xDfXv31+PPvpou59jAHC2Jk2a1Gpt2rQp3MPrdps3bzb+P7lnz542tz127BjLdQHnAUJCAAAE0NDQEHBWoaaBIYfDobKyMtXU1JzVH8Zer1c1NTVyOp3Kz8+XzWZr9XEzMjJMsxq5XC6VlpYqMzOz1VBDWlqaiouLz3oZJaCjjh49GtRx5HQ6u/Q4cjgcHTqO/Hw+nxGc6UhwKDMzU8XFxa0Gh4Lhdru1detWbd261ZjNprvaS0tL211T/LXXXtPMmTON25WVlerXr5/i4+M79XwBAAAQHh0JCS2Mi9GEJx/V+DvHaey4KD3+x0e0YMXcFuGa5rWl+D+a8c9peuixBzV2XJSixo7Rg7+9X3/5+7P6+L8ftth+lf0DIxzUWjUP7qTt3ailGxbqpZnPGI8zavQo3XPf3Zr80lNatumdDodaQh0SCvQ8Z/xzmrY7N2jO4hl65HcPaez4qI691p/9R3+fP12P/O4hjfv1WI0eM1r3P/R/+svMZ7Xu0xUttn95zosBX98JTzzSYtt7779bVqtVyYWrTe3vrX2rxf5/mDSh5dh2xmvGP/+ihx57IMD7YHmLYFDqFxta9PvUM79XRsUmxe9Yqsl/mai7/+9O47677r2zzZBQU/v375fdbg8qJHTw4MEWS4u1pbGxUcePH1dOTo7i4uIUFxen7Oxs1dXVqa6uTtnZ2SFtz83NVVxcnHbu3Bn0mAEAaMrr9Wrz5s1KSEhQbW1tq9vt2bNHCQkJysrK6sbRAQgFQkIAADTRPETjDwslJSW1GjhoHnrIyMgwKj8/X2VlZSorK1NxcbHpvtZmNwlUDoej3SXPmgYcsrOzWw002O12FRQUnFWgAWiurq5OxcXFstvtqqioMN3XXuiuveOouLi4246j5sIZHOpJtm7dqhEjRuiOO+6Q1WrVL37xCy1Z0vpJeAAAAPRMwYaEXpr5jMaOi9KfX3xSL818Ro//8REjnDHphSe1Y3fgZaBWpCzW+DvHyWq1avJfntK8D6M178NoPTt9kkaOHKmRI0fqjQ9mmfZJ3hmvOYtnaOZb043HeHranzRn8Qyj/tlsn5fnvmRsO/mlp/TGB7P05pJ/6KWZz2hM1GhZrVb9NfqFHhUS8j/POYtnaNyvx8pqtWp69Aua8MQjnXutN3/1Wv/hzxP0zw9maf7yOXrh1SkaNWqkRo4aqTeX/KPFv8+cxTMUNXaMrFarHv/jI5qzeIbe+SjGtF389iXGGN76MNp037qsf2vO4hmaMnWi8X5ZFP9m6++Dl57SvGWzNW/Z7ADvg6+WG9v+xXrd/9D/6f6H/s8Y31PP/F5LNyzUmKjRGhM1Rvfcd3enQkJ+Ho9Hhw8fDsmxVV1drZ07d2rnzp2mZb1C3c6MDgCAruD1elvMoNf8/y/l5eXGjENtzbYHoOcjJAQAuOB5PB45nU7Z7XbZbLZW/8A9ePBghwJDZ1sOh0OVlZVndbKnrq5OFRUVKigoMJ5fa0soOZ1OuVwu+Xy+Tj8eLiwej0cVFRUtgjPZ2dkBt/d6vaqsrJTD4eiWY6irjqPm/MGhiooKFRcXtzmTV6DgkNPplNvt5lgDAABAtwsmJPTgI/frtxN+o+TCeNP9C+NeNwIar8b8pUVo5eP/LtfoMWcCOgtWzGlx/78S5hv7v79+QYv7O7Lc2F9nP9/q4yRkrtDYcVGyWq16pwPLlnXncmP+13r0mNFn/Vr/bd7/Z+/eg5us8/2BP+6osOPsnJ1dZo9bGc94/KHr4nb1iPasorusT1sKCKIIKKCuFxBRENQjKAKySIFWKjehyM1qkaZAaOiFEiBIWkOvSW2kKRhKCykQSgq9kDahff/+wDzmaS5Nr+nl/Zr5ztjnlm+eJqn0++7n86HH/m2qdQgPD/d5L996fwZEUcTzL07yOr+la34JbL3xzmtej3l/yRw8O+kZ/6+DhOhf2ob9PL7cG+f2Olgnby3283hz3us/h5imYPyEpxG3Yzm+M6tuhJSOf40xY0e3KyREREREgcnNzcXBgwc9fqeq0WiQmZnJkBBRL8eQEBER9VtWqxUGg8Gjyk4g/4N79epVVFRUoLCwENnZ2R0ODmVnZ6OwsFBqu9RV7HY7LBYLjEaj34ooOp0OpaWlqKyshN1u77L5UO9UWVnp8d5xf+0E2tauK99HV69e7eK74Kk9wSGtVguDwcDgEBERERF1i0BCQqIoYk+2Z1uw7Ip0zFv4FkRRREREOFILvpXte3nGNIiiiFfffMlnOGbWu9NvBJGmPOfRSqutIaGJL0zwud8Vcpn6yvM9OiTU0Xv93PPPQnsm1ev5c38+f8zY0ThsUvoMIe3P3+lx7pSXJyM8IvznIFMEDpfKz9eeScW4Z8Z6rdbk/jr4vjzVIwCUfWY/Zr37+i+vgzNpPkNCoigi+ovFHo+x4NN3GRIiIiLqItXV1VLFIKVSibq6Omkfq9cR9Q0MCRERUb/idDq9Vj7RarUwm80dDsRcvXoVVVVV0qioqIDJZILJZJICQO4j2JxOJ6xWK0wmk98WZVqtVmqdFGgAhPoW93Zi3l4fJpOp0wJlLd9HZrPZ5/soGGGgtmBwiIiIiIh6kkBCQv6CNQkZG6XwxqfrPpa279bu8Nmeyn2sSVghHfft4S/bHRI6XKrEoZK9PvdvTVkrXatlwKUnhYQ6eq+Xfv6Rz/O3p26QjvusRduxgz/ulioNtWz/llrw7Y0KRrEfSOfH746THbPz0JcQRREJGRtl2z1eBz5CQmu+ipa/DnyEhCIiI7x+n7PK06A9k8qQEBERURexWq1QKpXIycnxe5x7gAgAzp07h9ra2q6cGhF1AoaEiIioX3AFHFouxufl5cFisQR7ej2KzWaD2WxGXl6ezxZlGo1GalFms9mCPWXqIr7aibmGwWBgadl2sNlssFgsrYbzGBwiIiIios4WSEjo/SVzfIdzTEop3DH97Vek7as2L5UFSlR5iV6HewWbVZuXtjsk1LKqTWZxMvbn75Qe54ukz6RrqfISe2xIqKP3+kvlGp/nHzTulo57+//e8Nj/ysyXIIoiXn/rX7LtsVuXYWRUJA6blBg/4WmIooi5C9+SHbMo9gOMGTsax07vl233+jrI+RqqnATZWJ+4Uv468BESmvLyZL/3kSEhIiLqyTKzs/G1SoWvVSoUmUzS9iKTqcu3H/z+e5jKyjo0/5YBIPevq6urkZqaioMHD0Kv18NutyM1NRUKhQJlHXxcIup6DAkREVGf5XQ6UVlZ6VG9Q6PRdGrVk76upqZGqoTir0WZKzRktVoZYOjlWmsnVl5ezu9xJ6upqWFwiIiIiIi6XCAhocWx8/0GM0aNjpJaRbm2zV82Twp9BDo+atGqqq0hoe3712PGnFcRNWqk38fZ+733dl49ISTU0XuddHSr3/NdLcO8hW1Wxn8CURQRHhEO9Yk90vbXZr2MN+a+duOx/j1Xall2rOyXtmaTpkzA3I9meVyz3a8DHyGh6bNf8fv8GBIiImq7s2fP4pFHHoEgCPjd736HSZMmyfafOXMGYWFhuOWWWxAWFoZr16516PG2bNmCkJCQNlWnX7NmDe6//34IgoBLly51+Lj2SE9Px/jx4/HPf/4T//jHPzBs2DBs2rQpoHNrGxpQcO4ctqSlYW1SEtYmJWHXsWM4fOoUDp86hV3HjnX59hVbt2JZfLwsPNQR1dXVUCqVyM3Nlb5WKBRISkqSWpO5htFobNdjuCrKl5aWIjc3F9nZ2UhPT4dKpfI70tPTkZ2djezsbJSWlqK0tBRVVVVsjUbkB0NCRETU59jtdpSWlnpUwdHpdLBYLFxI7yC73S6FGfy1T9LpdCgtLUVlZSUDWb2Av3ZirmAdW811LwaHiIiIiKizBRISWvLZAr/BjLFPj4Eoinj62bHStnkfvy2rDLN5z+etDsWx7e0OCS35bIF07IuvTcGKjUuwUbFauvan6z7uFSGhjt7rPdn+n5srZDRh8jMe+1Jyv/nlfid9huyKdKhP7EFERDg+T7jRMm77/vXSMV9nbkJ2RTr2Hf/aawuy1l8Hq7F5t+dQHN3yS0Co/EYQ6c13p0MURbzxzmsMCRERdZGHH34YgwcPRlNTk8e+goICjBo1qlMep6CgAPPnz8f169fbdJ5arQ4o/BPocW31n//5n4iNjZW+zs/Px6233orVq1f7PU9XVITDpaVSYCdYI7OkBPEpKai4eLFT7oder5dCQHq9HgCg0Wg8AkLu+1tz/vx5GI1GHD16tNUgUHvH0aNHodfrcf78+U65D0R9BUNCRETUZ1itVuTn53ssmhuNRoYbupDT6YTVam01yKDVamE0GlFZWcnvRw/hdDpRXl7uM+zFdmI9T3uDQ0ajEeXl5WwPSERERNTPBRISWhTzQUDBE/fqNgs+fVcKh+zS+K9u42sEGhLaeehL6biWbbBc45uD8b0iJNTxe73F7/lSJaF/Pe91/+RpEyGKIuYseBPZFenYsCsWoigi4wcFsivS8Z15vzSHhSv/D9kV6VixcQkiR0bgsEnpcb2AXgflacg+k3ojEHRm/y//XZ4mHcOQEBFR1/viiy8gCAIyMjI89s2aNQvJyclBmNUvgh0SGjt2LBobG2XbRo0ahb/+9a8+z7E3NmJZfDy+OXIk6CEh1zh9+XKn3ROj0QilUgmbzYbc3FyvASGFQgGNRuPzGlVVVdDr9QFVCOrskZ6ezsAQ0c8YEiIiol7N6XTCbDZ7tMHSarVsiRRENpsNZrMZeXl5XivTuKrTGAwGBheCwGq1wmg0sp1YH9Ge4JBOp5OCQwztEREREfUfgYSE3l8yx2co41DJXikEMmPOq9L2mC+XStu9VZjpzJDQopgPpON2a3f06pBQR+/1l8o1Ps/PLE6Wjnv7g5lej1n82XyIoojRT43CsdP78fYHM/HS61Nlx7z9wRsQRRHPPf8ssivS8fKMabL5uI/OeB0EOyRUX1+P6urqDl3D4XCgqqoKFRUV0rbz589Li5TZ2dmyx1OpVFCr1SgsLOzQ4xIRtUV1dTUGDhyI5557Tra9oaEBQ4YMkQIyycnJePzxxyGKIp544glERUXhxIkT0vExMTEQBAGCIODAgQMQRREDBgyAIAhYsWIFQkNDIQgCiouLpXNauybwS/jnwIEDePzxx3HHHXfg3nvvhUql8nqce0ioubkZ0dHRePDBBzFixAg8+uijWL9+PZqbmzt0z8aPH48//elPPvefsViwLD4eytzcoIeDuiIkBACnTp3C/v37vYaDXK3HvIWEqqqqkJ2d3WrVn8LCQphMJpw/fx5VVVWor69vdU6un7vnz5+HyWRCcXFxq9WJ1Gq17Oc0UX/DkBAREfVKrtZIrHzSO9TU1KC8vBwGg8FnaEitViM/P19qk0Sdy263ew3UsZ1Y3+QeHPLXFrDl+48tAomIiIj6tkBCQlNf8V51JrsiHV+lfyGFQD5dv0javjtrh7S9teo4b857HSOjIrHz8Jc+Qy3+QkLvurW0Omjc7fWYrap1vSIk1NF7vWS173Zl7q3C4nYs93rMt4d/qcq0JWUtRo2OQvQXi2XHuKoLiaKIhIyNCA8P93m9zngdBDskVFhYCIVCgdzcXDgcjjafX1VVJVvsdKmvr4fJZILJZJItSrq2FxYWyhbQ6+vrperYgSyQumzZsgUhISHt+ve9t3P1ej3+/e9/t/laRNQ7PP/88xgwYAAuuwVJdu3ahdmzZ0tfT5o0CUlJSdLXGzZswF133SX73VFxcTEEQcCTTz6JoqIi2Gw2hIaGori4WNrn/hkXyDVd4Z+JEyfi2rVrAICVK1fi5ptvRklJicdx7iGhBQsWYMiQIdLzunDhAkJCQhAXF9fue+V0OnH77bdj2bJlPo+5UFWFzXv2YL9eH/Rw0OFTp7Bfr8fmPXtwoaqq3c+7JaVSiaSkJCQnJ/usJKRQKKTj6+vrfYaD1Go1iouLUdWJ82upqqoKZrPZZ2hIrVbj6tWrXfb4RD0VQ0JERNSrVFZWerQUcwUcuKjde9jtdlgsFhiNRq+hFW+hIVa2aR9v7xnXyMvLg8ViCfYUqZvYbDaUl5fDaDQGFBzSaDTSe9BqtfI9SERERNQHBBISEkURe7K9B2ve+XAWRFFEREQ40gq/le17ZeZLEEUR4yc8jaM/qbyen1rwLSIiwvHspPHQnkmV7TtcqpQef/3OGGm74rttmDT1OXy67mNkV6Tjk9UfSsd9nbnJ6+N8EvdhrwgJdfReT5j8DI6VpXo9f+5HN84fM3a019Zg2RXp0J5Jxbhnxv7c0mzCjfulS5Adoz6xBxE/ty2bNPU5iKKIdEOSz+fW0ddBTwkJKRQKKJVKnDx5stVz3Bc3HQ5Hpyx41tfXIzc316PyUGsKCgowf/58XL9+vc2P6e3c7du3Y8CAAW2+FhH1Dq6AzZo1a6RtkdqC/BYAACAASURBVJGRMBgM0tcWiwVNTU3S11euXIEgCMjJyZG2uYJAiYmJ0raLFy+isbHRa0gokGu65qbVaqVtTqcTgwYNwuuvv+5xnCskVFtbi4EDByImJkb2XOfNm4eQkJC23SA3MTExeOCBB9DQ0OD3uNOXLwc9HOQaytxcLIuPx1c7d0KpVMJoNErzdDgc7aqc5x4E8hYUclUTAm5U0WvZViw9PR2FhYVBCea4grneWp2xqhD1NwwJERFRj+erpZhOp4PFYuHCdR/gdDphtVpbrXqi0+lQWlrKwEIr7HY7SktLvVZt0mq1MJvNDNURgF9aAxoMBr+BPffXD9sEEhEREfVegYSEIkdGYsrLk5Hxg0K2f+03K6Vgy+LY+R6Bjb26BIyMGim10WoZ/jhUshcvvjYFoihio+Izr6EPV2DFFQjKrkjH6m2fQhRFfLbtU2RXpCP52HZpHi++NgWHSvbKrrFLs1WaR08PCU2eNrHD93rxZ577t6SsRXh4eKtVmbIr0vH+kjnSY7lairUcr7750i/3/NUX/F6vM14H7QkJfbFzNbKyslBXVye93qurq2G1WmG1WgOuCuQeEnKNgwcPeq1a7XA4pOoIban20xb19fWya7enulFHMCRE1Lc1NTXhzjvvxAMPPAAAOHv2LIYNGyY7pqSkBNOmTcOwYcMQFhaGRx55BIIgYN++fdIxriBQQUGBx2N4CwkFck1X+KeyslJ2vbCwMPztb3/zOM4VEsrJyYEgCBgyZAjCwsKkMXToUAwePBi1tbVtvk8HDhzAPffcE9AfW/bUkJBCoZCFhIxGo/Rzzn2762en+89Tl++//95v9SD3kNBPP/3kEcQxmUzd/nPMG4fDAbPZ7BEWMpvNwZ4aUbdhSIiIiHosu90Oo9HoEXQwGo1cnO7jGBpqH39Vg4xGI1vxUatc7z2z2Yy8vDy/7QHZpoyIiIio92kZEsooUmDV5qVYtXkpxowdDVEU8VH0e3jp9amIGjUSs96bgfeXzMGLr74ghURmvTsdx07v9xraSFRvxlPjxkAURUx5eTKWb1iEz7+Kxser/g9jxz/lEQBqORbHzpeCOis3fYLlGxZhzNjReGrcGKhP7JGO+/fahdJ8xj49Bu8vmYMlqxfgrfdnICIiXAqhuNperdq8FCm533iEVVzPfdXmpZg05UaVnKhRI2Xb9+V84zeo0pGQ0JLPFuCDpXPbfa9d37NX33wJsVv+jc+/isbchW8hPDwcERHhWP1zsMrf2JKyVnq8j1f9n9djYr5c6rX1ma/R3tfB5wnRWLV5KZ5/caJUucj1fdh5aLPfkNCar1ZCoVDI/t2r0WikRUv37Tk5OdBoNNBoNLIqCmVlZUhJSfG58NmyBVlhYWG3LipevXrVb1uUxMREhIaGyhbjY2JiIAgCBEFARkYG/vGPf+DXv/41HnzwQRQWFvo9Ny4uDv/93/+Nm266SVpk37RpU9c/USLqVosWLZICPsuWLcO6deukffX19bj99tvx4osvShV07HY7BEGAUqmUjvMWBPK1L9BrdjQktHXr1o7eGgDAwYMHcf/99wdUacbe2IjjpaXILCkJekDo8KlTyCwpwXGTCWctFpSVlcl+Fur1eq8hIV/hocrKShw4cKDVkJBrpKWlydpv9sSWXi1boaWnp/fIeRJ1BYaEiIiox7HZbDAYDB5tb1j9pP9yOp1SxZO8vDy/VU6MRmO/CivY7XaYzWafVYPKy8sZoKIOcbUHNJlMft9/7p/XBoNBahXoy/fff4/Y2FgkJibi0KFD3fiMiIiIiPqvhka7FKqITViKXZqtUvjDNZZ8tgDfmfdj+YZFmPKv5zFqdBRGjY7Ci69NwZqEFcgqT/MbEDlUshdL13yEqa88j1FjohA5MgLPTnoG8xa+hV2arX7P/c6swpLPFuDZSeMRERmB8c+Ow9v/94bXoM72/evxxjuvYczY0QiPCMfYp8fgjXdexZZ9a/HNwXiP57V5z+ey8/cd/9rjGG9jU/LqLg0JZVekY/3OGLw8YxrGjB3dpnutPrEH/17zkfR9ihwZiQmTn8EHS+di3/GvA5rL0Z9SEDXqRuWfRLVnECe7Ih3783dK92N31o6Artue14F7GzZvr8uWx+89niC9nhNV26DX62Whn8zMTK8hIV/hIfftvsbevXulFmQOh6PDbcXawuFwQK1WIzc31+cx3hbqXduioqJw8uRJXLp0CcOHD0dYWFir57KSEFHfd/r0adx0002YNWsWhg4disuXL0v78vPzIQgCUlNTpW2u1mDtDQkFek1f7cZ+//vfB9Ru7L333pPNw2w2Y/bs2W26NxkZGfjLX/6Cs2fPSts2bNjgs3rcGYsFy+LjoczNDXpAyDVOu30/W6qrq/OotpeTkyP9zCsrK5Nt99ZezFsVoT179sgCQj2hepA/R48elebr72csUV/CkBAREfUYlZWVHlVjtFotW4qRV/09NGS1Wj3CdKy2Rd3FZrOhvLw84DZl7lW/7HY7fvrpJ7z//vu4du0aAGDHjh0wmUzS9evr66V9RERERNS5XKGKldsWd3r4haN9ISGO9o1vNfHSazmr8EjA74GTJ0/CaDTCaDTKFi4DCQm5RlZWFpqbm7viLepXcXEx0tPT/e73FRLatWuXtC0+Ph633nqr7DkwJETUf40YMQK33HILJk6cKNtus9lw2223Yfr06WhqagJwo8pYR0JCgV7TFf4ZPXq09DuilStX4uabb0ZJSYnHca6QEAAsXLgQgwYNkoU6J0yYgOjo6IDvyf79+/GHP/wBKSkpyMvLk8b9998ve6yWlsXHY8fBg0EPBwUSEvKnurpa9jNSr9djz549Af2M3LdvnxS6OX/+fLsevztdvXpVmq9arQ72dIi6BUNCREQUdJWVlR6LzHl5eWyNRG3iCg0ZDAafLZJ6e2jI6XTCbDZ7DWWwahAFU8s2Za2FhpYuXYqtW7eivLwcNTU1yMjIkP0i6OLFi0hKSsLSpUuRnJws+4stIiIiIuqYuK+XS8GKgyd2Bz3o0R8HQ0KdM77cHye9lvOMug6/N5qbm1td+NRoNFJlherq6m5vS3L06FFkZ2f73O8vJFRQUCBt27NnDwRBQF1dnd9zGRIi6h8SEhKktoQtZWRkIDQ0FHfffTfCw8MRHR0NQRBwzz33YNOmTUhJSZHaFYaGhuLtt9+WznVvZRgaGorExMSArhkXF4f77rsPgiAgMTERw4YNQ0hICO69916kpKRI13c/7qGHHpICHs3NzYiNjcXQoUMxfPhwDB8+HCtWrGhTuPPXv/611K6x5fAXEtqVkYE9WVlBDwdllpRgXVISsg2GgJ9za3Jzc73+bExOTpaqDCUnJyMlJUUK3fSW9l2u+apUqmBPhahbMCRERERB4SvsYDQaUVNTE+zpUR9QU1MjVTrp7aGhmpoaGI1Gr8/BYDCwahD1SK73oNFolH3WZ2ZmYubMmdi9e7e0LTY2FuvWrZNalDmdTvz4449YuHAhnE6nrKpQbW2t1LOeiIiIiNou7dheKViRnLUt6EGP/jgYEuqcEZuwVHotX6mtbv3F3wqHw+F18VOpVEKv18sCNcCNwI5are62BVCTydRqVQZ/ISH3bUqlEoIgoLa21u9xDAkREbWd3elEUWUl0oqKsDYpCWuTkrAlLU0K8OzX67t0e1pREZbFx2PV9u240EltMUtKSgKutudeSaiioqJTHr8rnT9/XtYejag/YEiIiIi6lSsc1DK0YTQae3RIg3q/3hgaslqtyM/P9zpPs9ncI+ZIFChXtaHCwkLMnDkTBw8elF7TH3/8Mb744gvZ63zDhg1Yu3atx/sxIyMDu3fv9rg2EREREQXmh5N6KVixXrEy6EGP/jgYEur4UOUnSq/jjUmrO+W90TIk5F41yJurV69CrVZ324Kiw+FodbG1s0NCO3bskEJCzc3NqK+v76ynQ0TU512oqkKCSoUElQqZblXgumN7zg8/4Eon/jF2U1OTz1BQcnIykpKSpGpCe/fulUI36enpPfpnh8PhwNGjR6X5FhYWBntKRN2CISEiIuoW3sJBGo0GJpOJQQcKiraGhrorhOB0OlFeXu61pVheXh4sFku3zIOoq1RWVuKjjz4CcKNN4E8//YQ333wTKSkpstf7Rx99hPj4eI/3Y0VFBRYvXiz99Wx+fj4WLVqEK1euyB7n9OnT2Lx5c7c/PyIiIqKerqHRLms5tvd4QtADH/1hZPygwIpNS7Bi0xKMfmoURFHEa7NexopNS7D2G4a12jrWK1ZKr+FDx9M75b1ht9uhVCqRk5OD6urAKhM5HA5ZJaGqqiq/lX4CVV9fD7PZjKNHj7ZpcbWzQ0IHDhyAIAior69HTk4O/ud//qeDz4yIiHojb9X2XKEgbyMtLU0K3qjValR1UkWjznT16lVZQCg9PR0OhyPY0yLqFgwJERFRl/IVDjKbzaz8QD1KIKEhnU6H0tJSWK3WTn/92u12GI1Gr4/NNnzUl1y/fh3z589HU1MTAOC7777DZ599BuDG+8BisaCoqAhvvvkm9uzZ4/W9+M0332DhwoX497//jc8++8zrX9NeunQJmZmZ3frciIiIiHqLrMIjUsDi853Lgx746E1jZFRkm8fyDYuwS7MVoih6Hc+/OCnoz6s3jb3HE6TXb9zXy9HQ2Dl/fNbU1ITr16936Bq5ubnSYqN7WOjq1auoqqpCVVWVbAGyvr4eVVVVqKiokIWBCgsLpbYngS6sJiYmIjQ0FIIgIDQ0FImJiUhJSZFtU6vV2L59O+655x4IgoCHH34YBQUFXs8FbiwKjx49Gg899BAeeeQRZGRkdOj+EBH1BLNmzfI50tLSgj29Huv69evYv38/FAoFkpKS/AaFzGYz0tPTpZ+JKpUKer2+R1QVqq+vh16vl82ttXaeRH0NQ0JERNRlKisrZdVQGA6i3sQVGsrLy/MaUnCFhsxmM2w2W7sfx2azwWAweFzb9X5hpS3qi77//nvs3LkThw8fxpIlS3D58mXZ/rKyMsybN09qUWYymaDT6aBWq5GRkYHVq1fjjTfeQGxsrOw9YzAYUF5ejpqaGuj1etlf9BIRERHRL1pWE9qesS7owY/eMlR5iW0eh0r2Bn3efWUcPLEbsQlLpdduVuGRYL+dPJw/fx4mk0n275Hs7GxpEdI99GMymaTtZrNZ2l5fX98jFlKJiIiAG6HRCxcuICUlxWf1IPdhtVqltpwtwzjZ2dmoqKjo9qo958+f9xoOSk9P75GVjoi6EkNCRETU6Ww2m0erJJPJxHAQ9Wo2mw1ms9lvaCg/Pz/g0JDNZkN+fr7X4BFbilF/UFtbi59++snrLwTUajU2bNiAhoYGXLt2Tdqu1+uxcOFC7NixA4cPH8a8efOQnp4uew9lZGTgm2++waJFi1BQUCCFhoiIiIhI7oeTeilosXLbYiRnbQt6AISDw984dnq/rM3YxqTVnVZFqKu1VkmIgSAiIuqJ6urqkJubC41GA+DGH/75azPmHhICboSLXNXxvI3c3FxUVFR0yR/61dfXo6KiAnq93qOqkXtgiT+DqT9iSIiIiDqN3W73CD0YjUZWQqE+qWV1E2+VgNyrmrhUVlZ6PScvL69DFYmI+pKNGzfik08+wc6dO2X/UP/+++9x8eJF6etDhw5h+/btUoBvz549mD17Nj7//HMoFAqP96TRaERlZSV/LhERERH9LO3YXllQ6Gv1xqAHQTg4vI2DJ3bLAkJxXy/HxctsC0JERNRVHA4HlEqlFPwpKytDVVVVwJWE3NXX1/sNC7mHdoxGI0pLS1FRUSEFbFsGah0Oh2zf+fPnUVpaCqPRiOzsbJ+hIPfHYfUg6s8YEiIiog5zOp0wm80MPFC/5a0lUstx+PBhHD58GIcOHcKhQ4cYpCPy48qVK2hoaGj1uKamJnz99de4fv06AGDbtm1ISEhoteqXWq2GVqtFaWkprFYrK90RERFRv7YzfZssKLRl/+c4dnp/0EMhHByuocpPlLUYW7ltMU6eKQn2W4eIiKhPcq94ZzQakZqairKyMtn+ffv2+Q0J1dXVeb12fX09zGYzjh492mpgqLOHWq1GcXFxl1QtIuptGBIiIqIOadlaTKPRsFUS9Xt2ux0WiwVGoxEajcZnpaEff/yRAQWiTrR582ZotVrp6+rq6oBaBbpa/QXaLpCIiIioL2lotGPPoZ2yAEZswlJ8+92XDAtxBHWk/5CEjcrPZK/NuK+XMyBERETUBcrKypCamoqcnBxpm3tgyN1PP/0EhUKBpKQkryGhQLgCQ7m5uVCr1Z0eCkpPT0dubi5MJhODQUQtMCRERETt4nQ6YTAYZAusJpOJYQein1VWVkoBOlfloEOHDuHw4cNeAwr5+fkwm82y1mQuJ0+exOeffx6EZ0HUu1RWVuLzzz+HXq9HZmYmvv32W9n+QKp+ubcLZGsyIiIi6k8OHU+XhTFcY71iJb797kuoChKRUbSLg6NLR3L2NmzPWOdROWjltsXYmLSaLcaIiKjXyMzOxtcqFb5WqVBkMknbi0ymLt+u0mhgcqv+0xqr1SoL+fgKB7nTarVQKBRITk72CAu1R319PaqqqmA2m2EymZCbm4vs7GxpuAeJ0tPTZftcYSCTyeTRmoyIPDEkREREfmVnZ2PVqlXYuHEjqqurAdz4H0b36ih5eXlcRCX6mXs4yD1wYDabpRBdTU2N38omLQMKNpsN3333XZCfGVHvcP36dZhMJuTn57daFci96lfL923LKkOlpaWsMkRERER9Xvn5Mo/2YxwcPWFkFR5BQyN/90RE1FFnz57FI488AkEQ8Lvf/Q6TJk2S7T9z5gzCwsJwyy23ICwsDNeuXevQ423ZsgUhISFe/zDSlzVr1uD++++HIAi4dOlSh49rj++//x4vvPACHn/8cYiiiL/+9a+YNm1aQF0UahsakFNeji1paViblIS1SUnYdewYDp86hcOnTmHXsWNdvj32q6+wLD5eFh5qqWVLMI1Gg5ycHJ+twoAba0PAjQpDSqUSCoUCRqMRp0+fRnJycodCQkTUfRgSIiIin9LS0mAwGOBwOLBjxw589tlnKC0tZWsxIi8CCQd5417ZxFdIYdu2bfjhhx+kf4QRUdeoqalBeXm539ZkGo0GRqMRlZWVrJ5HREREfdYPJ/UMC3EEfWxMWo20Y3txpbY62G8JIqI+5+GHH8bgwYPR1NTksa+goACjRo3qlMcpKCjA/Pnzcf369Tadp1arAwr/BHpcW7377rt46aWXpPvT0NCAsLAwDB8+3O95uqIiHC4tlQI7wRqZJSWIT0nBxWrPn6F1dXXIzc2FQqFAWRuqDRmNRigUCuTm5iInJwcKhQJKpVKqOlRbWwuHw4HCwsLAbzQRBQVDQkRE5FVDQwMWLVokfX358mW89dZbsqoKbUn/E/VVNputXeEgX9wrm6SkpGDz5s1YtGiR7PoGgwHl5eWs4EXUxVoL8LlaBfL9SERERH1VQ6MdP5zUI6vwCPYc2omd6ds4OLp0HDqejqzCI2wrRkTUxb744gsIgoCMjAyPfbNmzUJycnIQZvWLYIeETp486fEHm3PnzsWgQYN8nmNvbMSy+Hh8c+RI0ENCrnH68mWPebrCPgqFApmZmQHdj3PnzknnHD9+XPrvtoSMiKjnYEiIiIh80uv1aG5uhtVqRXp6OpYsWQK1Wg2TnxKVRP2F3W5Hfn5+p4WDWtLr9Xj33Xfx3XffQa/XQ6fTeQ0oaLValJaWwmq1sqoJURey2+2tVhnS6XQwm80M0RIRERERERFRj1ZdXY2BAwfiueeek21vaGjAkCFD0NjYCABITk6WWm498cQTiIqKwokTJ6TjY2JiIAgCBEHAgQMHIIoiBgwYAEEQsGLFCoSGhkIQBBQXF0vntHZN4Jfwz4EDB/D444/jjjvuwL333guVSuX1OPeQUHNzM6Kjo/Hggw9ixIgRePTRR7F+/Xo0Nze3+34VFxfjzjvvxKpVq3wec8ZiwbL4eChzc4MeDmoZEjp37pxsrpmZmW0K+DgcDuTk5ECj0UCj0bQpYEREPQ9DQkRE5JfFYoFarcbGjRvx1Vdfsd0R9XtOpxNGo9EjHGAymTo1pLNy5UocO3bM47GtViuMRqPPyiauqiYMKRB1HafTKVX80mg0fgN8fC8SERERERERUU/0/PPPY8CAAbjsVm1m165dmD17tvT1pEmTkJSUJH29YcMG3HXXXbKKysXFxRAEAU8++SSKiopgs9kQGhqK4uJiaZ97SCiQa7rCPxMnTsS1a9cA3Ph96c0334ySkhKP49xDQgsWLMCQIUOk53XhwgWEhIQgLi6uzfcoOTkZ9957L37zm99gzZo1fo+9UFWFzXv2YL9eH/Rw0OFTp7Bfr8dGhQLJSiUUCkWnrO2Ul5dLVYS4VkTUezEkREREPpWWlkqLnVlZWVAoFMGeElFQmc1mj0CAwWDokjZDsbGxMBqNACBV9GqppqbGb2UT9ypDRNR1WmtLptVq2ZKMiIiIiIiIiHoUV8DGPfwSGRkJg8EgfW2xWNDU1CR9feXKFQiCgJycHGmbKwiUmJgobbt48SIaGxu9hoQCuaZrblqtVtrmdDoxaNAgvP766x7HuUJCtbW1GDhwIGJiYmTPdd68eQgJCWnbDXJz4sQJ3HPPPZgxY4bf405fvhz0cJBrKHNzsSw+Hl/t3AmFQoGTJ0+2+Xn/+OOPqK6ulr5OTU2FQqFAVlZWm69FRD0HQ0JEROSVe6UUnU4nVUjZsmULzGZzkGdH1L1sNpvH4r9Op4PNZuuyxzx37hzWr1+PY8eOYevWrTh69Kjf41urMqTRaGAwGFBZWcm2ZERdqKamxm9gSKfToby8nO9DIiIiIiIiIgqqpqYm3HnnnXjggQcAAGfPnsWwYcNkx5SUlGDatGkYNmwYwsLC8Mgjj0AQBOzbt086xhUEKigo8HgMbyGhQK7pCv9UVlbKrhcWFoa//e1vHse5QkI5OTkQBAFDhgxBWFiYNIYOHYrBgwejtra23fdr7969HmGmlnpiSGhfWhrq6ura/HyNRiMUCgWUSiUcDof0tUKhaNf1iKjnYEiIiIg8mEwmaTHTVcnEJSMjAxcvXgzSzIi6l7fWYhqNBhaLpVsev7m5GWfPnsWpU6fQ0NDQpnNdVYZ0Op3foAJbIRF1ndYCQ0ajkZW+iIiIiIiIiChoFi1aJAV8li1bhnXr1kn76uvrcfvtt+PFF1+Ufjdpt9shCAKUSqV0nLcgkK99gV6zoyGhrVu3dui+NDY2emwrLS2FIAiIj4/3eo69sRHHS0uRWVIS9IDQ4VOnkFlSguMmE+xenktr6urqoPy5TZler4fD4ZC+brlmRES9D0NCREQkY7FYfAaEiPoTq9Xq0VrMbDb3yuofTqcTFosFBoPB4zm5tyXryspIRP2dzWaD0Wj0+R7srZ8vRERERERERNR7nT59GjfddBNmzZqFoUOH4vLly9K+/Px8CIKA1NRUaZurNVh7Q0KBXtNXu7Hf//73AbUbe++992TzMJvNmD17dsD35f/9v/8nXdNFo9FAEATs3r3b6zlnLBYsi4+HMjc36AEh1zjt9v1sq+rqaqlqUk5OjqyqEBH1bgwJERGRpKamhgEh6vecTicMBoNH1Z2+VHHHarX6rG6i0WhY3YSoi7lCe76qC/WlzxsiIiIiIiIi6tlGjBiBW265BRMnTpRtt9lsuO222zB9+nQ0NTUBAOLi4joUEgr0mq7wz+jRo3Ht2jUAwMqVK3HzzTejpKTE4zj3QM/ChQsxaNAgnDx5EgDgcDgwYcIEREdHB3xP7r77bsyaNQvXr18HcGPt5B//+Af+67/+y2+rrWXx8dhx8GDQw0HtDQl5CwBVV1dLbcbKysradD0i6pkYEiIiIgA3ghGutkRarZbVDKhf8lU9qC/z15bMPTDEzwSizme322E2m70G9vLz81ndi4iIiIiIiIi6XEJCAgRBQEZGhse+jIwMhIaG4u6770Z4eDiio6MhCALuuecebNq0CSkpKQgNDYUgCAgNDcXbb78tnZuYmCjbl5iYGNA14+LicN9990EQBCQmJmLYsGEICQnBvffei5SUFOn67sc99NBDUKvVAIDm5mbExsZi6NChGD58OIYPH44VK1agubk54Hvy7bffYuTIkXj44YcxYsQIPPTQQ3j99ddx7tw5v+ftysjAnqysoIeDMktKsC4pCdkGQ8DPGQCysrKQm5srCwtpNBooFApkZma26VpE1HMxJERERABulNt0LUyyggj1R6WlpbIF+ry8PNjt9mBPq1vZ7XaUl5cjLy/Pa4UTg8GAyspKBoaIuoDFYvH63mNYiIiIiIiIiIio97A7nSiqrERaURHWJiVhbVIStqSlSQGe/Xp9l25PKyrCsvh4rNq+HReqqgKet9FolCoGucJQ586dk7Zx3Yio72BIiIiI4HQ6peophjYmy4l6O7vd7lFFp7y8PNjTCjqn09lqSyT+w5Co89ntdhiNRq8hvf4WXCQiIiIiIiIi6q0uVFUhQaVCgkqFzOzsbt2e88MPuNLGdvY5OTlQKBTQ6/XSttTUVCgUCmRlZbXpWkTUszEkREREsFqtUmshLkBSf2Kz2WTtxbRaLWra+I+n/sA9MNSyHZurJRnvG1Hn8hUWMpvNrOZFRERERERERESdzv2PQt0rC9XV1QVxVkTU2RgSIiIiqdVYXl5esKdC1G0sFotHlQ4uvLfOX4UhrVYLs9nMsCFRJ6qpqfFoQ8ZAIxERERERERFR+8yaNcvnSEtLC/b0upXD4UB1dbXX7UqlEgqFAkajMQgzI6KuxJAQERFJi48mkynYUyHqFi0DQmazOdhT6pXsdjvKy8s92rWp1WrodDpUVlYyeEXUSaxWK7RaLVsjEhERERERERFRp8jKyoJSqURZWZlsu6v1mFKphMPhCM7kiKjLOQp6qgAAIABJREFUMCRERERS+yCLxRLsqRB1uZYBIb7uO0dNTQ1MJpNHiMFVpamysjLYUyTqE0wmE6ugERERERERERFRh7i3E3MPCVVXV3vdTkR9B0NCREQkLTTabLZgT4WoS5WXl0uvd41Gw4BQF7HZbDAajVIA0f2eG41GftYQdZDVapW9v3Q6HYNCREREREREREQUsOrqamRmZkKv18u2azQaKBQKZGZmBmlmRNTVGBIiIiJpodFqtQZ7KkRdxmg0ysIqNTU1wZ5Sv2CxWGAwGDyqC2m1WpSWlsJutwd7ikS9ktPplLX6Y1CIiIiIiIiIiIjaomUrsXPnzklVhLheRNR3MSRERETIy8uDWq2GyWQK9lSIukTLCkIMCHU/p9MJi8UiCzW4t0viPzqJ2q5lUMhoNAZ7SkRERERERERE1EM5HA78+OOPHuEgl9TUVCgUCmRlZXXzzIioOzEkREREMJvNUKvVyMvLC/ZUiDpdTU0NA0I9jN1uh9lshlar9aguVF5ezmooRG3QMijEdn5ERERERERERMGXmZ2Nr1UqfK1SocjtD7SLTKYu367SaGAqK/OYU1ZWFhQKBTQajcc+o9EoVRGqq6vr4LMnop6MISEiIoLVapUWF4n6EqfTKbXTY0u9nslqtUrVzNzDXEajka3IiALkHobUarUM2hERERERERGRV2fPnsUjjzwCQRDwu9/9DpMmTZLtP3PmDMLCwnDLLbcgLCwM165d69DjbdmyBSEhIW36w801a9bg/vvvhyAIuHTpUoeP6yiz2YzbbrsNo0ePDuj42oYGZJeVYUtaGtYmJWFtUhJ2HTuGw6dO4fCpU9h17FiXb4/96issi4+XhYfKysqkEFBZiwCRw+GAUqmEQqFgpWqifoAhISIikgUpzGZzsKdD1Gncq2vwtd2z2e12GI1GWahLrVYjPz8flZWVwZ4eUY/nqgqoVqthsViCPR0iIiIiIiIi6sEefvhhDB48GE1NTR77CgoKMGrUqE55nIKCAsyfPx/Xr19v03lqtTqg8E+gx7VXc3Mz/v73v+O3v/1tQCEhXVERDpeWSoGdYI3MkhLEp6TgYnW1bH5lZWXQ6/Ue887JyYFCoYBSqfTZioyI+g6GhIiICMAvi4sajYYVCKhPMJlM0oI5W+n1Hk6nExaLxWsrMrPZzM8nIh+cTqf0fjEYDMGeDhERERERERH1YF988QUEQUBGRobHvlmzZiE5OTkIs/pFTwkJxcXFYcaMGXjsscdaDQnZGxuxLD4e3xw5EvSQkGucvny51edYXV3ts8IQEfVNDAkREREAeTUhlpOk3s69hR5b7/ReNpsNBoNBFhZyfUa1pUQxUX9hNBrZPpSIiIiIiIiIWlVdXY2BAwfiueeek21vaGjAkCFD0NjYCABITk7G448/DlEU8cQTTyAqKgonTpyQjo+JiYEgCBAEAQcOHIAoihgwYAAEQcCKFSsQGhoKQRBQXFwsndPaNYFfwj8HDhzA448/jjvuuAP33nsvVCqV1+PcQ0LNzc2Ijo7Ggw8+iBEjRuDRRx/F+vXr0dzc3KZ7VFpaij//+c+ora0NKCR0xmLBsvh4KHNzgx4Oco2fLl3CwYMH/YZ/NBoNFAoFMjMz23R/iKj3YkiIiIgkFotFWlzkAjz1Zu5VaPha7v3sdjtMJpNHKzKdTsdWZERu3FuOMRxJRERERERERP48//zzGDBgAC67VZvZtWsXZs+eLX09adIkJCUlSV9v2LABd911F+x2u7StuLgYgiDgySefRFFREWw2G0JDQ1FcXCztcw8JBXJNV/hn4sSJuHbtGgBg5cqVuPnmm1FSUuJxnHtIaMGCBRgyZIj0vC5cuICQkBDExcUFfG+amprw2GOP4ciRIwAQUEjoQlUVNu/Zg/16fdDDQYdPncJ+vR7rdu7E199+C6VSibq6Oo85nzt3TqoiZLVaA74/RNS7MSREREQyrnCFTqfjAiP1SuXl5dIiudlsDvZ0qJNZLBbodDpZWEij0bAVGRHkISGbzRbs6RARERERERFRD+YK2KxZs0baFhkZKWtjbrFY0NTUJH195coVCIKAnJwcaZsrCJSYmChtu3jxIhobG72GhAK5pmtuWq1W2uZ0OjFo0CC8/vrrHse5QkK1tbUYOHAgYmJiZM913rx5CAkJCfjerFq1CrNmzZK+DiQkBACnL18OejjINZS5uVgWH4+vdu70WUkoNTUVCoUCWVlZAd8bIur9GBIiIiKZmpoaqVqHTqcL9nSI2sS9bZ5Go2FopA+z2Wyy1koMCxGxkhARERERERERBa6pqQl33nknHnjgAQDA2bNnMWzYMNkxJSUlmDZtGoYNG4awsDA88sgjEAQB+/btk45xBYEKCgo8HsNbSCiQa7rCPy2riIeFheFvf/ubx3GukFBOTg4EQcCQIUMQFhYmjaFDh2Lw4MGora1t9b6cOHECf/7zn2WVd3pzSCi/qMjrXI1Go1RFyFuVISLquxgSIiIiD1arVVpkNBqN0vZdu3ZBFEVkZGR021wuXbqEqKgoREZGQhRFTJgwQeqH7Mvx48chiiJEUURUVBQSEhK6abatS0tLw1NPPYXY2NhgT6VPMplM0mvXYrEEezrUDex2O8xms6wVWVeFhfgZ2Pu538uIiAhERUXhwoULwZ5Wp8nLy5PeA0RERERERERErVm0aJEU8Fm2bBnWrVsn7auvr8ftt9+OF198EQ0NDQBu/C5OEAQolUrpOG9BIF/7Ar1mR0NCW7dubfc9iY6Oxn333ScLGf3mN7/Bb3/7W4SFheHll1/2ep69sRHHS0uRWVIS9IDQ4VOnkFlSguMmE+xefpfocDigVCqhUChka0BE1D8wJERERF5ZLBaPoNDrr78OURTx7rvvdvt8jhw5Ii16q1Qqv8e+8847EEURc+bM6abZta6qqgoffvghpk6dClEUGRLqAna7XXrNupehpf7B6XR2eViIn4F9g+teKhSKYE+lU7l/BrqXBSciIiIiIiIi8uX06dO46aabMGvWLAwdOhSXL1+W9uXn50MQBKSmpkrbXK3B2hsSCvSavtqN/f73vw+o3dh7770nm4fZbMbs2bPbfH9cAqkkdMZiwbL4eChzc4MeEHKN027fT3c5OTlQKBRQKpVwOBztvi9E1DsxJERERD65V2XR6XR45plnMHHiRISHh8NqtXbrXI4cOYIXX3wRkZGRmDZtmqxnsbsTJ07glVde6XEL5HPnzkVCQgJOnz7NkFAXcW89ZbPZgj0dCpKuCguZzWZ+BvYRfTUk5P4zm5+BRERERERERBSoESNG4JZbbsHEiRNl2202G2677TZMnz5d+l1UXFxch0JCgV7TFf4ZPXo0rl27BgBYuXIlbr75ZpSUlHgc5woJAcDChQsxaNAgnDx5EsCNqjkTJkxAdHR0u+9RoO3GlsXHY8fBg0EPB/kLCVVXV0ttxsrKytp9T4io92JIiIiI/HIFLz788EMsXrwYX3zxBURRxK5du7p1HkeOHMG8efOwYsUKiKKIo0ePej1u8eLFOHDgQI9bIK+qqgIAlJeXMyTUBZxOpxQK0el0wZ4O9QCdHRaKj4/HmjVr+BnYB/TFkJDNZmMlNSIiIiIiIiJql4SEBAiCgIyMDI99GRkZCA0Nxd13343w8HBER0dDEATcc8892LRpE1JSUhAaGgpBEBAaGoq3335bOjcxMVG2LzExMaBrxsXF4b777oMgCEhMTMSwYcMQEhKCe++9FykpKdL13Y976KGHoFarAQDNzc2IjY3F0KFDMXz4cAwfPhwrVqxAc3Nzm+/Npk2bPNqNuZ6HN7syMrAnKyvo4aDMkhKsS0pCtpdq0xqNBgqFApmZmW2+H0TUNzAkRERErSouLsb48eOxY8cOZGRkQBRFWUlPF/d2ONOnT8f58+cxf/58jBkzxiMYYzab8f7772PUqFEYP348li9fjsLCQoiiiIiICERFRXlce968eTCbzRBFEW+++abH4589exYvvPACGhoavC6QX7x4ERs3bsQrr7yC5557DpMnT8bChQtx+vRp2XFz585FREQERFFEZGQkDhw4gLq6OkRFRUnbtm/f3q57yZBQ13Bvj2exWII9HepBvIWFXG0U7XZ7QNdobm7G5MmT8eOPP+LkyZP8DOzAZ2BP0NaQkM1mw+rVqzF58mRMmDABU6dOxbZt27y+ftr6fe0M7iFJVhEiIiIiIiIiIgouu9OJospKpBUVYW1SEtYmJWFLWpoU4Nmv13fp9rSiIiyLj8eq7dtx4ec/XnY5d+6cVEWouyulE1HPwZAQERG1Sq/XY+LEidIC5PPPPw9RFGE2m2XHXblyBcXFxXj55Zfxr3/9C2+//TZUKhVycnIwY8YMaYHcYrFg3LhxmDp1KoqKinDp0iWoVCpMnTrV58Kta4EcAObPnw9RFKHX62XHrF69GgqFAtevX/e6QH7gwAE8/fTTUjnS+vp6xMTEICoqCmfOnJEdm5eXB1EU8emnn0rbTp06hWnTpqGurq6dd5Ihoa5iMBik12dHWkpR39WRsJBer8fUqVOlr13tvPgZ2Du1JSR05coVTJkyBW+99ZZUttpsNmPSpEl45513cP36denY9nxfO8rpdMo+/1q+JomIiIiIiIiIKDguVFUhQaVCgkqFzOzsbt2e88MPuFJT4zGn1NRUKBQKZGVldfbTJaJehCEhIiJqVUxMDLZv3y5Va/nkk08giiLWrFnj9fiZM2dCFEXk5eVJ2/Lz87Fv3z4AwPLlyyGKIoqKimTnrV+/PqAFcldVhvnz50v7L1++jAkTJqC+vt7nAvnx48eRnJws2+ZwODBq1Civz2X16tUQRREajQaNjY149dVXkZ+f7+9WtYohoc5nt9tlgQ8if9oTFnJ9Brp88803EEUR8fHxXo/nZ2DP1paQUFxcHERRxIkTJ2TbVSoVRFGEUqmUtrXn+9oRTqcTOp1Oeg27v96IiIiIiIiIiIjcGY1GqYpQb/8jQCLqGIaEiIjIr8bGRowbNw5nz54FAFitViiVSoiiiPHjx6OsrMzjnJkzZ2LcuHFer9fc3IyxY8di/PjxHvtyc3MDWiB3PYZ7JY8tW7bgyy+/BACfC+S+vPTSS3j33Xc9ttfV1eGFF17A008/jeXLl2P16tUBXc8fhoQ6X3l5ubRIzhKpFCin04ny8nJotVrp9aPRaDwqsbT8DASA8+fPQxRFTJ48GU1NTR7X5mdgzxZoSKi5uRnjx4/3+r2qqqqCKIp45513pGPb831tr5YBIZ1OxypqREREREREREQBmDVrls+RlpYW7Ol1CYfDAaVSCYVCwT+0JSKGhIiIyL+jR4/izTfflG2z2+1Su50vv/wSBoNBtjg5c+ZMvPrqq16vd+XKFYiiiNdee81j308//RTwArlGo4Eoili+fDnq6+sxYcIEVP3cX9fXAnlDQwN27dqF6dOnY9y4cYiKikJUVBREUcRbb73ldb75+fkQRRHjxo1DfX29j7sUOIaEOp9roVyj0QR7KtRLWSwWWWUhrVYrBc68fQYCwJw5cyCKIgoLCz328TOwZws0JHT16lWf36umpiaEh4dj4sSJANr/fW0PBoSIiIiIiIiIiDpGq9VCEASP4e0P6fqCnJwcKBQKKJVKOByOYE+HiIKMISEiIvJr0aJFiIiIkBaTXSMiIgKiKGLu3LlSQMO1qD5z5kxMnz7d6/VcC6neFtDbskDe1NSEKVOmICIiAuvXr0dMTIy0z9cC+ZIlSyCKIlQqlWyx++WXX/a5QH7lyhWMHTsWoijiu+++83OnAsOQUOdjqzHqDK42ZO4tyPLz8/Hhhx/6/Qx0/+xx4Wdgz9bWkJC375WvkFBbv69tZbPZZIE2BoSIiIiIiIiIiNpOq9XipZdeQl5enmy4VxPvK6qrq6U2Y946QxBR/8OQEBER+VRTU4MxY8bgypUrHvuuXr2KyMhIPPXUU7JF9dLSUrzxxhs+F8hdLVmefvppj31tabUDQGp7JooiysvLpe3eFsjr6uogiiJmzZrlcW1/C+RLly7FN998g6lTp+LZZ59FdXW11+MCxZBQ57LZbNJrz2KxBHs61AfY7XYYDAao1WqoVCpERUXh+PHjHkEM12fg2LFj0djYKNvnLyTU3z8De4LWQkL5+fkoKioKqN3Y3LlzAbT/+9oWLUNsLav4ERERERERERFRYLRaLT744INgT6NbaDQaKBQKZGZmBnsqRNRDMCREREQ+qVQqLFy40Of+jz/+GKIoQq1WIy8vT1q4nDZtms9WOwCwfPlyiKKIoqIi2fb169e3aYHcbrdj4sSJWLx4sWy7twXyxsZGREREYObMmbJjHQ4HxowZ43WB/OjRo5g7dy6am5tRVFQEURTxySef+HxegWBIqHO5L5rX1NQEezrUh9hsNqxZswYzZsyQqqWZzWbZMa7PwKNHj8q2+wsJAf37M7AnaC0ktGHDBmzbtg0AEBcXB1EUUVxcLDtGpVJBFEXs27dP2tae72sgnE6nFFxzDfdQGBERERERERERtU17Q0IxMTFSa7KMjAw88cQT+PWvf43HH38cFRUVSElJwV133YXf/va3mDlzJpqamqRzm5ubERsbi7/+9a947LHHEBoaiujoaOkY92sfOHAAoihiwIABEAQBxcXFaG5uRnR0NB588EGMGDECjz76KNavX4/m5maf8z137pxURcjVCYKIiCEhIiLyac6cOR6L3+6OHj0KURTx0UcfAbgRgFGr1ZgyZQpeeOEFlJaWeq1yYLFYMG7cOEydOhVFRUW4dOkS9u/fj3feeadNC+S++Gq1s3jxYoiiiOTkZFy7dg3V1dVYuXIlRFH0WCCvrq7GlClTUFlZKW3bsGEDRFHEkSNHApqHNwwJdS73hXOizjZnzhzs3r1b1t5Jq9VK/6Bu+Rno0lpIqD9/BvYEbQkJXblyBVOmTMGbb74pfd9Pnz6NyZMn45133pH9jGvP97U1VqtV9vrTaDSw2WzteNZEREREREREROSi1Wrx5JNPYuzYsRBFESNHjsT69esDqtpcXFwMQRAwZswYnD59GufOncOf/vQnDB8+HHPmzEF1dTUOHz6MX/3qV9izZ4903sKFC/HHP/5RamlmsVgwePBgvP/++x7XfvLJJ1FUVASbzYbQ0FAUFxdjwYIFGDJkCC5fvgwAuHDhAkJCQhAXF+dzrqmpqVAoFMjKymrvrSKiPoghISIi8nDp0iVERUVJ/3O8bt06j2PWrVuHkSNHSq1uoqKicODAAek8URQRGRmJ2bNne13QNJvNeO+99xAVFYVnnnkGa9aswYkTJ6QFbHdRUVGIjIyUHkelUvmc+9KlS2VziIqKkv5HvLa2FmvXrsXkyZMxcuRIvPTSS9i7dy9eeukl6diSkhJ8/vnniIyMRHh4uNRm5sCBA9LzDQ8Px4QJE9p0T5VKJaKioqRrREREICoqCtOmTWvTdUhOp9NJlayIOkvLz8A1a9bAZDLJKrl8/PHHrX4GRkVFYenSpV4fo799BvYU7vfS9TncckREREghIeBGVanVq1dj0qRJmDBhAqZOnYqtW7fCbrd7XL8t31d/vFUP0ul0bC9GRERERERERNQJfvjhB7z66qvS2sWZM2fw5z//GVFRUa2e6wryuP9B2EcffYRf/epXuHLlirQtNDQU8+fPBwDU1dVh4MCB+PDDD2XXWrJkCW699VZUV1fLrp2YmCgdc/HiRVy+fBkDBw5ETEyM7Px58+YhJCTE6zzr6uqkkFBdXV2rz4uI+g+GhIiIqEuYzWZZ9QODwdDq4mZeXh5EUWRvXAqY6/VlNBqDPRXqB+x2u6y1olqt9lkxrT34Gdg3tfX72rJ6kFqt9mh1R0REREREREREnUuhUEAQBGRnZ/s9zhXkKSwslLbFxMTgD3/4g+y4v//973jjjTcAADk5ORAEAdu3b5cds3PnTgiCgGPHjsmuXVBQIDvOdf6QIUMQFhYmjaFDh2Lw4MGora31OV9XAImIyIUhISIi6jItF9Q1Gg2sVivOnDmDVatWeRy/fft2iKKIc+fOBWG21Ns4nU4uoFNQ2Gw2aLVa2WdbeXl5wOfzM7Bv6uj31Vv1oLy8PNTU1HTVlImIiIiIiIiI6GeFhYUQBAFfffWV3+NcQZ7i4mJpW0xMDO644w7ZcX//+98xY8YMAG0PCblf2/38rVu3tvfpERFJGBIiIqIuV15eLquKsG/fPoSHh+PgwYNobm5GU1MTjh8/jrFjx2L16tXBni71EjabTXpNWSyWYE+H+qGWn206nc5re8WWSktL+RnYB3Xk+9rytdTW4BkREREREREREQVu0aJFHn94un//fgiCgEOHDvk9tz0hodraWgwcOBALFiyQHbN48WKv7cZahoRc57/33nuy7WazGbNnzw7gGRMR/YIhISIi6hbuFRJUKhUWLlyIl19+Gc899xzGjh2LV155BUlJSWhqagr2VKmXsFqt0oJ6IMEMoq7gdDphMpna1IKspqYGW7ZswfTp0/kZ2Ie05/taU1MDnU7nUT3Ibrd38+yJiIiIiIiIiHquhIQE3H777bLwTKDbvImMjMQbb7wh/c6mpqYGw4cPx4MPPojr16/7Pbc9ISEAWLhwIf74xz/i7NmzAACLxYLBgwfLgj++QkKu8wcNGoSTJ08CABwOByZMmIDo6Gi/8yUiaokhISIi6lYt2/RotdpeG/B4//33Wx3Udcxms/Q6YjseCjabzSYLe7jaKxJ543Q6UVpaKgsHsXoQEREREREREZF3W7ZswX/8x39Ar9e3eZs3Bw8exDPPPIP//d//xT//+U88/PDDmDt3bqtrFSkpKQgNDYUgCAgNDYVarcbSpUtx55134tZbb0VYWBhqa2sRGRmJ3/zmN/jDH/6AadOmAQCam5sRExOD0NBQPPbYY/jLX/6C6OhoKajU8tpvv/227LGbm5sRGxuLoUOHYvjw4Rg+fDhWrFiB5ubmNt1LIiKGhIiIqNs5nU5ZwEOtVsNoNPqtvEHUkvtriKinaNk2Kj8/n1VhSMZqtcrCsvwZSERERERERERERETdhSEhIiIKmpqaGuTl5cmqKFRWVgZ7WtRLMCREPZXdbpfaK7o+21r2OKf+x263Iz8/XxYO6s3V9IiIiIiIiIiIiIio92FIiIiIgs5b5Q1/7aPq6+tRVVWF8+fPo7S0tNVRUVGBqqoq1NfXd+Ozoq7mHjAj6olaVoxpLRDicDja9NlmNptRVVWF/8/evQc1eef7A8/2zGm3s2f37PTsOLvdne12+9vu7uwcztlbnbPby+6cBxC1WnvRtl7q2ta71Wq9a0G8oKKC9ztULahBRRHDJVhATCMXASVqQKMkFqgpBohygonw/v3h5mkeciFA4Anwfs18Z+qTJ0++CQ9frN83n09TU1Mvvqv+r6mpCfX19TAYDH59Herq6lBfXw+73e71mgaDQfJzTq1WMzhGRERERERERERERL2OISEiIgoKDocDOp1OUnnDZrOhqakJBoMBZWVlUKvVSEtL6/ZQq9UoKipCZWUl6uvr5X7r1EXOkFBubq7cUyHyylN7RYvFgqamJphMJpSVlSEvLy8ga5tKpYJGoxHXNl+hFfo2lFVZWQmNRgOVShWQr0NeXh7KyspgMpnQ1NQEo9Eo+foXFxezBR0RERERERERERERyYIhISIiCioWiwVffPEFMjIyArZh688oKiqCyWTipnof4gwJFRcXyz0Vog5ZrVZotVpkZmYiOzuba5tM7HY7TCZTwIJZ/ozMzEyoVCqcPXsWZrNZ7o+AiIiIiIiIiIiIiAYwhoSIiPoxm80Go9GIc+fO4dy5c6isrERjY6Pc0/LIbrejsrLSr2CQs1pGUVER9Hp9h6OoqAgajcbvSkRlZWVsTdYHMCQ0sFVXV6OwsFBc277++mu5p+SRc23zd/3RaDTQaDR+rW2lpaWdWtuKiooGbPW0+vp6FBUV+V0JSKPRoLS01K+vg/Nr5s+11Wo1Q1tEREREREREREREJBuGhIiI+qn8/HysWrXK41AqlUHT6qSjcJBarUZpaSkMBkPANredbX5KS0t9VpNgWCi4MSQ0MBUWFiI2Ntbj2rZ3796gCUJ2tLapVCox6Biota25uRkmkwkVFRU+QysajWbAhIXq6+s7/CwqKipQV1cXsPW+vr5eDKj6+vpXVlYG5PUC5eLFi8jJyUFOTg4uXrwoHrdYLD1+XKvV4vbt2z38DomIiIiIiIiIiIiIISEiCiozZ87EM888g2eeeUZyfN++fXj66adhtVrlmVgXyTHvxsZG7N2712tAyDliY2NRXV0dsNd9+PAh6urqOvWcpqYmjxUw1Go1Kioq0NTUFLD5+dLc3AyDweAxMKRSqWAymXplHtQ5arW6z4SEuLZ1n81mw6FDh/xa2y5duhTQ17516xYcDoff5zc3N3tdT0pLSzu9VnaVs7WWtwo6BoOhV+YhF4PB4LWiUm9W86mrq0NpaanHwFBeXl7Aw6g2m61TQeCHDx/CarWisLAQmZmZyMzMhEajgcVigcViQXV1dY8fP3HiBJKTk4P2npRrDS8rK8PKlSt75NpEREREREREREQ0MDEkRERBJyYmxm0T5uLFi1i0aBEePnwoz6S6SI55Hzx4ULJhvmfPHuTn5yM/Px9KpdJtMz1QFYXsdjuUSiXS09Nx69atDs83mUweKzr01ua5N/X19SgtLXWbm06nk3Ve5K4vhYQArm3dlZaW5ra2ZWVliWtb++pCgWw/plQqkZqaiitXrnQYLGlqanILgzhbTMmpubnZ49pWVlYm67x6iqdgVGlpqezV4Uwmk1s4VqVSBTQUazaboVQqUVRUhPv37/s89+bNm6irqxMDO3KOwsJC1NbWBuxzCDQ51vDExEQ88cQTPXJtIiIiIiIiIiIiGpgYEiKioONpE4b8U1hYKAkA6fV6t3O+/vpr7NmzR9LZqSX6AAAgAElEQVR6LBCcISHn8BUWar+JrlKpZA8HtdfU1ORWCSTY5jjQ9YeQEPlHr9dLAkCFhYVu5zQ2NkrWtr179wbs9V3XNl9hIbvd7ra2BVtllObmZrf2W55+VvRler3eLYAqdzioPYPBILlX1Gp1wCobOUNCzuErLJScnIzCwkLZA0LO0VGoSU5yrOEMCREREREREREREVGgMSRERLJqaWnB9OnT8dRTT+G3v/0tpkyZgsjISMkmTFJSEkJCQqBQKFBRUQEAiI2NhUKhgEKhQEZGBl5++WU8+eSTeOmll2AymXDq1Ck8++yz+OEPf4hp06ahtbVVvF5bWxtiYmLw+9//Hn//+9/xl7/8Bdu2bUNbW5vHa//tb3/Dk08+id///vcoLS2VzD8/Px8vv/wyBEHAyy+/jBEjRkCj0Xidt/P1N2zYgP/6r//CX//6V4SEhCAmJkacY2devz3XShqeNtGdvv7664BX3GgfEvIVFnIN3+Tl5fVay5eucK28oVKpgnquA00wh4S4tgV2bXOtkJaVleX1PJvNJlkHAxV+8bS2eQoLtV8veqtlYldUVFRIgjTBFqLpqubmZsn7cr1Hg037wGxH3wf+ah8S8hUWCraQUEdtu1zX1ueffx6jR4/GggUL8Pjjj2Pw4MGorq6WrDWZmZkQBAFPPPGEuGalpKTgpZdeEte3iIgIXL161evrdGYNBwK3FsfFxeGXv/wlvvOd72Dw4MEYPHgwdu3aBcD3Gk1ERERERERERETkC0NCRCSruXPnYtCgQaiqqgIAlJSU4Omnn3b7Te2Kigq3TRjnseHDh+PmzZv46quv8Jvf/AYvvvgiZs+ejYaGBpw9exaPPfYYjh8/Lj5v8eLF+NWvfoW7d+8CeBSYefrppxEXF+d27YiICFRVVeGbb77Biy++iMGDB4vn2O12/Pu//zvUarV4bPbs2Vi6dKnPeS9btgw/+clPcPv2bQBATU0Nfvazn2H+/Pmdev32GhsbxY3xrVu3+v7gIW3dc/78eZjN5m6N2tpaj5uSznHq1ClcvnwZtbW1fWpj2m63S1rDsJpQ8AjmkBDXtsCtbQAkocaOWiTm5+eL52ZkZHR7bfMWuHCOEydOoLi4GLW1tThz5oy4VgRzQMjJtSVXsFU86irXKkJFRUVyT6dD9fX14nzPnDkTkPv1+vXrPu/Zc+fOwWQywWw2IzMzExUVFbKHg5wjKyvL573oaW39wQ9+4HVt/d///V9cunQJFosFISEhqKiowJgxY3D06FHx3O3bt+PZZ5+VrC3dWcMDtRYDnisJ+bNGExEREREREREREXnDkBARyaa5uRlPPPEEFi1aJDk+fvz4Tm2ku7bLWrp0KR577DE0NjaKx0JCQsTXuHfvHr773e8iNjZWcv25c+fi6aefdrv2kSNHxGO7d+/G448/Lv4muNlshkKhwPbt28VzzGazuKHkad7379/Hd7/7XSxZskTy+lFRUXj88cfR0NDg9+u3V11dLW6MHzx40OM5rlw30nfu3OlzQzGQ49ixY31qAxeQbjr3t7Y8fZkzJKTT6eSeigTXtm8FYm3rbADStTVZfHx8r61tKSkpktZRfYHJZOpz63FHXINPfSXU6RpETUlJCci96O+5wVRFyGKxIDk5GZcvX/b4OXVlbU1KShKP3blzBw8ePEBNTY2kCltjYyMUCoVYgbE7a3gg12LAc0jInzWaiIioJ925WwdT3S0Ojh4ZLQ98/1IIERERERF1H0NCRCSbS5cuQaFQIDExUXI8Ojq6Uxvprq0ZYmNjMWjQIMlzX3nlFUydOhUAUFhYCIVCgV/96ldi64bBgwfjd7/7HX72s5/h3r17kmtfvHhRvM7x48ehUCgkrTqWLl2Kf/mXf8Fzzz2HRYsW4cqVKz7n7Xz99u85OTkZCoUC586d69Tru+orIaHjx4+Lm6F9pTWGa1sehoSChzMkFGwVULi2fSsQa1tfDAmpVKoO5xkMDAZDwFtdyc215ZvJZJJ7On5xbTkWqHvRn/OOHj2KoqIi2YNB/oaEurK2uq41TteuXcP48ePxpz/9CYMHD8YLL7wAhUKBkydPdvl12q+FgVqLPYWEgI7XaCIiokC5c7cOxVe0SDy5E+sSIjk4em3Efx6DM+dSUWW8xuAQEREREVGAMSRERLLxtgmzYsWKTm2kux6LjY3FT3/6U8lzX3nlFUyZMgXAt5s3+/fv9zk3T9dOTU2FQqEQN3icvvrqK2zatAn//d//je985zse20l0dSPdn9d3stls4sZ4+99g90SpVIrnByL4YrfbfW5G5ubmwmw2w263S9qNBXtLnvbtxurr6+WeEv1TXwsJcW3r2trmfP/+thvLysoSz83Pz/d5rr/8WdsAadgj2AMqdrsdeXl5/a7dmGvwKS8vT+7pdMi1mlOgKlD5apGXmpoKnU4Hu90OAKitrUVNTY3s4SDnqK6u9hoY7O7aCjyqEvTjH/8YEyZMQEtLC4BHf39SKBRITU3t9usEei32FhICfK/RRERE3WWsu4VkVaLsQREOjnUJjwJD58tyGRYiIiIiIgoQhoSISDbOdg4LFy6UHO9sS57ObKQ720B88sknknMMBgM++ugjn9duv3nT0NDgtqE3YcIEPPvss16v43z9xYsXS54XGRnpsSVPZzfSt27d6tfmuGvVoVWrVklaGHWVt5CQ6wa6k2s7GJVKFbRBofab6Gq1WtxYJfkFa0iIa9u3ArW2uYYalUql1/O+/vprydpWXV3t9dzO8Hdtc606plKpgjZUaLfbUVZWJplrc3Oz3NMKiObmZklYq6ysLGjX7fr6eslcA1WpzlNIqH04yCk5OTmoWo5ZrVav76u7aysAlJSUQKFQID09XTzmbDfmDAl153UCuRYDwGeffSaGhNra2tDc3OzXGk1ERNRVLQ9sOJFz2GdgY+vRtdiZuoGDo0fGhgPRPsNCVdXX5P42ISIiIiLq8xgSIiJZzZs3D4MGDUJVVRWAR5s3P/jBD3psIx0Ali1bhh/96Efia9rtdrz55puIiYnxee32mzfXrl3DL37xC0nAZuzYsRg+fLjP6yxbtgw/+clPcPv2bQBATU0Nfvazn0k2lLq6ke7aZmfVqlVi9Y7257hW5cjKyvJ6vc5oHxLytIHueq7rxmhaWhoqKysDMo9AMZlMbnMM1g3/gSpYQ0IA1zYgsGtb+/BPWlqaW0Wh6upqSVDSn7aL/vJ3bQMgCRampaV5DGbIqb6+XlIdLS0tDXV1dXJPK6Bcqwk5A57BtH7b7XbodDrJHANZ9cg1JOQtHOSUnJwMjUYjezjIOToKq3laW3/605/6HRKyWCz43ve+h8mTJ6O1tRUAEBcXJwkJeXsdf9fwQK3FAJCZmQmFQoHm5mYUFhbiD3/4g19rNBERUVfcuVuHnco4t2BGYsZWnLhwEOdunobGpOLg6JWRffUYDufuRnzSard78uyFDLm/XYiIiIiI+jSGhIhIVi0tLZgxYwaeeuop/PrXv8bo0aOxYMECPP744xg8eDCqq6uRlJSEkJAQKBQKhISEICkpCadOnZIcU6vViI6Oxs9//nPxuffu3UN4eDi+//3vY9CgQRg/fjyAR7+JvWHDBvzud7/Diy++iBdffBFr165FW1sbAHi8dmJiIp5//nkoFAr8+c9/xsWLF9HU1IRZs2bhT3/6EwRBwF/+8he8++67+PrrrwHA47ydrx8bG4uQkBD89a9/xX/+538iJiZG3Kzy9/W9ca24sWrVKmzduhWHDh2CUqnE3r173R7rqHWPv5whoY420J2amprcQjgqlQqVlZWybqibTCa3DfS+0DpooLFYLEEdEuLaFvi1LT8/X7J+xcbG4tChQ0hLS3Nb22JjYwNSIc2ps2tb+6CQc22Ts1pPfX09NBqN29oWqOo1wUav17u9V41GI2tYqLm5GZWVlW4/+/Ly8gJaUc9sNncYDnLSarW4cuWK7OEgs9mM06dPo7i42Od8XdfW3/zmN/jggw+wfPly/L//9//Ec9qvNbNmzZJcIyMjAyEhIXjuuecQGhqKmJgYKBQKPP/889i1a5fb63RmDQcCtxYDj/5uNWzYMPzxj3/ECy+8gIyMjA7XaCIioq4w1t1C/OcxbuGgs1WpsodFODhOXDjoFhY6kXNY7m8bIiIiIqI+iyEhIqJ+xmazuQWFPI09e/YEdEOpra0N9+/f79Rz2rfzch1FRUUwmUy9Ehiqq6tDWVmZ28atswJFsLZDG8iCPSREPSMrK6vDtW3r1q0BazPm1JW1zbWtYvtAiMFg6JXAUH19PXQ6ncfgo0ql6ncVhNqrq6vzuq7rdLpeWdubm5thMBi8/qwrLS0N+M85h8OBhw8f+n2+8+d3Y2MjMjMzxeEa4unJ42azGcnJyUhOThYrkXnT0NCAlpYWybHp06cjLCysS58VERERPaog5BoQ2nAgGmklSbIHQzg4XMe5m6eRmLFVEhQ6cy614xuciIiIiIjcMCRERNRPtW8r5jry8/Plnp6Et+o9rpvqOp0OJpOp21UgmpqaUFdXB51O57GqhusGul6vD6o2QfQt15CQ0WiUezrUi9q3FeuoDZmcvFXvcV3bysrKYDAYUF9f3631xrm2VVZWQqPReAzHDMS1rbm5GRUVFT4/D41Gg8rKStTV1XUrOGS321FfXw+DwYCysjKfP9fkrmrkTU5Ojjh687her4fFYulwfpGRkYiOjhb/bDKZ8KMf/QhKpdKv90dERERSLQ9skhZjGw5EI/vqMdkDIRwc3sbh3N2SoFCxTiv3txERERERUZ/DkBARUT/X2NiI6upq6PX6oG9FYTKZvFZb8LbBrtFoxFFWVobKykoxAOQ6/L2mWq0eUBvofZVrSMifjWXqf2w2G6qrq3Hp0qWgX9vq6+u9VhbqzNrmDAC5Dm/hF65tUna7HXq93mdwx1N4yHU4vwZlZWWS4535uVVUVBSU4aC+IicnB6+88gr+/ve/QxAE/M///A8SEhLknhYREVGfdSLnMANCHH1utK8oZKy7Jfe3EiwWiyQQ7/rvFBcvXuzR45cvX0ZFRcWA/X89IiIiIuo8hoSIiChoOBwO6HQ6ZGdnIyMjA2fPnvV747U7Q61Wo6Kigm3F+hCj0ciQEPUZDocDBoMB2dnZyMzM7FSohGtb4DU1NaGiosLvwFB3R15eHjIzM5GdnQ2DwQCHwyH3R0BEREQEY90tSdCCLcY4+tLYmbpBvHeTVYmyfi+1tLSgvr5e0lq3urpabK+r0Wh69HheXh6Sk5OhUqn8Dgpt2bIFCoUCZWVlfp0/c+ZMPPPMM3jmmWe68UkRERERUbBgSIiIiIJCbW0tcnNzxeCHWq2G1WoF8KgKh16vR1FRUaeqAvmq0KHX61FXV8fftOqjDAaDeJ9ww52CmcViQUFBgWRtM5vNACC2pgrE2qZWq6HRaFBRUYG6ujo0NzfL/M77hubmZtTV1aGiogIajabbwSGNRoPS0lKxhRwAmM1myde/oKCA4UYiIiKSXbIqUQxZJGZslT30wcHRmXG2KrVHqgndu3fP738run//Pmpra8WwjpyjuroaWq3W73/j+sMf/oDHHnsMs2bN8vuziYmJYUiIiIiIqJ9gSIiIiGRltVpRUlIi2UDVarViQMiX+vp6yTCZTNDr9eLmrOtgGKh/KS8vF+8XomBks9kk92lnwiHe1ja9Xu/2GMNAPaO5udnts3Z+DUwmk+S4P5WazGazW1isvLycIUciIiKSxZ27dZKAxdmqVNlDHxwDaBjP4EvTGWiM6fjSmP7P/z7T6eu4th07npPc4X1vNpuRnp7u8xy73Q6lUonU1FQUFRWhoaHB67mXL19GcnIyzGaz7CEh52htbe3wcygvL8crr7yC0NBQ/Md//AcePHjQ4XMAhoSIiIiI+hOGhIiISBbO9juuG6a5ubkwGo1yT436gOLiYjFQRhRsjEajW2U0tpki/twjIiKiYFGs07KKEEfvD+OjYJCm+rT3YUz3+3qu1YTiP4/xer/fv38f58+fh1KphFKpxMOHD72e6wwJuY7c3FzcunXL7VxnSEjuYJDr8Of/OT/66CN89tlnSE5OhkKhwNGjR93OaWlpwfTp0/HUU0/ht7/9LaZMmYLIyEi3kFBKSgpeeuklCIKAl19+GREREbh69ar4eGxsLBQKBRQKBTIyMvDyyy/jySefxEsvvQSTyYRTp07h2WefxQ9/+ENMmzbNr5ATEREREXUfQ0JERNTrPLXfKS8vh81mk3tq1Ec475/i4mK5p0Ikslqt0Gq1krWtuLjYr8poNHBYrVYx6NjZCnpEREREgZCsShDDFScuHJQ/PMLR/4fHcFC6y/j2+JedCArFJ60W7+Wq6mtu9/qVK1eQmpoqCf34qjTtKSTkHKmpqSgrK8P9+/cBAFVVVcjMzJQ9GOQcBoMBly5d8vm9/+DBA/ziF79Ac3MzbDYbfvjDHyI8PNztvLlz52LQoEGoqqoCAJSUlODpp592CwmNGTNGEjLavn07nn32Wcm/71VUVEChUGD48OG4efMmvvrqK/zmN7/Biy++iNmzZ6OhoQFnz57FY489huPHj/ucPxEREREFBkNCRETUaxwOR5fb7xA5ORwO8f7R6/VyT4cIDocDlZWVbhViampq5J4aBTFPFacqKytZcYqIiIh6nGurseScPRAEQTKiNi6WP1TSC+NM2RGs27UCkz+ahJGvj0BYeBiGjxiGcZPeQeTGRThTelj2OfaL4S0gZMp4NIwqt8f9DQodVO8Q7+XzpV+I97iztZinsI+nkJDdbofZbIbZbPYaEvI07t69K3s4yDkKCwuRnOy77VpKSgref/998c9TpkzBY489htu3b4vHmpub8cQTT2DRokWS544fP94tJFRTUyOp/tPY2AiFQoHCwkLxmDMkpFQqxWNLly7FY489hsbGRvFYSEiI22sSERERUc9gSIiIiHoF2+9QoJjNZvEeYgiD5GY2m90qo+l0Oq5t5BeHwwGdTsfwLBEREfUq15BQxiUl1u+Jxvo90Rg+YpisIaEvqk5i1dblWLV1OY5rDvTY65w3nsHHy2YiLCwUgiDgnfGjsSJuCbYcWou1u6IwduLbEAQBQyKGYPuRDfKHbPryMJ7x0lrMd0jo23N8X/9w7m5JSKh9azFPIycnB7m5uV5DRP05JBQREYHz58+Lf75w4QIUCgVWrlwpHrt06RIUCgUSExMlz42OjnYLCV27dg3jx4/Hn/70JwwePBgvvPACFAoFTp48KZ7jDAmVlpaKx2JjYzFo0CDJtV555RVMnTrV32WMiIiIiLqBISEiIupRVqsVJSUlbL9DAWMwGMR7iS3qSC42m42V0ShgvLXhZNiMiIiIAu3O3ToxVBGftFoSuBj15khZQ0KZl5ViNaMdPRjOOXcrXXyd+Svm4NwtaRiloDodHy+bCUEQEBoaigMZO+QP2/TV4bGKkL8hodOPQkY+rp9WkiTez5sPrPMr2JOSktKtYJBGo0FtbS1qa2tx69Yt2cNBru3GysvLvX7v19TU4N/+7d8wePBgyfjud7+L5557TjzPW0hoxYoVkpBQc3MzfvzjH2PChAloaWkB8Oj/kxUKBVJTU8XznCGhiooK8VhsbCx++tOfSq7/yiuvYMqUKV1Z1oiIiIiokxgSIiKiHuFwOCRhDmf7HaPRKPfUqI8rLi4WAxlEcvBWGY2ouzz93DSbzXJPi4iIiPoRY90tMVSxM1UaxBloIaFRb4xE7vWTHs/5ouqkWFlp3KR35A/b9MXhtYpQJ0JCHVQTUl0+2umQUFFREXQ6HaqqqsQWY65/5/7yyy89Pi8rK0ty3uXLl5GcnCx7OMh1+PolgzVr1mD9+vVux9etWweFQoG8vDwA37YbW7hwoeS89u3GSkpKoFAokJ6eLh5zthtjSIiIiIgouDEkREREAceKCNSTXO8pot7krTIaK1pRIFmtVmi1Wv4MJSIioh7BkNC3IaF5y2f5PG/WwqnifDIuK+UP3fS1IakilC4dxjMQQ0Imlfvj1S7P9fEariGhA6d24+bNm8jPz0dqaqrXkNBXX33l83uktLRUcn5qaiqqqqrcznOGhMxms+zhIOdoa2vz+r5+97vf4c6dO27H79y5g3/913/FhAkTxGPz5s3DoEGDxPddUlKCH/zgB5KQkMViwfe+9z1MnjwZra2tAIC4uDiGhIiIiIj6AIaEiIgoYBwOB3Q6HdvvUI8xm83ivcWqVNSbWBmNepvBYJBUrMrNzeXPUyIiIuo2hoRUOG88g4S0rUgrTvJ53rJ1C8T5HMndJ3/opq8NMejjUjXI3+FaXcjHa7iGhJJVCeJ9brfbUVVVhfT0dLeQUGlpqc/vEdeQUGFhIex2u8fz7t+/jzNnzqCmpkb2cFB1dTVOnz7t8f8X7t69iz/+8Y948skn8de//tXt8cGDB+PJJ5/EE088IT7e0tKCGTNm4KmnnsKvf/1rjB49GgsWLMDjjz+OwYMHo7q6GgCQkZGBkJAQPPfccwgNDUVMTAwUCgWef/557Nq1C6dOnUJISAgUCgVCQkKgVqsRHR2Nn//85+K17t27h/DwcHz/+9/HoEGDMH78eL/XMyIiIiLqGoaEiIgoIMxms8f2O6x8QIFUXl4u3l+s3kK9wWazuVUPYlUX6i02m01ssegclZWVck+LiIiI+rDOhIS2Jcdi4pTxGD5iGIYOi8B7H47DlkPrcN54xmdwI1t3DFEbF+OdCWMwdFgEIoYOwZixb2Hhyo9x4ssDbucfyd0vhnG8jVdHDpc8p6A6HYmnt2FB9BzxdcLCwzDqzdcwa8FUfHZme7dDLvNXzBFf/3RJcrev5+l9Rm1cjHzDaazdFYVxk97B0OERnfusrxzDys1LMW7SOxj26lCEDwnHW++8gYXRH+PkhUNu5y9bO9/j5ztx8ji3c19/67VHVZQuHZUc33M83u35H8yY6D63y0pEbVyIdyaM9nAfHHQLBuXdOO123alz3ofGeAbKc4mYtXAaXntjhPjYyNdHeA0JuTKbzSgsLPQ7JHTz5k231mK+2O12NDU1oaKiApmZmcjMzERFRYUY4Onp40VFRUhOToZKpfIaaCIiIiIicsWQEBERdYvD4ZAEN9RqNbRaLaxWq9xTo37GZrOx1Rj1KqPR6FbJxd9/KCYKpPaVrLRaLYOSRERE1CX+hoQWRM/B0GERmDl/ChZEz8F7H44TwxkzPpmCczc9V3g5lLkLw0cMgyAImLVwKuIOxCDuQAw+XjoDoaGhCA0NxYb9qyTPybisxNpdUYiOXyq+xuzF07F2V5Q4NrZ7jmuVn1kLpmLD/lXYlLAaC6LnYEhEOARBwJKYT7oV6pn80SQIgoARo15FQXV6t0NCzve5dlcUhr06FIIgYGnMJ5g4eVzXPuusbz/rD2ZOxMb9q7D54Fp88ulHCAsLRWhYKDYlrHb7+qzdFYWIoUMgCALe+3Ac1u6KwvbDsZLzlPkJ4hziD8RIHjtZ+DnW7orCR4umiffLTuUm7/fBgqmI+ywGcZ95ug/+2W7MqEL+jTS89c4beOudN8T5TZ3zPhJPb8OQiHAMiRiCUW++1umQkJOzutC1a9d8nvfw4cMufW8ZDAbk5OQgJycHBoOh147fvn0bBoOBASEiIiIi8htDQkRE1GWeNtDZfod6iusmOYMa1JNYPYiCkdVqRUFBAUNrRERE1C3+hITGjHsLYye+jYxLSsnj25LXiwGNT2MXuoVWTnx5EOFDHgV0thxa6/b43tTN4vP3ndri9nhn2o0tWTPP6+ukag9h6LAICIKA7V1sW5Zz7QTCh4RBEASs3Ly02wGh9sP5WYcPCe/2Z70ibonb4wlpWxEaGur1s5w5fwoEQcA7E8Z4nF/05m8DW1PnfODxnPlRs/HGmNd93wcHY75tG/bPsfdEnMt9sFXaWuyfY/rcD/8ZYhqLUW++hrjP1iDfkPYopHThEIaPGNbpkBARERERET3CkBAREXWapw304uJiVjWgHuNwOMTN8YKCArmnQ/1Y+9aJDGJQMPFUva+mpkbuaREREVEf4k9ISBAEHNe4twXTmFSYu2wmBEFAWFgo0i8eljw2ccp4CIKA96e/5zUcM2Pe5EdBpLFvubXS6mxIaPS7b3p93BlyGTfpnS6FeDYmrBar1WRfOdZjIaHuftZvvfOG1ypHH//z+cNHDMNZfarXEJKnVmpjJ76N0LDQfwaZwnC2Uvr8gup0jHx9hMdqTZL7oF34xzlmzPvw2/ug+ozXkJAgCIjZEen2GotXz2NIiIiIiIioixgSIiKiTmH1IJKDaxUh17LaRIHicDhQWVnJ6kHUJxiNRsm9qtPp5J4SERER9RH+hIR8BWsOZuwUwxurty4Xjx8r+MxreyrXsfngWvG8w2f3djkkdLYyFTnXTnh9fP+pLeK12gdcOho5105g5OsjIAgC9qZuDnhAKJCfdXS89ypHienbxfM2tms7ln3lmFhpqH37t/SLhx9VMNqwUHz+7mNxknOSc/ZCEAQczNgpOe52HxjTPYaENh+Ikd4HXkJCYeFhHr/O541nUFCdzpAQEREREVEXMCRERER+YfUgkovVahXvOVYRop5gtVqh1Wol6xvDjxTsLBaLJLTLUBsRERH5w5+Q0Pyo2d7DOfpUMdwxedYk8fj6PdGSQElacZLH4VrBZv2e6C6HhNpXtcmqSMHpkmTxdXYc3SheK604qVMBnlkLpkIQBCxbt6BHAkKB/Kx9hZiydcfE82YtmOr2+KRp70EQBHw48x+S4xv2r8KQiHCc1adi1JuvQRAEfLxspuScTzcsxPARw3Du5mnJcU/3wemiQ0grPCgZ25LWSe8DLyGhsRPf9vk5MiRERERERNR5DAkREVGHPLXf4QY69YRLly4hNjYW69evR05ODhwOhyScZrFY5J4i9TPt1zetVgur1Sr3tIj8YrVaJfcvKyfedwQAACAASURBVAoRERFRR/wJCUVuWOQzmDF0WITYKsp5bNGquWLow9+xtF2rqs6GhBJPb8OU2e8jYugQn69z4kvP7bw8jVVbl4uhGm9tvAIZEuruZ300b7/P5ztbhnkK26zbvQKCICA0LBTqq8fF4x/MmIipH3/w6LVWfiy2LDt369vPY8zYN/Hx0hlu1+zyfeAlJDT5o0k+3x9DQkREREREnceQEBEReeVwOFBeXs7qQdQrampqoFQq0dbWhhs3bmD16tVYunQpTp48KVbJIAok1zZ2zoAFK7FQX+NwOCSVsBgUIiIiIl/8CQlFbVzsM5gx4rXhEAQBr70xQjw2d/ksSWWYPcfjOxzKc4ldDglFbVwsnjvhg7FYuzMKO5WbxGuv/mfYpzMhobjP1kAQBHwwcyLybpzqsYBQID/r4xrf780ZMnrz7dfdHjtV9Pm3n/fRjdCYVFBfPY6wsFDEH3zUMi7x9DbxnENZu6AxqXDywiGPLcg6vg82Yc8x96HM2ycNCRnTMX3eZAiCgKlzPmBIiIiIiIgowBgSIiIij1g9iHrb2bNnodVqxT8bjUasXr0ac+bMgVqtZniDAsZTALKmpkbuaRF1mcPhkPzM1uv1ck+JiIiIgpQ/IaFPYxd2urrN4tXzxHDIkVzf1W28DX9DQsk5e8Xz2rfBco7Ps3d3KiS0LTkWgiBg4pTx+KLqZI8GhAL7We/z+XyxktA/3vH4+NvjR0MQBMxePB0akwrbj2yAIAjIuKyExqRCvuG0OAdn+7W1O6MQPiQMZ/Wpbtfr8D4wnoGmOt2tctCXxnRojN9WKmJIiIiIiIio5zAkREQ0gD18+NCtfZPD4UBlZSWrB1Gv0+v1iIyMhN1uF1voZGdnY9WqVdi1a5fc06N+on3VldzcXLYXo36hfesxtmckIiIiT/wJCc2Pmu01lJFz7YQYApky+33xeOzeaPG4pwozgQwJfRq7UDzvWMFn3Q4J7UrZhNDQUIyb9I7H4EtPhoS6+1nvTd3s9flZFSniebMWTvN4TuTGRRAEAcNeHYpzN09j1sJpeO/DcZJzZi2cCkEQ8NY7b0BjUmHilPGS+biOTt0HxjOPhofH5AwJBfIXlOx2u/jfTU1N0Gg00Gg0qKiokJxTVFSEyspKmEymgL02EREREZE3DAkREQ1Q169fx549e7Bt2zZ8+umnuH79OqxWq2TzXK1Ws3oQ9ar4+Hhs3LgROTk54j1469YtLFq0CK2trXJPj/q49gEhrVbLClXUr1gsFvH+Ligo4P1NREREbvwJCY2b5LnqjMakwgHVDjEEsnrbp+LxY+c/E493VB1n+twPMSQiHMln93oNtfgKCc1zaWmVrTvm8Zz9aVv9CgntP7UFoWGheGf8aGRfcb9WQXU6Jrz/LjYmrO6RkFB3P+uoTd7blbm2Cov7bI3Hcw6f/bYq075TWzB0WARidkRKznFWFxIEAQczdiI0NNTr9QJxH8gdErp58ybS09NhNpu79PympiYUFRVBpVJBo9FIjnsKCTU1NUGtViMtLU1yvt1uh06nQ1NTU6def9++fXj66ae79Mswnp5bVlaGlStXdvpaRERERBS8GBIiIhqgYmNjxdBFWVkZZs2ahcOHD0s2z1ldg3pSeno6bt68KTn29ddfY/HixVi4cCFOnjwJnU4HANi2bRva2trkmCb1QeXl5Vi3bh3Wrl0rtqpjQIgGCr1eL97nBoNB7ukQERFRkPEnJCQIAo5rPAdr5iyZAUEQEBYWijOlhyWPTZr2HgRBwKg3X0PejTSPz0+/eBhhYaF4Y8woFFSnSx47W5kqvv625FjxuDI/AWPGvYXVW5dDY1JhxaYl4nmHsnZ5fJ0VcUs6DAkdUO1A+JAwjH73TWRcUno859yt9EdhnI3ewzjdCQl197N+8+3Xce5Wusfnf7z00fOHjxjmtUJSQXU6Rr4+4p8tzd589HlpD0rOUV89jrB/ti0bM+4tCIIAVflRr++tu/eB3CGh0tJSKJVKKJVKnD9/Hvfv3+/wOa4Vg5qbm6FWq1FRUYG6urouz6OpqQlpaWlIS0tDUVGR38+7ePEiFi1ahIcPH3b6NT09NzExEU888USnr0VEREREwYshISKiAWru3LnixnlJSQl27dqFjz76CGfOnIFer+fmOfUoh8OByMhIfPLJJ7h79y6Ab1vlZGRkYN26dZg5cyYOHTqEpKQkfPnllzLPmPqKmpoaKJVKtLW14caNG1i1ahVWrlwpqU7FgBD1Zw6HAwUFBWI7Pd7rRERE5MqfkFD4kHCMnfg2Mi5LgzNbPl8nBlsiNyxyC2yc0B7EkIghYhut9uGPnGsnMOGDsRAEATuVGz2GPpyBFWcgSGNSYVPCagiCIFbzSTmXKM5jwgdjkXPthOQaR3L3i/PwFhL6PHs3hkQMwZCIcGw7HIvPs3d7HIcyd/VoSOjt8aO7/VlHbnR/fN+pLQgNDe2wKpPGpML8qNniazlbirUf709/79vP/P13fV4vEPdBV0JC+49vh9lslgR2usI1JKRUKpGamoorV654Pd9gMECtVnf7dT2x2+0wmUzdCht1F0NCRERERP0PQ0JERAPUmjVrkJmZidzcXHHjfPny5Th8+LDcU6MB4Nq1aygsLMSRI0cQHR2N27dvS+5FnU6HxsZGXL58ucslvmlgOnv2rCRUZrPZsGbNGsydOxfp6elidSqi/sxoNLJtKBEREXnUPiSUcUmJ9XuisX5PNIaPGAZBELA05hO89+E4RAwdghmfTMH8qNmY8P67YkhkxrzJOHfztMfQRpJ6D14dORyCIGDsxLexZvuniD8Qg+XrF2DEqFfdAkDtR+SGRRAEAa+OHI51u1ZgzfZPMXzEMLw6cjjUV4+L563cskycz4jXhmN+1GxEbVqMmfOnICwsVAyhONterd8TjVNFn0NjUiHjkhJDh0WIj/szeiokFLVxMRZGf9zlz9r5NXt/+nvYsG8l4g/E4ONlMxEaGoqwsFBs8qNN2r5TW8TXW75+gcdzYvdGe2x95m109T6IPxiD9Xui8c6E0WLlIuf9mZyzx2dIaPOBdVAqlZJ/Q8jNzYVSqUR2djYaGhrE47du3cKVK1dw69Ytt3DPF198IQkJOYenFmQmk0lsE9YTIaH27HY7ysrKvL5WUlISQkJCoFAoxJZmsbGxUCgUUCgUyMjIwN/+9jc8+eST+P3vf4/S0lKfz42Li8Mvf/lLfOc738HgwYMxePBg7Nq1q8ffJxERERH1LIaEiIj6udLSUmRlZbkdV6lUmDFjBtLS0qBWq1FcXIwbN24gKipKhlnSQPPgwQO0tLSgtbUV69atQ1RUFLKzs8WAEFFX6fV6REZGSlqMZWdnY9WqVYiLi5N7ekS9wuFwiMHL4uJiuadDREREQaTxXoMYqohPXoMjufs9BmLyDaexZvunGPuPdzB0WASGDovAhA/GYvPBtThvPOMzIJJz7QSiNy/FuEnvYOjwCIQPCcMbY17H3GUzcSR3v8/n5hvSELVxMd4YMwph4WEY9cZIzFowFScLP3c7N/H0Nkyd8wGGjxiG0LBQjHhtOKbOeR/7Tm7B59m73d7XnuPxjyrdfHmgUwGhng4JaUwqbEuOxcQp4zF8xLBOfdbqq8excvNS8esUPiQcb779OhZGf4yTFw75NZe8G6cQMfRR5Z8ktXsQR2NS4XRJsvhZHDv/mV/X7cp94NqGzZ+vQVpJkng/70iK8xoS6spxbyMvL09sQVZfXy8GanqDswWZr9esqKiQBH1cj0VERKCqqgrffPMNXnzxRQwePLjD57KSEBEREVH/w5AQEVE/t3PnTnz00Ue4evUqAIjtxdRqNVauXIlFixahsrJSPD86OlquqdIAYDabYbPZADy6F3U6HVQqFebNm4dNmzahpqZG5hlSfxAfH48tW7bg0qVLYjWV4uJiLF68GG1tbXJPj6hXFBcXi/c/ERERkStnqGJdQmRAgy8cXQ8JcXRtHM7dLd7L50u/cLvXGxoaYDabodPpJNV3CgsLkZubi/T0dDHwAwDp6ekdhoT8aUHWk4qKinz+Hd9XSOjIkSPisd27d+Pxxx+X/D8yQ0JEREREAwNDQkRE/ZjVasWpU6dQVFSEuXPnwmg0Slo6qdVqbNy4ETExMbh+/Try8vLwxRfu/6hCFCjbtm3D7du3YbVaodVqxfswLS0Ns2fPRkFBAZRKJRwOh9xTpT6subkZkZGRWLRoEU6ePAmtVguHw4Ft27bJPTWiXmMwGMQ11mKxyD0dIiIiCiKuIaGzVamyBz0G4mBIKDDjoHqHz5BQZ5nNZr9CQoWFheIvQfVGmzFXRUVFyMvL8/q4r5DQxYsXxWPHjx+HQqGQhKQYEiIiIiIaGBgSIiLq5/7v//4PAJCQkICFCxciMzNTrKrhcDjQ1taG0tJSWX8LigaOJUuWoLq6WhJU02q1sFqtKCoqwvLly3Hnzh25p0l9nMViQUZGBtatW4cZM2Zg//79OHToEL788ku5p0bUaxgSIiIiIm+SVQlisOLEhYOyBz0G4mBIKDAjPnmNeC8b6251+3vDbrd7DQalp6e7VSTKy8tDUVFRt1/XXyaTCWlpadDr9V7P8RUScj2WmpoKhUKBe/fu+TyPISEiIiKi/ochISKifs7Z0ikrKwtLly7FmjVrYDAY5J4WDRBZWVkoKCjAV199herqaqxYsUISENLr9XA4HHA4HDh06BCam5vlnjL1MXV1dWhoaBD/7HA4JBXTqqurcfnyZZjNZhlnSdT7GBIiIiIib4p1WjFYsfd0nOxBj4E4GBLq/si+eky8j+MOrQnI94ankND58+fx1VdfeTzfGdrRaDQBef2ONDU1dfhagQ4JffbZZ2JIqK2tjf9uQ0RERNQPMCRERNQPtba24syZM3A4HJKWTiqVCvPmzUN+fj5ycnIk/xBA1F0ajQb79u1DZGQkLly4AACoqqpCWloaVq9ejZkzZ2Lu3LnYvHkzDh8+DJPJJPOMqT84evQoZs6cidTUVNhsNkkwwmg0yj09ItmUl5eL3ws2m03u6RAREVEQabzXwJZjMoyMy0qs3RWFtbuiMOzVoRAEAR/MmIi1u6Kw5fN1ss+vr43EjK3iPXw8Jzkg3xvOkJCzapBrKy5v6urqJP++Ecj2Y83NzaisrOzUNQMdEsrMzIRCoUBzczMKCwvxhz/8oZvvioiIiIjkxpAQEVE/dO/ePURHR0uqaThbOl25cgVz587FtWvX5J4m9SMnTpwQf5vt5s2bmD59Ou7duweLxYKCggKo1WrExMRg586dSE5ORkJCAjZu3CjzrKk/SE9Px6VLlxAfH4+5c+diz549YgUrooHM+XcAfi8QERGRJ64tx/adjpc98NGXxpCI8E6PNds/xZHc/RAEweN4Z8IY2d9XXxquVYQC1WoMeBTK+eabb7p1jYqKCqhUKhQVFaG+vr5Tz3UNA1VUVCAtLQ1paWl+XycpKQkhISFQKBQICQlBUlISTp06JTmmVquRmJiI559/HgqFAn/+859x8eJFj891zmnYsGH44x//iBdeeAEZGRmdek9EREREFHwYEiIi6oeuXbuGZcuWiQGh8vJyOBwOtLa24uDBg7h7967cU6R+JiUlBXfu3BH/vGzZMpw5c0bSWmzBggWorq6WcZbUH129elW891QqFRYsWIC5c+eKlYQYkKCBqKamRtLWkYiIiKi9O3frJCGLExcOyh786CsjrTip0yPn2gnZ591fxrmbp7FNuS7gVYQCpb6+HqWlpVCr1ZJwj0ajgUqlgkajQVNTk3jcYDCIYSDXikQmkwkGg4HtvYiIiIgo4BgSIiLqJ27evInr16+jtLQUBw4cQFRUFNRqNXQ6ndxTowGgtbUVAGCz2VBSUoKFCxciKytL3KS+fPkyIiMj5Z0k9Ws2mw1qtRrZ2dlITk7GokWL8Omnnwa01DtRX+BwOMQKbmw1RkRERL6cOXdCDFpsOBiN7KvHZA+AcHB0NFzbjK1LiETjvQa5v5X8YjKZUFFR4RYSqqurg16vh16vlxwnIiIiIuopDAkREfUTOTk52LhxIyIjI/HJJ59gxowZWLRoEZYsWYKlS5fyHxqoR9lsNuh0OqjVaqxfvx5Hjx4Vq1jZbDbcu3cPxcXFck+T+jGj0SiGIiwWCy5dugStViv3tIh6nXMtZhUhIiIi6kjLAxsSUncwKMTRZ0b7gNDlqjK5v42IiIiIiPochoSIiPqgpqYmHDt2DCkpKWhsbAQg3RQ8cOAADh48KJ7vrPJCFGiu4SDnUCqVSEhIgMVikXt6NICUl5cjJSUFOTk5AICysjK0tbXJPCui3uXaZqygoAAOh0PuKREREVGQa7zXgLhDa9h6jCOox7mbp7EzdaPkPj1z7oTc3z5ERERERH0SQ0JERH1MQ0MDDhw4gGvXrmHfvn2IjIzE5cuXxU3B3NxcqNVqqFQquadK/ZjFYnELB6nVahQXF8NiseDOnTswGAxyT5MGkNzcXCxevBh5eXlyT4VIFq4BodzcXFitVrmnRERERH3Enbt1bkGhnakbWVWIIyjG4fy92HAwmgEhIiIiIqIAYUiIiKiP2b17N+rr6wE8qhA0f/58HD9+XLIpmJWVxY1y6hG1tbXQarVew0FOGRkZ2Lt3r4wzpYHEarVCrVZj7ty5qKqqkns6RL3Otd2eWq1GTU2N3FMiIiKiPqbxXoOk9ZhrWChFk4CzVamyh0U4Bs5Iu5iEQ+qdiE9e43ZPFuvYVpqIiIiIqDsYEiIi6mPS0tJw9epVAI9ajEVGRiIjIwNarRY2mw0AYDabcffuXTmnSf2IzWZDZWWlWKXKVziIqDc9ePAAra2tsFgsUKvVmDNnDu9HGlAcDgfKy8slFYQYECIiIqKuanlgw5lzJ9xCGe3HNuU67EzdyMER0NG+WpBbYO3oJlRVX5P724SIiIiIqM9jSIiIqA9qa2uDTqdDZmYmli5divPnz8PhcMg9LepnamtrUVJS4hYMys3NhU6nE0NpRHL54osvsGTJEixYsADz5s3D9OnTsWPHDhw9ehQZGRkwm81yT5Gox1gsFhQUFLDFGBEREQVc470GHM9J7jAsxMHRGyPu0BpcriqT+9uCiIiIiKjfYEiIiKgPqqmpETcFk5OTodWy1DIFhtVq9Vo1qKCgAEajkYE0CjoWiwUnTpzAggULoNFoUFZWhnPnzjEkRP2Sw+GATqeTrM+u1QSJiIiIAqXxXgMuV5XheE4ydh7dJHtYhGPgjGRVAnIuqGCsuyX3twERERERUb/DkBARUR/jGhByVg0wm8345JNPcO/ePbmnR32QzWaD0WiUVKRwHTqdji2cKKjZbDYolUqsWLECBoNB7ukQ9Zja2lq3ECfveSIiIuptd+7WwVh3i4MjoKPlAUPvRERERES9gSEhIqI+xGKxSDYGncGNhw8foqSkBG1tbTLPkPoKh8PhtZ2YsyoFqwZRX3Lo0CGsW7cOOp3O4+O3bt1CQ0NDL8+KKDBqa2vdgpxarZYBTiIiIiIiIiIiIiLqFIaEiIj6CKvVKqkeUFNTI/eUqI9xBoPKy8s9BoNyc3Oh1+thtVrlnipRp6lUKiQmJiI3N9djuC0+Ph7Z2dkyzIyo6zyFOXNzc2E0GuWeGhERERERERERERH1QQwJERH1AQ6HgwEh6hJ/gkE6nQ5ms1nuqRJ1i7MVY0ZGBhISEhATE4Njx47h+vXrOHXqFCutUZ/iqXKQs/0jK7wRERERERERERERUVcxJERE1Ae4VhHw1kqHyKmjYJBarUZ5eTnDZtSvOMOU69atw/Lly3Hjxg1UVVUhJSUF//d//yf39GiAa2tr6zDc43A4YDQavYaDbDZbL82WiIiIiIiIiIiIiPorhoSIiIKc0WgUNwmLi4vlng4FKZvNBqPRCK1W22EwiFUoqL/S6XRYsmQJ0tLS2DaPgkZpaSkSExOxceNGHDhwwG0NttlsMBgMkoqBDAcRERERERERERERUU9gSIiIKIhZrVZJWyhuFJIrq9WKyspKj1UnGAyigchisWDHjh1ITk6GVquVezpEuHfvHjZt2iT+eefOnUhKSgIAmM1mrxXfGA4iIiIiIiIiIiIiop7AkBARUZByOBySqjBms1nuKZHMHA4HzGYzdDqdx4oTzjCZTqfj/UID1tWrV7F+/XpERkbi+PHjck+HBrjr168jPj5e/HNdXR2mTZuG9PR0j+u3wWBgOIiIiIiIiIiIiIiIegxDQkREQUqn04kbh3q9Xu7pkEysViuMRiNKSkq8VgsqKCiAXq+HxWKRe7pEsnM4HCgoKEBKSgrUajUDF9QrWlpasHLlSlRWVkqO3759G/PmzcOdO3fEqkErV65EXFycZA1nxTciIiIiIiIiIiIi6g0MCRERBSGz2SxuHmq1Wm4cDiDOakEdtRHTarUwGo2wWq1yT5ko6LiuoSUlJXJPhwaApKQk7NixAwcPHhSPWa1W6PV6zJo1C0lJSeI9mZCQgMWLF0On0zHcSURERERERERERES9iiEhIqIgY7PZJK2kGALp//ypFpSbm4vy8nJWmyDyk7Nqi1qthk6nk3s61A/dvn0bzc3NaGtrw5UrV1BdXY3Zs2fDYDBI2oU62985qwaVlJQgMjJS7ukTERERERERERER0QDEkBARUZBx3dg2Go1yT4d6gMPhQG1tLXQ6XYfVgthGjKhrnG3HnN9PBoNB7ilRP9LW1oYVK1bAbDaLa3p5eTnmzZuHhIQEyVqekZGB2bNn48KFCwAAo9GIxMREed8AEREREREREREREQ1IDAkRUVCLiIhAeHg4BEFAWFgYIiIiMGTIEAwZMgT/+Mc/cOTIETx8+BAAcPjwYUREREAQBHz66acyz/xbeXl54rwmT57s81yLxSJuKhYXF3d47WB9z+TO2ULMtbqEr2pBNptN7ikT9XlWq1VSma2mpsbtnJaWFqSkpGDq1KkYNWoURowYgUmTJmHlypU4ffo0Ghoauvz6DocD+/btw9ixYzFmzBi8++67knZUFHwuXbqEo0ePYuvWrdBoNOLxGzduIDk5WQxtXrhwATt27JAEe9VqNbZs2YKoqCgx6Oms/mY0GrF69Wp89tlnSEpKQmNjo1xvkYiIiIiIiIiIiIgGMIaEiCjoffHFFxAEAUqlUjx29+5dbN68GYIgYNWqVZLzR40aFZSBmWnTpnUYEnINkHSmzViwvueBzJ8WYs5NZIPBwLZyRD3EV1CotbUVs2bNwujRo6HVatHc3IyWlhZUVlZi/vz5EAQBarW6y6995MgRhIWFiVWM8vLyMHfuXNy7dw+CIGD79u3dfn8UOF988QWOHDkC4NHfM2bNmoXbt28DeHSvaDQaLF26FFu2bMH8+fNx4sQJtzU9IyMD06ZNQ319vcfXcAabiYiIiIiIiIiIiIjkwJAQEQU9TyEh4NGG3aRJkyAIAiorK8XjwRqY6SgkVFNTI24y6nS6Tl07WN/zQOIMBZWXl0sCCe1HQUEBdDqd2KKGiHqe2WyWVOxyVoPRaDQQBAGZmZluz2lubsaoUaO6FRJasGAB3nvvPfHPra2tsFqtDAkFqaqqKlRXV4t/3rRpEzQajdhKLDc3F1lZWVi7di2mT5+OtWvX4uTJkygoKIBerxfDnuvXr0deXh5u3rwp11shIiIiIiIiIiIiIvKIISEiCnreQkIAEBsbC0EQkJqaKh4L1sCMr5CQw+EQgyW5ubmdDo8E63vuz2w2G2pra6HT6XyGgthCjCg4uAYxnRWFjh49CkEQcPHiRY/P+fzzz3H58uUuv6a3dZ8hoeDmcDhQXV2N+fPn49SpU5L7Jjs7GwsWLMDJkydx7NgxfPrppzh8+LD4XLPZjO3btyM+Ph4ajQatra0yvhMiIiIiIiIiIiIiIimGhIgo6PkTEjp58qR4zFNg5s6dO9i5cycmTZqEt956C2+//TaWLVvm9bf8LRYL4uLi8Pbbb+PNN9/E+PHjERUVhYKCAsl5d+/excaNG/Hmm2/itddew4QJE5CYmAi73e52Tedm8VdffYX58+dj2LBheO+996BSqWAwGMQNSGdbGovFgk2bNolzGDduHBISEjwGTRgS6nmuoaCCggKfLcSKi4vZQowoCLUPCqWkpEAQBGzYsMHva/izNufl5SEiIgKCIEAQBERERCAiIgJpaWk4fPiw+FhYWJj4WHx8vPjzThAETJ48Gbdv38acOXMwdOhQfPjhh2KYKTMzE++++y5GjhyJqKgoNDY2Subo78+8jz/+GGFhYRAEAeHh4cjMzMT9+/fF+YWHhyMxMbHrH3gfYrPZxGpwarUaK1euxOHDh91CnydPnpSEu9ra2sSWZABw/fp1NDQ0yPEWiIiIiIiIiIiIiIg6xJAQEQU9f9qNVVVVicc9BWYyMzPx2muv4dq1awAetZGJjY1FRESEpLUIADQ2NmLs2LGYPn06zGYzAKCurg7Tp0/H8OHD3c6bM2cO6uvrAQAVFRV44403sGTJErS1tUmuO23aNEycOBFz5sxBZmYmNBoNZs2aBUEQkJCQILaicr32zJkz8c033wAADAYDxowZgzlz5uDhw4eSazMkFHhdCQU5WxgRUfByDQqlpaXh1VdfhSAImDdvHgoKCtDS0uL1uZ1dmztbSaixsREVFRWYOHEiJk6ciE8++QQ5OTnIz8/H+PHjMWzYMGRmZiIqKgparRaHDx9GWFgY1qxZI7lOZ37mFRcXQxAErF69Wjx2/fp1jB8/Hvfv3/fjE+27rFYrDAYDtFqt27q+atUqZGRkiK3EnH8fOHDgAOrq6mSeORERERERERERERFR1zAkRERBz1NI6JtvvkF8fDwEQXDbHPUUmLlw4QJSUlIkx+x2O4YOHYrNmzdLjsfFxUEQBNy4cUNy/OrVq5KQkPM81woCAKBUKiEIAi5cuCA5Pm3aNAiCgIqKCvFYdXU1BEHAkiVLITrJQAAAIABJREFUoFarxZCJ89pXr16VXCMtLc2tvZq390yd05lQkFarlWwaE1HfUlNTI7YJTEhIwOjRo8UKPkOHDsWyZcuQl5fn1iqqs2tzV9uNOX9eOEM+AHD27FkIgoD33ntPMq+lS5ciIiJCEkztzM88ANi0aRMEQUBubi4ePHiA999/HyUlJR7n1teZzWZUVlb6XOcLCgpQUlLC4CcRERERERERERER9TsMCRFR0HOGhFzbsgwdOhQffPABlEql2yZuZwIz7733HubNmyf+ua2tDaNGjcJbb73ldm5ra6vY6sV53rvvvut2XkVFBQRBcNuInTZtGkaNGiU5Vl9fD0EQ8NFHH6G4uFhy7fbnup4/Z86cLr9nesRqtYqtZZxhAX9CQQ6HQ+6pE1EAWK1W8Xs/KysL+/fvR3R0NEaMGCEGhqZMmYK7d+8C6Nra3J2Q0Ouvvy45dv36dQiCgK1bt0qO7969G4Ig+NXiqv3PPKf79+/j3XffxWuvvYY1a9Zg06ZNHV6rr3A4HKitre1wrddqtTAajWLbuKqqKsyZM8ft7xhERERERERERERERH0ZQ0JEFPS8tRvzxlNgpqWlBUeOHMHkyZMxcuRIMWwkCAJmzpwpntfU1ARBEDB16lSfr+E8TxAE8VquIywsDEuXLpU8Z9q0aXj//fclx3Q6HcLDwzFz5kxxY9J57Q8++MDtdVtbWxEaGorRo0d3+J5JymKxwGAwMBRERCKbzSZpNZWbm4s7d+7g/PnzmDx5MgRBwKpVqwB0bW3uTkio/c8Lo9EIQRDw+eefS44fOHAAgiBIWmD5+zPPVUlJCQRBwMiRI9Hc3OzxnL7CVxsx11FeXo6amhqP67zdboder5dh9kREREREREREREREPYchISIKeoEICUVFRUEQBKSlpUk2PydOnOgxJORpE9iVv+e5ar9ZbLPZoFarER4ejo8//tjt2u03iAGGhPzlcDjEUFBJSYnPTWK1Wo3i4mIYDAa2liEagBwOB3Q6nWRNMBgMuH//PkaOHClWDurK2tydkFD75zlDQocPH5Yc9xQS8vdnnqvGxkaxilJ+fr7Hc4KVw+GA2WzusF1kQUEBW0USERERERERERER0YDGkBARBb3uhoTu378PQRAwY8YMt3Pbb5j6aifT1tYGs9kMu93u8zwAuHHjBmprayXH2m/6Ojelw8PDsXz5cr/m4Gxp4xoq8vSeBxqbzYba2lpUVlZ2WDkiNzeXoSAiAgAUFBSILcIMBoNkrSgpKcG0adMwZMgQAF1bm+UICXXmZ56r6OhofP755xg3bhzeeOMNv9qXycnZMrKjIGhxcTGMRiOsVqvcUyYiIiIiIvr/7N1/cNz1nR9+33Qmaacz15mbm5tO2pnr9XppOzfD9NrrMb1Jr73pxlhJCqRHLkxiIOVSrjGQHxCIuVxiQnL8LmB+JGFiAiGxQmwCnG1kwRJWoIiNJaMfaINXhAVLsBIIZW0tFmtrbb++f3Darxb9sGRL+sjS4zHznrE+/ujzee1q9/P+4/2c9wsAABInJAQse6caEjpy5EisXbs2Pve5z9WdNz4+Hh/72MemLJjefvvtkUql4sUXX6w73tnZGR/5yEfi0KFDERGxefPmSKVS0dPTU3feO++8E2effXa0tbXVHZ+86FutVmstr9atWxff/OY3p62ht7e37viOHTsilUrFY489NutrntDS0jJtu5T5Hl9uJhaHT7RrxEQoqLu72yIxMMUzzzwTH/vYx2qBwVKpVHs2P/744/HRj360bu6Y77N5ppDQ+Ph4pFKp2Lx5c0REHDhwIL797W/H+Pj4jL8315DQfOe8iHef/V/60pfi+PHj0dPTE6lUKr7xjW/M/MYloFqtxuDg4Jx2C8rlctpFAgAAAADANISEgGVvIdqNbdq0KVKpVGzfvj3eeeedOHDgQNx0002RSqWmLJgePHgwPv3pT8dll10Wb731VkREvP7663HxxRfH97///dp5o6OjsX79+rjkkkvi9ddfj4h3F3q/9rWvxZVXXhnHjh2ru+7kRd/JO1Y0NDRMCQlN1LBhw4ZaW5RXXnklzj///PjiF784ZeFzutf84osvRiqVirPPPjuOHz9+0seTNt/WYRMLxMViMSqVStLlA8vYM888E6lUKjZs2BA9PT0xNjYWhw4dikceeST+6q/+KtauXRvf+973olAoRMT8n80zhYQiItavXx9XXnllHD9+PJqamuLCCy+c9ffm025sPnPegQMH4tOf/nTd7nf33HNPpFKpePrpp+f6Vi6KiWf/iXaIs1sQAAAAAADMjZAQsKw1NDTEWWedFalUKtauXRsNDQ1TFkgn/PjHP46GhoZIpVLx4Q9/OBoaGmLfvn0R8W5rlzvvvDPOP//8WLduXVx00UXxyCOPxEUXXRSpVKru3Ih3FyZvu+22+OQnPxnnnXdefOYzn4nt27dPCf4cOHAg7rjjjtp5F154YWzZsqW221BERFdXV62uiXv96Ec/ittvvz3WrVtXV+/k9lfvrWH9+vVx33331QVfZnvNIyMjcf7558dXv/rVuprne3ypTbQOy+VyJ1wYnlgczufzdo0A5q1SqURLS0tcf/31cfHFF8c555wTZ511Vnzyk5+MjRs3xg9/+MPasyabzUalUpnTs7mlpWXKc/+CCy6ou3dHR0d85jOfif/1v/5XfPazn42enp5p54t9+/bFvffeW5sv1q5dGxdddFFERHzqU5+KtWvXRiqVinXr1sW3v/3tiJj7nHfHHXfEWWedFR/+8IdrbdSam5vr5qbzzjtvaf4Y8e7fo7+/P7q7u2s7Ok03stls7bkPAAAAAADMnZAQwBIrFou1hc7+/v6ky0ncxE4RJ1oUntw6rFAo1AWqABZDqVSqa22VyWSiWCwmXdaKMdcWYhPPfjvEAQAAAADAqRESAlhiEwuhmUxm1e18M7FLUF9f35x2Ccpms1qHAYmqVqvR3d1d92zq7u5edc/vhVIqleY0B3R0dEShUNBCDAAAAAAAFpCQEMASGh4eri2AFgqFpMtZVNVqdd67BE0sCpdKJQvwwLJSLBbrnmOZTEa7qzkol8tRKBRi7969JwyFah0JAAAAAACLS0gIYAlN3o1ipe2MUy6Xo7+/P3K53Lx3CbJTBHA6qFQqU55vfX19Qi2TTMwFJwqHtra22ikOAAAAAACWmJAQwBKpVCp1rWpOZ5VKJYaHh+e0O4RdgoCVplAoTAm8lEqlpMtKxEQbyVwuN2soKJPJRHd3d/T39wsFAQAAAABAQoSEAJbI5EXl061FzeS2Ya2trXYJAla9crk87a5CK93kUNCJ5oOOjo7o7+83DwAAAAAAwDIhJASwRCYWU1tbW5MuZVblcrm2ADyXtmGtra3R3d1d2yUIYDXJ5/NTQpIrKRRTrVZjeHg4+vr65hQKMhcAAAAAAMDyJSQEcArGx8djZGQkhoaGoq+vb8bR1dUVu3fvjt27d0dvb2+MjIwkXXpEzL9t2MQicD6fj+HhYS1jAOLd3dbeG6ApFArTnjsyMhIjIyNRKBRmnTcmxtDQUIyMjMTY2NiSvJbJoaATBUWz2WxtPtBGEgAAAAAAlj8hIYA5Gh0djYGBgcjlctHS0hI7duxYkNHW1ha5XC6GhoYWdRG4Wq2edNsw7WIAZletViOXy9Wen08++WT88pe/jL6+vmhra4umpqYFmTNaWlqiq6srCoVCjI6OLkjtE3PDicKiQkEAAAAAAHB6ExICmMXo6Ght0XehQkFzWQAuFAqnHBgql8vR39+vbRjAEhkbG4sXXnghdu3atWRzRlNTU3R1dcXQ0NCc65xrKKi1tTVyuVwUi0U7xwEAAAAAwAogJAQwjYGBgTkFg5qamqKtrS3a2toin8+fcPT29tbOn+suQ3NpTTbRNqyvr29ebcMKhYK2YQCnaGRkZM7P9ZaWlmhra4ve3t45zRvt7e1z3omoqakp+vr6Ynx8vK6+idBod3d3ZDKZGeeFTCYjFAQAAAAAACuYkBDAJLOFg5qamqK9vT3y+fycgjtzMT4+HkNDQ5HP52ddYH5vWGhy27DZFnzf2zasWCwuWNuwp556qjYm7zz0/PPPL/rx559/3m5HQOJOFA6aCAMtZDvJkZGRKBQK0d7ePut8NREWKhaLs4aCuru7l6Sl5ORn+vPPP187XiqVFv34s88+G6+99tqivj4AAAAAADgdCAkBxLthnekWepuamqKzs3NebVxOtY6BgYFob2+fduE3l8tFd3f3grYNO3jwYFSr1TnXeOTIkThw4EA0NzfXxv79+6NUKkWpVIq2trZFP75t27bYvn37sgwKXXbZZfG7v/u78bu/+7t1x7ds2RIf+MAHFm0hvqurK775zW8uyrWBqQqFwrTP6fb29hgYGJiym89iGR0djd7e3mkDQy0tLdHX11c3R5xqKGhsbCwOHDgw5/OPHj1aq3Himd7W1lZ7pu/fv3/Rj+/cuTMaGxujUCic1GtebOYNAAAAAACWipAQsOqNjo5OaeOSTqeXdJF3OuPj45HP56fU9vjjj8eTTz65YG3DOjs749FHH41f/vKXs77eQ4cOxcsvv1xbeE1yDA8PR3t7exw5cuRU3uJFc8MNN0xZ7H3++edj48aNcfTo0UW55/333x/vf//7F+XaQL3pgpydnZ0LtlvQyZpuN7yJXYUWKlQ5PDwc27Zti0wmE8PDw7Oem8/n44033kh8ziiVSrFnz54T1psk8wYAAAAAAEtBSAhY9VpaWuoWVPP5fNIl1RkfH5+yIJ3NZhdsZ4HOzs7Ytm1bbNu2bdaw0GuvvRaNjY11u/okPeazA9JSmm6xd7FZ7IWlkc/np7QUSzoc9F4DAwN1AdOmpqYFC71OhIQmxmxhocbGxrpdfZIehw4dWpD3YDGYNwAAAAAAWApCQsCq1tvbW7eIOjo6mnRJMxoYGKhbmF6oFmiTQ0KzhYVeeOGFaGxsTHyRd64hocOHD8eGDRvit37rt+KDH/xg/OVf/mVcffXV8b73vS/OPPPM2L9/f9xyyy2xZs2aWLNmTTQ3N0cqlYr3v//9sWbNmujt7Y3t27fHf/2v/zVSqVT82Z/9WTQ0NMSLL744433+/b//9/HXf/3XsWnTprrF3q1bt8YZZ5xRu+6E48ePxw033BB/9Ed/FH/+538ef/qnfxp33313HD9+PCKirr7du3fHf//v/z3+yT/5J/FHf/RH0dnZWbvO7bffHv/6X//r+I3f+I0488wz48wzz4zvfve7ERHxzDPPxJ/92Z/VXsPZZ58dbW1tp/SZgdVqbGys7jk8+fu83IyNjdUFhSY/M07Fe0NCs4WFGhsbY8+ePYnPFRPjROFa84Z5AwAAAABgpRMSAla1ybsIDQwMJF3OCXV2dtbqnWidcqqjra1t2gXfbdu2xSOPPBIdHR0xODgY3d3d0dzcnPgi78To7e2NdDo943t1xRVXxO/8zu/ESy+9FBERe/fujd/8zd+cslNDb29vrFmzJv7H//gf0dPTE6VSKc4444zo7e2NT37yk/GTn/ykdu4999wTv/d7v1fX1m26+3zgAx+Y8T6TF3uvueaa+IM/+IP49a9/HRERb7zxRnzgAx+I22+/fcrvNTQ0xEsvvRRvvfVWfOhDH4ozzzyz7vrT7QgxPj4e/+yf/bO69+kLX/hCfPWrX53xfQNmVigUas/g9vb2pMs5odHR0bpQ00LMGb/61a9mnDO2bdsWTz75ZPzqV7+K4eHhaG5ujt7e3sTni4nxxBNPRKFQmPH9Mm+YNwAAAAAAVjohIWBVm7x4ejoYGRmp1fvYY4/NulA71/GTn/xkTudt3749fv3rXye+yDsx9uzZE42NjdO+T2NjY/H+978/Nm7cWHf8ggsumHERduvWrbVjb775Zhw5ciSKxWIcO3asdvzgwYOxZs2a2LNnz0nfZ2Kx9+23345//I//cdxyyy11511xxRXxgQ98YMrvPfTQQ7Vj9957b7zvfe+r7RwRMf1i7/DwcKxZsybuueeeumMTC9PA/Exu/Xg6BEsjItLpdK3mhx9++JTnjO3bt8/53F/84heJzxWTR2NjY7zwwgvTvk/mjXeZNwAAAAAAVjYhIWBVmxwSmtxaa7kaGhpKLCS0bdu20yYk1NPTE2vWrIn777+/7vh111034yLs888/P+U6+/btiwsuuCD++I//OM4888z4kz/5k1izZk089thjJ32ficXePXv2xJo1a+IP/uAPaq1ezjzzzPjDP/zD+Jf/8l/G22+/PWN9P/3pT2PNmjVx6NCh2rHpFnsjIr761a/GP/pH/yh+//d/PzZu3Bi//OUvp33PgBObvJvbbDvSLCeTW47NJ+BzqiGhn/zkJ9He3p74XDHXkJB54/9n3gAAAAAAWLmEhIBVra2t7bRa8J28i0U+n1+Qa3Z2ds64yLtr16549dVXIyLi0KFD8eqrrya+yDsxisViDA4OTvuaZlqE/cY3vjGndi4R7+728M//+T+PCy+8MA4fPhwREZVKJdasWROPPvroKd9nYrH3vvvum/XvM119jz76aKxZs6a2IBwx82JvRMTrr78et912W/yH//Af4jd+4zfq2tIAcze53VhLS8uyD5cODAzU6m1qalqQaw4PD884Zzz66KORy+Vq78vg4GAUi8XE54uJsX///rqQzGTmjXrmDQAAAACAlUlICFjVJi/4Lvf2MV1dXXW1jo6OLsh1pwsJTQ4HTXjhhReisbEx8UXeyaNarU77mibauXzlK1+pOz6Xdi4T9u7dG2vWrIldu3bVjk20jZlY7D2V+0y0jfnyl79cd16hUIjPf/7zs9Y33WLvAw88UFvsPX78eIyNjcWBAwcinU7XXf/CCy+M3/u93wtg/sbHx+t25unq6lq2QaGRkZG6Wt/7jDtZ04WE3hsOmtDY2Bh79uxJfK6YGOVyecbXZd4wbwAAAAAArAZCQsCqN3l3nh07dkR7e3uMjY0lXVbNyMhItLS01NW4ULsIRdSHhKYLB0148803o7GxMQqFQuILvScKCUVEXHnllfE7v/M78dJLL0XEu4u3/+Jf/Is5L/aWSqX4p//0n8Yll1wSx44di4iI22+/vW6xd6b7/OZv/uac7vO3f/u38du//du13x0fH4/zzjsvbrjhhll/b7rF3ubm5lizZk2MjY3Fnj174j/+x/8Y+/bti3/1r/5VHDx4sHbepz/96fjYxz424/sGzG5y28cdO3ZEOp2OkZGRpMuqGR8fj1wuV1djS0vLgl1/ckhopnDQhO3bt0dbW1vic8XEmGkXoQnmDfMGAAAAAMBKJyQErHrj4+N1bccm7xCRZFhoZGRk2ro6OzsX9D6dnZ2zhoMmjI+Px+OPPx79/f2JL/QWCoV49NFH47XXXpux3sOHD8ell14av/VbvxX/7t/9u/jsZz8bX/va1+Lf/Jt/Uzvn7//+7+OMM86INWvWxBlnnBGXX3553TV2794dZ5xxRvz+7/9+fPjDH44bbrgh1qxZEx/84Afju9/97pT7/Nt/+2/jL//yL+Pqq6+O973vfXHmmWfG/v37Y+vWrXX32bp1a0S8u3PDrbfeGn/4h38YH/rQh+JDH/pQ3HjjjXH8+PFp60un03H//ffHBz/4wVizZk385//8n+P555+v/X0++tGPxn/6T/8p/uRP/iR2794do6Ojcfnll8cf//EfRyqVij/90z+NT33qU/HGG2/M+3MC/P/y+fyUZ3NbW1uiu9GNjY1FLper2z1oIiC0UDvPRbwbEjpROGhCNpuNnp6exOeM4eHh2LlzZ3R0dMxar3nDvAEAAAAAsNIJCQH8g97e3imLvhMLrIVCYUkCQ6Ojo5HL5SKdTk+po6mpaVEWoCuVyrzOP3r0aLz99tvR29sbzc3N0dzcHL29vbXF2MU+3t7eHo2NjdHU1DTrAvWBAwfi8OHDdcc2bNgQa9euPan3CWCy97bzmvys7urqiqGhoUWvYWxsLAqFwpTd5iaHShe6HVq1Wo2jR4/O+fyJNlajo6O1Z3pzc3NdiGcxjx84cCAaGxujsbFx1mBphHkDAAAAAICVT0gIYJKZdu+Z3Famvb09+vr6YmRk5JSCQ6OjozE0NBR9fX3R1tY27WLz5IXe5dQCLSKiUCjEU089FU899VQUCoUlO/7aa69FoVA44cL3pk2b4rrrrqv9PDAwEL/9278d27ZtO6XXDTBhfHw88vn8rM/vtra26Ovri6GhoVPa0Wd8fDxGRkaiUChEV1fXtGHSyfdcTi3QJkw805966qklPZ7P50/YaizCvAEAAAAAwMonJAQwjZGRkWhvb59xAXa68FBbW1vdyOVy0dXVNeX4bIvJ792NYjmGg04XTz31VPy3//bf4s///M8jlUrFf/kv/yW+//3vJ10WsAJNhIVmC+5MF+SZPNrb2yOXy005Pp9rtre3L8tw0OnCvAEAAAAAwEonJAQwi/Hx8RgYGIj29vY5h3tOZUwEg5aiTQ0AC290dDR6e3vnFe45ldHe3h4DAwML3lYMAAAAAABYeYSEAOZhdHQ0BgYGorOzc167As22+1Bvb28MDQ3ZMQhghRkfH4+hoaHI5/PR1tYWLS0tJz1n7Ny5M3bt2hW7du2K559//pRalwEAAAAAAKuTkBDAAhgbG4uRkZG6USgUYmBgYMpxuz0ArG7j4+NT5oahoaEoFApTjk+EgcrlcmQymUin05FOp6NUKiX8KgAAAAAAgNONkBAAAJwGhoeHayGhTCYTlUol6ZIAAAAAAIDTiJAQAACcJgqFQi0olM1mky4HAAAAAAA4jQgJAQDAaaS7u7sWFMrlckmXAwAAAAAAnCaEhAAA4DRSrVYjm83WgkLFYjHpkgAAAAAAgNOAkBAAAJxmyuVyZDKZWlCoXC4nXRIAAAAAALDMCQkBAMBpaHh4uBYSymQyUa1Wky4JAAAAAABYxoSEAADgNFUoFGpBoWw2m3Q5AAAAAADAMiYkBAAAp7Hu7u5aUCiXyyVdDgAAAAAAsEwJCQEAwGmsWq1GNputBYWKxWLSJQEAAAAAAMuQkBAAAJzmyuVyZDKZWlCoXC4nXRIAAAAAALDMCAkBAMAKMDw8XAsJZTKZqFarSZcEAAAAAAAsI0JCAACwQhQKhVpQKJvNJl0OAAAAAACwjAgJAQDACtLR0VELCuVyuaTLAQAAAAAAlgkhIQAAWEGq1Wq0trbWgkLFYjHpkgAAAAAAgGVASAgAAFaYcrkcmUymFhQql8tJlwQAAAAAACRMSAgAAFagYrFYCwllMpmoVqtJlwQAAAAAACRISAgAAFaofD5fCwpls9mkywEAAAAAABIkJAQAACtYR0dHLSiUy+WSLgcAAAAAAEiIkBAAAKxg1Wo1Wltba0GhYrGYdEkAAAAAAEAChIQAAGCFK5fLkclkIp1ORyaTiXK5nHRJAAAAAADAEhMSAgCAVaBYLNZ2E2ptbY1qtZp0SQAAAAAAwBISEgIAgFUin8/XgkJ79+5NuhwAAAAAAGAJCQkBAMAq0tHRUQsK5fP5pMsBAAAAAACWiJAQAACsItVqNVpbWyOdTscTTzwRTU1N8e1vfzvuueee6OvrS7o8AAAAAABgkQgJAQDAKlMul2PXrl2xcePGuPLKK+OZZ56JgwcPRmNjYwwNDSVdHgAAAAAAsAiEhAAAYJUplUrx5S9/Of7u7/4udu/eHa2trVGtVqOnpyeeeOKJpMsDAAAAAAAWgZAQAACsMps3b46HHnoo8vl8pNPpSKfT0d7eHrfcckt0dXUlXR4AAAAAALAIhIQAAGAVGRsbi2984xtx7NixiIjo6OiI5ubmuO6662LTpk214wAAAAAAwMoiJAQAAKvIkSNHYsuWLbWfX3vttdi4cWNcffXVsXPnzigWi7X/GxsbS6JEAAAAAABgEQgJAQDAKvPss8/G/fffH9/5znfi8ssvj61bt8bu3bsjnU5HJpOJcrkcERG7d++Ol19+OeFqAQAAAACAhSAkBAAAq9DIyEi89NJLtd2CisVipNPpSKfT0draGtVqNZ599tm46qqr4sCBAwlXCwAAAAAAnCohIQAAICIicrlcpNPpaG5ujttuuy2uuuqq6O3tjQcffDDp0gAAAAAAgFMkJAQAANT87Gc/i2uuuSauueaa2Lt3b0REHD16NOGqAAAAAACAUyUkBAAAREREoVCIq666Km666aZobm6OdDodxWIx6bIAAAAAAIAFICQEAADEs88+G5dffnm0trZGuVyOdDod6XQ6MplMlMvlKBQKcfDgwaTLBAAAAAAATpKQEAAAENlsNjZv3hzNzc1RqVSiWCzWgkKtra1x7733xiuvvJJ0mQAAAAAAwEkSEgIAAGreeuut2r9zuVwtKLRp0yY7CQEAAAAAwGlMSAgAAJhieHg4CoVCPPXUU/HEE0/EFVdcES+//HLSZQEAAAAAACdJSAgAAJjil7/8ZWzZsiVuuummuOKKK+Kv//qv45prrom77rorHn744SgWi0mXCAAAAAAAzIOQEAAAMKv+/v7YuHFj7NixI7Zv3x6tra0xPDycdFkAAAAAAMA8CAkBAACzKhQKsXnz5kin05FOpyObzUa1Wk26LAAAAAAAYB6EhAAAgFl1dHTEww8/HLlcrhYU6u7uTrosAAAAAABgHoSEAACAWb322mtRKBQiIiKbzdaCQhPHCoVCvPnmm0mWCAAAAAAAnICQEAAAMGfVajUymUwtKDQ8PBxbtmyJ3bt3J10aAAAAAAAwCyEhAABgTg4cOBC33XZbfOELX4hrr702vv/978dtt90W5XI56dIAAAAAAIATEBICAADm5J577okHHnggxsbGIp/Px3e+851obm6ObDYb1Wo16fIAAAAAAIBZCAkBAABzcuONN9aFgXK5XK3tWHd3d4KVAQAAAAAAJyIkBAAAzElbW1stDHT8+PGoVquRzWZrQaFCoZDj1C/vAAAgAElEQVRwhQAAAAAAwEyEhAAAgDnbtWtXfP3rX4+urq6IiKhUKpHJZGpBoeHh4YQrBAAAAAAApiMkBAAAzEulUqn7uVQq1UJCmUwmyuVyQpUBAAAAAAAzERICAABOWX9/fy0olM1mo1qtzvsamzZtinXr1kUqlYpt27Yt+PnvNTY2Fjt37oyvfvWrsX79+viLv/iLWL9+fdx8880xODg47+sBAAAAAMByJiQEAAAsiFwuVwsKdXd3n9Q1XnnllXmFfuZ7/mTd3d2RSqVi8+bN8c4770RExKuvvhoXXnhhfPzjH9c6DQAAAACAFUVICAAAWBDVajWy2WwtKFQoFOZ9jaUOCZ133nlx7NixuuPpdDpSqVQ0NjbO+5oAAAAAALBcCQkBAAALplKpRCaTqQWFSqXSvH5/KUNChw4dildeeWXK8Z6enkilUrFly5Z5XxMAAAAAAJYrISEAAGBBvPnmm/Gd73wnLrroojjnnHPi4x//eHzuc5+Lffv2TXt+oVCIq666Kj7ykY/EX/zFX8TmzZtj3759M4Z+5nv+yXr44YcjlUrFnj17FuyaAAAAAACQNCEhAABgQTQ3N8e5554b+/bti/7+/ti1a1d86UtfirPOOitefvnlunOLxWKcc845sX79+ujp6Ym33norduzYEZ///OenDf3M9/yTcejQofjZz34W55xzTnz7298+5esBAAAAAMByIiQEAAAsiF/84hexffv22s+5XC52794d69ati02bNtWde/3110cqlYqenp6643ffffe0oZ/5nj9f1157baRSqVi3bl08+OCDcfjw4VO6HgAAAAAALDdCQgAAwKKoVquRzWbjE5/4RFx88cXR398fERHHjx+Ps88+Oz7+8Y9P+Z329vYpoZ/5nn+yDh8+HD09PfF//s//if/9v/93DA4OnvI1AQAAAABguRASAgAAFsThw4fjoYceiksuuSTOOeecaGhoiIaGhkilUnHBBRdEOp2OUqkUBw8ejFQqFZ/97GenXOPll1+eEvqZ7/mnqlgsxllnnRVf+cpXFuyaAAAAAACQNCEhAABgQUy07NqxY0eMjY3Vjl944YW1kFAmk4k33ngjUqlU/NVf/dWUa8wWEprr+Qvh4osvjrVr10a1Wl3Q6wIAAAAAQFKEhAAAgFN26NChSKVScemll075v8985jNxySWXRDqdjnQ6Hc8991ycffbZce655045d7Z2Y3M9f65+/vOfRz6fn/b/NmzYEKlUKsrl8ryvCwAAAAAAy5GQEAAAcMqOHDkSa9eujc997nN1x8fHx+NjH/tYXHbZZZHL5WpBoa985SuRSqWip6en7vy777572tDP9ddfP6/z5+Kmm26KW265ZcrxAwcOxEc/+tH41Kc+Ne9rAgAAAADAciUkBAAALIhNmzZFKpWK7du3xzvvvBMHDhyIm266KVKpVFx22WVRrVYjm81GOp2Obdu2xdlnnx3r16+Pnp6eeOutt2Lnzp2xfv36aUM/xWIxzjnnnDmfPxc33XRTfPjDH47HHnssjhw5EhERg4ODceWVV0YqlYqWlpYFeV8AAAAAAGA5EBICAAAWxNtvvx133nlnnH/++bFu3bq46KKL4pFHHomLLrooUqlUNDQ0RHd3d2QymUin07F169b44he/GA0NDXHuuefG9ddfH11dXZFKpWLt2rXR0NBQd/1CoRBf/vKX53z+ibz55pvxwx/+MDZs2BCf+MQn4txzz43zzjsvvv71r8cLL7ywkG8NAAAAAAAkTkgIAABYUsPDw7W2Y5lMJiqVStIlAQAAAADAiickBAAALLlCoVALCmWz2ahWq0mXBAAAAAAAK5qQEAAAkIju7u5aUCiXyyVdDgAAAAAArGhCQgAAQCKq1Wpks9laUKi/vz/pkgAAAAAAYMUSEgIAABJTLpcjk8nUgkKlUumUr3nVVVedcAAAAAAAwGojJAQAACRqeHi4FhLKZDJRqVSSLgkAAAAAAFYcISEAACBxhUKhFhTKZrNJlwMAAAAAACuOkBAAALAsdHd314JCe/fujZGRkejr65vTGBgYiJGRkRgbG0v6ZQAAAAAAwLIkJAQAACRmbGwshoaGoq+vL37+85/Hjh07FmSk0+no6uqKQqEQIyMjSb9MAAAAAABInJAQAACwpMbGxqJQKERLS8uChYJONJqamqKrqyuGhoaSfvkAAAAAAJAIISEAAGBJjIyMRFtb25xCPW1tbdHW1hb5fH5Oo729Pdra2iKdTs8pMNTX1xfj4+NJvyUAAAAAALBkhIQAAIBFdaJw0EQYaGhoaMGCO6Ojo1EoFKKzs3PG4JCwEAAAAAAAq4mQEAAAsGj6+vqmDei0t7fHwMDAkgV0RkdHo7e3d9rAUEtLS4yOji5JHQAAAAAAkBQhIQAAYFG8d/egpqam6O3tjbGxsUTrGhgYiJaWlim1jYyMJFoXAAAAAAAsJiEhAABgweXz+Sk7By23tl4DAwPR1NRUFxRabjUCAAAAAMBCERICAAAW1OjoaF1AqFAoJF3SjMbGxuqCQp2dnUmXBAAAAAAAi0JICAAAWFCTdxFqb29PupwTmhxqampqSrocAAAAAABYFEJCAADAgmpvb6+FboaGhpIuZ07S6XSt5rGxsaTLAQAAAACABSckBAAALKjOzs5a4GZgYCDpcuZkcsux8fHxpMsBAAAAAIAFJyQEAAAsqEKhUAvctLS0LPvQzcDAQK3edDqddDkAAAAAALAohIQAAIAFNT4+XrczT1dX17INCg0NDdXq3LFjR+Tz+aRLAgAAAACARSEkBAAALLj3hm/S6XSMjIwkXVbN+Ph4dHV11dXY0tKSdFkAAAAAALBohIQAAIBFMbnt2OQgzsDAQGI1jY2NTQkHTdQ1NjaWWF0AAAAAALDYhIQAAIBFMzIyUtd6bGI0NTVFV1dXDA0NLXoNY2NjUSgUoqWlZUodO3bsiM7OzmXbDg0AAAAAABaKkBAAALBgyuVy9PX1RWtra/T19UXEu6298vn8tGGhidHW1ha5XC6GhoZOqS3Z2NhYjIyMRF9fX7S3t0c6nZ71nhP3KpfL0draGt3d3TE4OBjVanVB3g8AAAAAAFguhIQAAIBTMjkYlE6n68ZkE2Gh2YI707UBa2trO+GYLYD03tHe3j4liFQoFKbULjAEAAAAAMBKIiQEAADM22zBoHQ6Ha2trVEsFmf8/dHR0ejt7Z1XYOhURnt7ewwMDMzYVqxSqUR3d/e0r0VgCAAAAACAlUBICAAAmJO5BIPy+XyUy+V5XXd8fDxGRkYin8/XdgY62TBQOp2Otra26OzsjIGBgRgdHZ1XLdVqNYrFosAQAAAAAAArjpAQAAAwo8UKBs3VyMjInMbY2NiC31tgCAAAAACAlURICAAAqJN0MGg5EhgCAAAAAOB0JyQEAAAIBs3DXAJDuVwuhoeHky4VAAAAAABqhIQAAGCVqlQq0d/fLxh0Ck4UGMpkMgJDAAAAAAAsC0JCAACwikwEg7LZrGDQAhMYAgAAAABgORMSAgCAFU4waOlNBIZmes8zmUz09fV5zwEAAAAAWDJCQgAAsAKdKBg0satNqVRKutQVby4hLYEhAAAAAAAWm5AQAACsENVqNQYHB08YDNLuKjlzCQz19/dHpVJJulQAAAAAAFYYISEAADiNTQSDuru7BYNOM5VKJfL5fLS2tk77t+vu7o7BwcGoVqtJlwoAAAAAwAogJAQAAKeh4eFhwaAVpFwuRz6fj0wm4+8JAAAAAMCiEBICAIDTxPDwcORyuWmDJBM7zwiSnP4m/s4ztSPr6+vTjgwAAAAAgHkTEgIAgGWsXC6fMBhULBa1pFqBqtVqFIvF6OjomPZvv3fv3hgcHEy6TAAAAAAAThNCQgAAsMxUKpXo6+uL1tbWacMh2Ww2+vv7BYNWkUqlEv39/dN+JibakZXL5aTLBAAAAABgGRMSAgCAZWAiBJLNZmcNBmkzRalUmrEdWTabjcHBQQEyAAAAAACmEBICAICEVKvVGBwcjO7u7mkDH62trZHP5wWDmFa1Wp0xWJbJZKKvr89nBwAAAACAGiEhAABYYsPDwzPuBKN1FCejXC5HLpeLTCYz5TPV3d0dpVIp6RIBAAAAAEiYkBAAACyBcrkcfX1904Y4JoIcw8PDSZfJaa5arUaxWIzW1tZpd6bSigwAAAAAYPUSEgIAgEVSqVRmbAeVTqejo6MjisWi0AaLolQqTdvKLpPJRKFQ8LkDAAAAAFhlhIQAAGCBDQ4OThvOmNjNpb+/PyqVStJlskpUKpXI5/NTdrGaKSx05MiROHbsWELVAgAAAACwWISEAABgAZTL5cjlctO2E8tkMpHP56NcLiddJqtYtVqN/v7+aVuR5XK5GB0djfvuuy9uuOGGeOCBB+K5555LumQAAAAAABaQkBAAAJykiXZi04Uu0ul0dHd3x/DwcNJlwhTFYnHK5/Yb3/hG3HrrrTE+Ph4REXfffXccOHAg4UoBAAAAAFgoQkIAAPAPjh07NqX10nSGh4dnbCeWzWajv79/TteBpE2Ehb7//e/H5z//+Whqaqq1Ibvrrrti3759SZcIAAAAAMACERICAICI2LNnT/zgBz+Im2++OX74wx/G0aNH6/6/UqlEX1+fdmKsSF/72tfivvvuq32mm5qa4tJLL43u7u7aOU1NTVEsFhOsEgAAAACAUyEkBADAqnPs2LG6n0ulUtx9990REXH8+PG47bbbYtu2bVGtVmNwcDD27t2rnRgrVqlUissvvzyOHDlS21no7rvvjquvvrq2O1apVIpKpRJXXnllPPLII3HkyJGkywYAAAAAYJ6EhAAAWFV6enrim9/8Zt2xF154Ie69997azy+//HL83//7f2Pnzp1TgkGtra3R398flUplqUuHRdHf3x+33XZb7ee33347vvCFL8SPfvSjus/+D37wg7j22mvj9ddfr9thCAAAAACA04OQEAAAq8bbb78d9913X1x99dWRz+drx3/1q1/FNddcE4ODg5HNZiOdTse1114bd955Zy0gkcvlolQqJVg9LI4jR47EzTffHOPj43HkyJG444474sEHH4xqtRr5fD7S6XQ89thjsWHDhti2bVv09/cnXTIAAAAAACdBSAgAgFVj//79ceDAgdi5c2d897vfjYiISqUSPT09cemll8ZDDz1UCwVt2bIlvva1r0WxWIxqtZpw5bC4BgYG4v7774+bb745Hn/88Th+/Hjt/8rlcvzd3/1d3HDDDbXvx969e2u7aY2Pj8fRo0eTKh0AAAAAgDkSEgIAYNU5ePBgbNiwIZ555pla6OHGG2+M6667LjKZTORyuXj55ZfjW9/6VtKlQuJ6enriiiuuiP3790cmk6l9ZzKZTPT398fWrVujp6cn6TIBAAAAADgBISEAAFaNSqUShUIhMplMXHfddXHHHXfUAg9PPPFEfPGLX6yFHQqFQvzoRz9KuGJI1pEjR2Ljxo3x3HPPRUREtVqN7u7u2vcmnU7HAw88EE8//XTClQIAAAAAcCJCQgAArHilUilyuVxdsGHr1q3x+c9/Pnp6eqJUKkXEu+3IvvWtb8V9990XjY2N8fbbbydcOSRr586dccUVV0RLS0vs37+/dnx4eLi2q9CWLVvirrvuinK5HBERx48fr2tXBgAAAADA8iAkBADAijU4OBjZbLYuHJROp6O1tTX6+/tj06ZN0dLSEplMpu73jh07lkzBsMy888478eqrr8bAwEBUKpXa8ZGRkejs7Iz7778/vvWtb8UVV1wRX//61+Oaa66JjRs3xvDwcIJVAwAAAAAwHSEhAABWlMktxd4bDuro6KiFF1555ZXYvHlzbN++Pd56662Eq4bTyxNPPBEPPvhg7Nq1KxobG+Oqq66KRx99NJqbm6NYLCZdHgAAAAAA0xASAgBgRahUKlNaiqXT6chkMpHL5ep2QYmI6O/vj/Hx8YSqhZXj6NGjsXHjxrrvnaAQAAAAAMDyIyQEAMBprVQqxd69e2dsKVatVpMuEVa8v/mbv4nXX3+9bgeviaDQq6++GgcOHEi4QgAAAAAAhIQAADgtDQ4ORjabnbWlGLA0fvjDH8Y777wT5XJ5SlDojjvuiCeffDLpEgEAAAAAVj0hIQAATiuDg4PR2to6JRzU3d0dpVIp6fJg1Tpy5Ehs27YtvvnNb8att94ajY2Nceedd8bo6GjSpQEAAAAAEEJCAACcJmYKB+VyuahUKkmXB6teY2Nj3HjjjfHyyy/Hc889F7feems8/vjjkc1mky4NAAAAAIAQEgIAYJkrlUpT2oplMpkoFApRrVaTLg/4BzfffHMcPHiw9nM+n699ZwuFQoKVAQAAAAAQISQEAMAyVSqVYu/evdPuHCQcBMvPU089FS+99FLt52q1Wrf7lx2/AAAAAACSJSQEAMCyMls4SMgAlq9jx47FQw89FHfddVc8++yzEfHu93nydxgAAAAAgOQICQEAsCwIB8HK8Prrr9f9PLldoF3AAAAAAACSIyQEAECiyuWycBCsYMVisfa9LhaLSZcDAAAAALBqCQkBAJCIarUafX19wkGwwlWrVS3HAAAAAACWASEhAACW3ODgYGQymbpwUEdHR5TL5aRLAxbBRMux1tbWpEsBAAAAAFi1hIQAAFgypVKpFhaYGNlsNkqlUtKlAYson8/XvvMAAAAAACRDSAgAgEVXrVYjl8vVhYMymUz09/cnXRqwBAqFQu27X61Wky4HAAAAAGBVEhICAGBR9ff3T2ktlsvlBAVgFZkcErJzGAAAAABAMoSEAABYFFqLARMmh4QqlUrS5QAAAAAArEpCQgAALCitxYD3mvxMAAAAAAAgGUJCAAAsGK3FgOl0dHTUAoMAAAAAACRDSAgAgFNWrVZj7969deGgjo6OKJfLSZcGLAMTz4Xu7u6kSwEAAAAAWLWEhAAAOCXDw8N1uwdpLQZMViqVas8HzwYAAAAAgOQICQEAcFKq1Wp0d3dP2T2oUqkkXRqwjOTz+dozwu5iAAAAAADJERICAGDe7B4EzNXEs6K1tTXpUgAAAAAAVjUhIQAA5qxarUZfX1/d7kHZbNbuIMC0isWiVmMAAAAAAMuEkBAAAHNSKpWitbW1LiBUKBSSLgtYxiaeGZlMJqrVatLlAAAAAACsakJCAACckN2DgPmavItQLpdLuhwAAAAAgFVPSAgAgBmVy+XIZrN1AaF8Pp90WcAyV61W7SIEAAAAALDMCAkBADCtYrEYmUymFg5qbW2NUqmUdFnAaaBQKGhLCAAAAACwzAgJAQAwxXvbi+VyOTuBAHNSLpfrwoWeHQAAAAAAy4OQEAAANdVqta69WCaTiWKxmHRZwGlk8jPE7mMAAAAAAMuHkBAAABERUSqVprQXK5fLSZcFnEby+XztGZLP55MuBwAAAACASYSEAACI/v7+uvZiHR0dWgQB81IsFrUZAwAAAABYxoSEAABWsWq1Grlcri4gVCgUki4LOM2Uy+W6ncjsQgYAAAAAsPwICQEArFLlcjmy2WxtUT+TycTw8HDSZQGnmWq1WhcQKhaLSZcEAAAAAMA0hIQAAFah4eHhukX9bDYblUol6bKA00y1Wq0LG+bz+aRLAgAAAABgBkJCAACrTKFQqGsvlsvlolqtJl0WcJp5b0Cou7s76ZIAAAAAAJiFkBAAwCpRrVaju7u7LiDU39+fdFmQmLfeeisaGhrirLPOilQqFeedd14cOXJk1t/5xS9+EalUKlKpVDQ0NMSDDz542tfz4x//OBoaGiKVSsXXv/71Of/e5OdJNpuNarUajz/+ePzP//k/49Zbb513HQAAAAAALC4hIQCAVeC9O35kMpkol8tJlwXLwtNPP10L2uzYsWPWc7/4xS9GKpWKL3zhCyd9v7fffjtSqVTcc889y6KeCR//+MfnHBLK5XJ1AaE33ngj/uZv/ibWr18fqVRKSAgAAAAAYBkSEgIAWOHK5XJkMpm6Bf1KpZJ0WbBsPP3003HhhRfGWWedFRdccEEcO3Zs2vNefPHFuPjii5ckJLSU9UyYa0jovQGharUaX/rSl+LBBx+MV155RUgIAAAAAGCZEhICAFjBisViXUCou7s7qtVq0mXBsvL000/HFVdcETfeeGOkUqloaWmZ9rxNmzZFc3PzkoSElrKeCXMJCU0XEIqIGBkZiYiI/v5+ISEAAAAAgGVKSAgAYIUqFAq1xfx0Oh35fD7pkmBZmgjlFAqFSKVSsWHDhinnvPbaa/GpT30qDh8+PG0o580334zvfOc7cfHFF8cnPvGJOP/88+Nv//Zv45VXXqk778c//nE0NDREKpWKtWvXRkNDQzQ0NMQdd9yxYPU8+OCDtXtMDiL9v//3/2LdunWRSqXi8ccfn3LN2UJC1Wq1LiA0U8tCISEAAAAAgOVLSAgAOKGD5XL0vfpqPLt3bzy7d29se+KJ+OGOHcYyHQ/+/d/Hd3/847jzBz+ojS3btyde14nGtieeqH3Gevr64uA0AQRYDBOhnIiIjRs3RiqViq6urrpzbrvttti2bVscPXp02pBQc3NznHvuubFv376IiBgbG4tbbrklGhoaYv/+/XXnznUnoVOpZ6Z7vPjii/MOCVWr1chms3NqWSgkBAAAAACwfAkJAQDTqhw5Es/u3Rvfe/jh+Na99xpGIuOurVvjyeeeExhiUU0O5XR2dkYqlYqNGzfW/v/Xv/51nHfeeTE2NjZjKOcXv/hFbN++ve7Y+Ph4fOQjH4nNmzfXHZ9PSOhk61mokNB0AaHZWhYKCQEAAAAALF9CQgBAnYlw0C333594QMQwJo9n9+6NypEjSX9FWIEmh3IiIj73uc9FKpWKQqEQERFbtmyJ733vexERM4ZyZnLRRRfFlVdeWXdsPiGhk61nIUJC8w0IRQgJAQAAAAAsZ0JCAEDNGyMjcdfWrdMGNO756U/jgSefjAeefDK2Z7PxaHu7YSzo2J7N1j5j9/z0p3HDffdN+Rzecv/98cbISNJfFVaY94ZyMplMpFKpuP7662NsbCzOO++8GPmHz91MoZzDhw/HQw89FJdcckmcc8450dDQEA0NDZFKpeKyyy6rO3e+IaGTqedUQ0Llcjkymcy8AkIRQkIAAAAAAMuZkBAAEBER+VdfnbJ70C0/+EFsz2bjiX374me/+pVhLPnYns3GnT/5yZSwUE8+n/RXhhXkvaGcY8eOxac//elYu3Zt3H333XHLLbfU/m+mUM61114bqVQqduzYEWNjY7Xjn/nMZ045JHQy9cx0j1wud8KQUKlUqgsI5XK5aeucjpAQAAAAAMDyJSQEAERPPl8XwLjhvvvioWefTTwgYhgTY3s2O2VnIUEhFsp7QzkREY8++mikUqlIpVLR399fOz5dKOfQoUORSqXi0ksvnXLthQgJzbeeiIh33nknUqlUbN68ue74z3/+81lDQldffXUtHDTfgFCEkBAAAP8fe/ceHHV97398y5mjddrT49gO07FnjrX+atvpDHNqrczp8dLOWcAUtd6q1op6jlYuAtqgAkUaRSRiVAS5GATCLVESQ0iA3BbYaBrXXEgWdiG7oQskuMFs4wIrYSELvH5/ePJtlmyWJCT55vJ8zLxnzCffy+e7+X4Tx+/L9wcAAADAQEZICACAYe7z5uaoDkJvbdyorTU1podCKOrCKqqt1VsbN0YFhTyHDpn9CGEIiBXKCYfDeuCBB5SUlBQ1HiuUc+bMGY0dO1aTJ0+O2ra1tVV33HFHh5BQa2trVIDn2LFjWr58uVpbW3tlPm3uuusuzZkzJ2psxYoVnYaE7rrrLk2ePNkICPn9/g7bXAwhIQAAAAAAAAAYuAgJAQAwjIXPnOkQEGJpMWogV1FtbdTyYylpafq8udnsRwmDXKxQTmc6C+UkJSXJarUqKytLp06d0rFjx7Rw4UJZrdYOISFJeuSRRzRjxgydP39e+fn5evTRR3t1PpK0YMECJSQkqLq6Wq2trXI4HHr22Wc7hIQikYjcbrfuuOMOTZ48WXa7vUcBIYmQEAAAAAAAAAAMZISEAAAYxvLs9qglxvJdLtNDIBR1sSqqrVXKunXGvbshL8/sRwmDWEJCgsaNGyer1aqEhATlxbmf5s2bp4SEBGPZr4SEBGVnZ0v6agmxJUuW6KGHHtLtt9+uxx57TJs3b9Zjjz1mbFtbW2scq7KyUo8//rjuvfdePfnkk9qzZ0+vzkeSQqGQFixYoHvvvVf33HOPlixZoj179shqtWrs2LF68MEHFYlEtHDhQuOcY8aM6TDXrsjJyVFCQoJuv/124/gJCQmaMGFCt44DAAAAAAAAAOg7hIQAABimjodCUcs25VRUmB7+oKiu1taamqj793APu570pqamJqNOnjxpjJ88ebJPx9uWqAK6KxQKqbS01FhezOFwKBwOmz0tAAAAAAAAAEAfISQEAMAwlVlYaAQslmzaZHrog6K6W6m5uQOmm9DZs2eVlZWljIwMZWRkqLq6WuFwWOFwWNXV1X0+npWVpd27d5v6GWBwCQQCstvtRkCosrJSkUjE7GkBAAAAAAAAAPoQISEAAIap9l1YWGaM6teq82pnnUc7vf+oXXWer8a7cZx8lyvqPj4eCvXKs3HgwAEdOnSoy9ufPHlSwWBQhw8fls/nk8/nk9/vVzAYVDAYlN/v79Pxw4cPq6ysTBkZGfJ4PF2e95IlS2SxWFRTU9Ol7adOnaprrrlG11xzTZfPgYGpvr7eCAfZbDa53W6zpwQAAAAAAAAA6AeEhAAAGIY8hw4ZwYq3Nm40PzRCDY+q80YFgzqtboSFlmVnG/fynm4EZOKprq5WZmamtm3bFjcs1Nraqu3bt8vn8xmBHTPL7/fr7NmzXb7OG264QSNGjNC0adO6vE9ycjIhoUHO7XZHBYT8A2CpPgAAAAAAAABA/yAkBADAMFRUVmYEK1Zt325+eGQBBZ4AACAASURBVIQa+lUXIwx0oO4f1SEo5OnScTfu2mXcy5mFhb3yfLSFhNqqs7BQU1OTMjIyBkxIKBgM6tSpU126RqfTqdtuu01jxozRt7/9bZ05c6ZL+xESGrwikYgcDocRDrLb7QoGg3H3ef755y9aAAAAAAAAAIDBg5AQAADD0Pq8PCNYkVNRYX6AhBra1UkHoV0HDhjV045CORUVxr28Pi+vV56PC0NCnYWFBnNIaPr06Vq7dq0yMjJksVi0adOmDtucPn1aU6ZM0VVXXaWf/OQnmjhxopKSkjqEhLKysnTLLbfIarXq1ltvVUJCgvbv3298PyUlRRaLRRaLRQUFBbr11lt1xRVX6JZbblFDQ4Nyc3N17bXX6sorr9TkyZN17ty5Hv3c0LlQKKTS0lIjIORwOBTqpeX5AAAAAAAAAACDByEhAACGIUJCVL9VXYwuQV0NCXk9X+0f5/hFtbXGvfz6mjUKBAIXrbq6Ou3bt6/T2rFjR8yQUFvl5OSorKxMLpdLBw4cUCAQMD0cFAwG5fP5lJGRoaamprjP/5kzZ/T9739fLS0tCofDuvLKKzVu3LgO2yUmJmrkyJGqq6uTJFVVVenqq6/uEBJ68MEHo0JGy5Yt07XXXqtwOGyMuVwuWSwW3XHHHTp48KA+++wz/fjHP9bNN9+sZ555RseOHdPOnTs1YsQIZWdnX8JvN1woEAjIbrcbAaHKykpFIhGzpwUAAAAAAAAAMAEhIQAAhqGUtDQjWFFUW9vjAMiqvDxZrdaYddc998Td994HHuiwz9333WdKkGX73r2a8MQTuvu++5S+a1evHnt9cXGH63zx9df7/Rh9XU9OndrpvdBZrSso6EJI6OLLjrXdy/NTU+OGe7pamzZt6vJ2hw8fNj0c1N2QUFZWlp544gnj64kTJ2rEiBE6cuSIMdbS0qLLL79cs2bNitp3woQJHUJCfr8/qvvP8ePHZbFYVF5eboy1hYQyMzONsTlz5mjEiBE6fvy4MTZq1KgO5xzOTpw4oebmZqN8Pp+8Xq+8Xq8aGhqivnfixIkO+9fX1xvhIJvNJrfbbcJVAAAAAAAAAAAGCkJCAAAMQ+1DFZcSDNn86aeav3SpZs6fHxX0mb90qRauXBl335TVqzV/6VLd+8ADGn/nnZq/dKleX7XKlIDL0k2bjPnPXrCgV4+9pbJSC5Yv14LlyzX+zjt7FPDpjWMMxJDQpo8/vnhIyNv7IaGioiLZ7fZOKy8v76LHyM3N1Y4dO9TY2Gh6OKi7IaGEhAT99a9/Nb7+9NNPZbFY9Morrxhje/bskcViUVpaWtS+8+bN6xASqq2t1YQJE3TjjTdq9OjRuummm2SxWLRlyxZjm7aQUHV1tTGWkpKikSNHRh3rtttu06RJk7r6q2zIOHHihHw+n2pqalRWVqa8vLweV35+vsrKylRWVqbCwkIVFxfLZrPJ7/ebfZkAAAAAAAAAAJMREgIAYBjqrZBQW9k8Ht11zz2yWq0aM3astlRWdmm/bU6nxo0bp8S//MXUgMuWykrdfd99Gnf77Vq9dWufnefu++675IBPbxyjL+rJqVN1/0MPac327f+obdu0ZuvWr2r7Nq3Zvk2vpabKarXqD//zP9HLjR2o61hGSCj+kmPt7+feUF1d3Wk4qLy8XCdPnpQkBYNBFRcXD6huQqdOnYp7bX6/X9/85jc1evToqPr617+u6667ztius5DQyy+/HBUSamlp0Xe/+109+uijOn36tCQpHA7LYrEoJyfH2K4tJORyuYyxlJQUfe9734s6/m233aaJEyd26+c1GLW2tqqhoUEVFRWXFAjqTtXU1Ojo0aNmXzoAAAAAAAAAwESEhAAAGIZ6OyS088ABzXr1VaNDzILly7u0T8rq1bJarVqzfbvpIRebx6MCt7tPzzHUQ0IPP/549Hid1wj6tIWBXpg3T1arVSmrV0eFhGLVzrq2Jce8cc/dHyGh9uGgNk1NTcrIyJDP5zM9HNTVkNCCBQv0+uuvdxhfuHChLBaLSkpKJP1jubGZM2dGbXfhcmNVVVWyWCzatm2bMda23BghoY6am5u7FQwqKSkxugKVlZXJ5XLJ4/HI4/Gouro66ns2m63LnYZqamrU0tJi9scBAAAAAAAAAOhnhIQAABiG+iIktL6oyAgJ/eHCsEgn9T+TJune3/1OO+rid4oZKjWUQ0KJc+dq8owZF4zXRYWEivbt0/g771TCb36j/L17B0VIKFY4qE1ra6syMjJUXl5uejgoGAzq8OHDam1tjXttP/3pT2MuR9bU1KR//ud/1qOPPmqMzZgxQyNHjlRdXZ2krwJB3/rWt6JCQsFgUN/4xjf01FNP6dy5c5KkRYsWERK6QHNzc9xlxGw2m6qrq+Xz+dTc3HzRn2M8ra2tam5uls/nU0VFRdzw0EAMC+3YscMon89njPt8vj4dP3LkiDweT6fPOwAAAAAAAAAMBYSEAAAYhvoiJLTzwAH97ve/N4JCH3z8cdxtsx2OARl26csayiGhmFXXbsmwOo/eXr9OVqtVf3pxjnbWeToGgi4sY9/+X27Mbrd3KSzg8/l07NgxBYNBBQIB/e1vf9Pf/va3qCXI+mO8srJSGRkZ2rt3b8x5fvHFF/r5z3+uK664Qv/1X//V4fujR4/WFVdcocsvv9z4/unTp/X000/rqquu0o9+9CM98MADeuGFF3TZZZdp9OjROnz4sCSpoKBAo0aN0nXXXacxY8YoOTlZFotF119/vd59913l5uZq1KhRslgsGjVqlGw2m+bNm6d///d/N4715Zdfaty4cfqXf/kXjRw5UhMmTLiEn+DA4na7O+0S5PP5+iWk09LSIp/Pp5KSkphzaR+W6S3hcLhb2589e1ZffvmlCgsLjXK5XMZ97nK5+nS8pqZGGRkZysrKUjAY7PXP41JNnTpV11xzTVRIT5JWrVqlq6++WqFQqE/OW1NTo1deeaVPjg0AAAAAAACg/xESAgBgGOqrkNBLixYZIaG5KSlxt523eLGsVqveLymJGrd5vUrdvFkzkpL00IQJShg/XmPHjdPd99+vKc89p5VbtsQ8XtH+/ca52+qp6dO188ABbdyxQ08//7x+e++9xvfuuueeuPtcWD2dV7yAz6L16/XoH//4VXed8eM14ckn9WZaWtzOSl0NCeVVV+vF11835prwm9/ogYcf1nMvvdThM+/T8v4j7PP4xImyWq1au3171BJkuy7YrkNd5By9HRJq64jTHWfOnNGRI0eUkZGhjIwMFRcX69SpUzp16lS/je/YsaNXrh+9o7W1NWb3oOrqalO797S0tKi6urrDvCoqKi6pg9GFqqurtW3bNh06dOii237++edG2M7sblyFhYX64osveu1z6E3JyckdQkK7d+/WrFmzdPbs2T45Z1pami6//PI+OTYAAAAAAACA/kdICACAYaivQkJZZWVG2ObeBx6IG3Z56JFH9HCMZclmL1hgHGPKc8/ptdRULVy5UjOSkjTu9ttltVo1c/78mCGh+x96SPc/9JASfvMbI/CTunmzxt1+u25PSNDd998fFRKyeb2av3Sp5i9dqgcfeSRuSKin8+os4DMjKUkJ48dr8owZmpGUpAlPPmkcf3Jioopra3scElq9davG33mnrFarnn7uOaWsXq2U1as1fdYsjRkzRmPGjNFrvfyz77TqvNrp9Sjzo49ktVr10COPRC1BNhBDQj3V2tqqpqYmNTU1RXUi6Y/x3gx3oHdUVFR0COEMpKW9WlpaOoSY2i8Hd6naL9sXLyzU1NSkjIwM+Xw+00NCbTVQn6dYIaG+RkgIAAAAAAAAGFoICQEAMAz1VUho54EDUWGXtPz8mNuk79wpq9WqBcuXd/jeC6+8IqvVqjfT0jp874OPP1bC+PGyWq16e8OGTucw6U9/ktVq1YQnn9Td99+v11etUtH+/dp54IA2ffyxxt95p+66556Y+3QWEuqNebUFfB74wx/0+8ce05bKyqjvL1q3zvjs/vzaaz0KCb1fUmKElmLNdXlmpnGOFR9+2D9BIa9Hc15LltVqVfKK5d0LCXXh+AMlJAS0OXr0aFT4pqGhwewpdcrn80XNtbm5uVeO2z4kFC8sNBBDQqdOner0uk6fPq0pU6boqquu0vXXXx9zGb6UlBRZLBZZLBYVFhbKarXq8ssvl8VikcvlUlZWlm655RZZrVbdeuutSkhI0P79+zs9z09+8hNNnDhRSUlJUSGh9PR0Yym/9gGv8+fPKzk5WT/72c/061//Wr/85S+1dOlSnT9/XpKi5ldQUKBf/epXuuKKK/Szn/1M1dXVxnEWLVqkH/zgB/ra176m0aNHa/To0Xr33XclSR999JFuvfVW4xruuusulZWV9fR2AQAAAAAAANBPCAkBADAM9WVIaOHKlUYIZUZSUsxtZi9YoDFjxnQIybSFcX73+993evykN9+U1WrVH2J0Ibow8GO1WjVvyZKO55g3r0choUudV1vAx2q16n27PeY2z8yeLavVqjFjxyrb4eh2SOjRP/5RVqtV/zNp0kU/nwcefjhut6fequL9+3XXPfdo3Lhx2rq7qushoQNdmxshIQw07Tv0eDwes6dzUe2XH2sfErnUY14YEooVFgoGgyouLtbhw4dNDwcFg0H5/X7V1NTo5MmTMa8rMTFRI0eOVF1dnSSpqqpK3/rWtzp0+HG5XLJYLPrv//5v7dmzR8FgUKNGjZLL5dKDDz6oTZs2GdsuW7ZM1157rcLhcNzzXH311Z2ep31IaPbs2frhD39oLJv2+eef6+qrr9aiRYs67JeQkKC6ujr9/e9/180336zRo0dHHT9WJ6HW1lb967/+q2w2mzH2zDPPaM6cOTE/MwAAAAAAAAADByEhAACGob4MCeVVV2vM2LGyWq0af+edKrpg2Syb16u777tPT0ydGnP//L17tX3Pnk6Pv+LDD42gTf7evXFDMGPHjYt5rB11dbJ5vd0KCfXGvNoCPrGWWWurVXl5xnFefvvtboWE0nftMvZNWb2603O8sWaNsd26wsI+Dwkt3bRJVqtVU194IToEVOf9R10YEKrzdvn4hIQw0OTn5xuhm4G0xFhnTpw4Ycx3y5YtnYZ7ulObNm3q8jb19fWmh4PayufzKSMjQ01NTR0+p5aWFl1++eWaNWtW1PiECRM6De+kp6cbY01NTTpz5oz8fr/OnTtnjB8/flwWi0Xl5eU9Pk9bSOjLL7/U17/+daWkpERtl5iYqKuvvrrDfh988IExlpqaqssuu8zoOCTFDgkFAgFZLBYtW7Ysaqwt0AQAAAAAAABg4CIkBADAMNSXIaGdBw7oqWeeMUIoyzZtivree7m5slqtWrR+/UWPY/N6lbd7tz785BNllZUpq6xMi9PTjWNnlZXFDQn9/rHHujzni4WEemNebQGfxLlzOz329r17jePEClLFCwktWL7c2Ped99835nZhtV/WLNaSb71+P0yfLqvVqtV5edpZ18myYkY4yKOd3exuREgIA037kFBra6vZ07mo9iGh3NzcfgsJtW03ULoIXSwktGfPHlksFqWlpUWNz5s3r9Pwzu7duzscp7a2VhMmTNCNN96o0aNH66abbpLFYtGWLVt6fJ62kFB5ebksFot++MMfGkuEjR49Wj/96U/1b//2b/ryyy87nV92drYsFktUF6VYISFJmjNnjv7pn/5J1113nWbNmqV9+/Z12AYAAAAAAADAwENICACAYaivQ0JLMjKMEMrkGTOivvfsnDm6PSGh0247Ow8cUOrmzfrjtGlK+M1vjOPEqvdLSuIGfp7spFtRT0NClzqvtoDPnIUL484lYfx4Yzmw7oSEnn/55bjzilUz58/v04DQ5vJyjRkzRvc9+OA/ljarq+vYPajO2+1wECEhDFTtlxvz+XxmT+eiPB6PMd/S0lIFAoFLrrKysk6DQZs3b1Z5ebkaGxvV2NioQ4cOKRAImB4QaltubPfu3TGXG+ssvPPyyy93aRkw6asuQd/97nf16KOP6vTp05KkcDgsi8WinJycSz5PW0ho9erVcX/mseaXk5Mji8ViBImkzkNCkvTZZ5/prbfe0n/8x3/oa1/7WtRyZgAAAAAAAAAGJkJCAAAMQ30dEipwu42gy7hx47TN6YwanzZrVqf7vvj660aAZcITT2j+0qVakpGhpZs2aemmTXr57be7HBLqSlegru7TG/OKF/BpX3f+9reyWq367b33dusYz/z5z1EdgtrmFq827tjRpyGhlxYtktVq1bwlS/rsHISEMNA0NDQYoZu8vDwdPXrU7Cl16sK5OhwO1dfXKxQKXdJxq6urO4SDcnJy5Ha7o7orNTU1KSMjQz6fz/SAUFudOnUq5jW1LQM2c+bMqPGuLAPWpqqqShaLRdu2bTPG2pYbawsJXcp52pYbe+6556K28/l8mj59etz5xQoJrV271ggJnT9/Xi0tLTp27JhsNlvU8R999FFde+21AgAAAAAAADCwERICAGAY6uuQ0IWBlZTVq7XzwAEt+b8luVI3b465z9qCAmOf6bNnx9xmzfbt/R4S6q15tQV8/vzaa3Hn0tNOQi/Mm2fMYX1xcZ+Gf7pSNq9X9/7udxozdqy2VFb22XkGW0joxIkTam5uNnsa6GPtuwnl5eV1CMeYrbW1VTU1NVFz3L59u2w2m1F2u11Op7NHoaH2IaFY4aA2AzEkFO/nNGPGDI0cOVJ1dXWSvgr9fO973+tySCgYDOob3/iGnnrqKZ07d06StGjRoqiQUGfn+da3vtWl87z44ov6zne+Y+zb2tqq+++/X8nJyXH3ixUSKiwslMViUUtLi8rLy3XDDTeotrZW3//+93X8+HFjuz/84Q+64447Ov3cAAAAAAAAAAwMhIQAABiG+iMktHLLFiOw8vjEidp54IAmPvus7rrnHtk8npj7/Pm114x90nft6nEYp7dDQr01r7aAT+LcuZ3OY/uePcZx/jhtWqfHiBUSWrBihbHv0g8+MC0cZNwDOTlfLTmXmNin5+ntkND58+d75TjNzc3yer1RY+0DGe21BUpKSkoGVJAEPdfS0qKSkpKon3l+fr68Xq+pP+PW1lZ5vV7l5+dHzW3r1q0qLi6OCgldWN0JDVVXV8cNB7Wfz5YtW+TxeEwPBwUCAe3cuVNHjhzpdL6nT5/W008/rauuuko//vGP9eSTT2ru3Ln6f//v/xnb5ObmatSoUbJYLBo1apSmTZsWdYyCggKNGjVK1113ncaMGaPk5GRZLBZdf/31evfddzuc50c/+pEeeOABvfDCC7rssss0evRoHT58WOnp6VHnSU9Pl/TV77A33nhDP/3pT3XzzTfr5ptv1muvvWb8brtwfjabTWlpabr++utlsVj0i1/8Qrt37zZ+PuPHj9fPf/5z3XTTTSooKNCJEyc0bdo03XjjjbJarfrlL3+phx9+WJ9//nncewIAAAAAAACA+QgJAQAwDPVHSMjm9eque+4xQisbios1ZuxYzXr11U73eXbOHGP7vOrqmNu8m53d7yGh3ppXW8Dn4ccf73Qe7+XmGsd5efHiTo8RKySUsWuXse/FuhVNfPZZjbv9dq0tKOize+Dp55+X1WrVu9nZgyokVF1drYqKiksKcrQPX7S0tBjjHo9HDQ0NHToJeTweeTweVVRURI3bbDZVVFR0e7mqVatW6eqrr+7RklGx9q2pqdErr7zS7WMNd62traquro66H9qqoqJCDQ0N/RIYam1tVUNDgyoqKmLOZdu2bXHDQT0JDR0/flyRSKTL82ttbdXx48d1+PBhFRYWqrCwUGVlZUaA51LGXS6XMe5yuTodz8zMVFZWloLBYKdzPXbsmE6fPh01NmXKFI0dO7b7PxgAAAAAAAAA6GeEhAAAGIb6IyS088ABzZw/3wit3P/QQ0ZYqLPt56akGNuv2bYt9jZvvNHvIaHemldbwMdqtep9uz3mNtNmzZLVatWYsWO1+dNPuxUS2nnggP5n0iRZrVbdff/9Ktq/P+Y22Q6Hxowdq3sfeEA2r7dPfvZ51dUaO26c7r7vvj47R1+GhNqWSNq3b1+XQhzNzc1R2zU0NHQ72BOLy+WSzWZTfn5+t8Iku3fv1qxZs3T27NlunzPWvmlpabr88su7fSx8paGhQTabLWZAJy8vT2VlZfJ6vTp69GivhIZaWlp09OhReb3eDsueta+PP/5YRUVFPQoIdRYacrvdamxsVDgc7tHcg8GgduzYoR07dhjdbC513OfzGeM+ny/meDAY1O7du3Xy5Mm480tKStK8efOMrxsaGvSd73xHmZmZPbpeAAAAAAAAAOhPhIQAABiG+isktMFmM0IxVqtVv3v44bjbp+/caWw74YkntH3Pnqjvry8u1u0JCf0eEuqtebUFfMbdfrt+/9hj2lJZGfX9N9euNY4xZ+HCuMfoLCT0wUcfGXNJnDu3Q0Bn+549euSJJ2S1WrUkPb3vgjvLlslqtSrpzTf79B7ry5BQW10sLORyuZSXlxcVOOhtJ06cMP7ZjKWqCAn1joaGBu3atavT0E77KikpUVlZmWpqauT1euNWTU2NysrKOixvFi+U1NbNym6391pI6MIqLS295NDQQLNjxw7ddttt+vWvfy2r1ar//M//1Jo1a8yeFgAAAAAAAAB0CSEhAACGof4KCe08cEC/e/hhI/jy0ttvX3T7pLfeMra/87e/VeLcuZqbkqLJM2ZozNixRsClbUmtBcuXK/Ovf9XOAweUsnq1FixfroceeURWq1UP/OEPWrB8uRYsX660/PwO57J5vcb3Y+2zo67ukue1pbLSON74O++U1WrVzPnzNeHJJ5Xwm99ocmKiEufO1SP/+7/G/pP+9CcV19Ya5451jP+dMkULli/XonXrOlxXWn6+7vztb2W1WvX7xx7TvMWLlbJ6tWYnJ+uuu+/+aimzLvwseuPnnu1wDPqQULywUENDg/Ly8lRdXd0r5+6KkpKSuIGk9PR0jRo1ShaLRS6XS5KUkpIii8Uii8WigoIC/epXv9IVV1yhn/3sZ1Fzj7XvokWL9IMf/EBf+9rXNHr0aI0ePVrvvvtu317kEFVfXy+73a7i4mIVFBRo69atXQr19Ea13Tftl7+TpFAopNLS0j4LCg310BAAAAAAAAAADCaEhAAAGIb6MyT00ttvG+GXDz/5pEv7pG7erKemT9cdd92lMWPH6s7f/lZ/nD5dy7OytGb79qjuRFarVUs3bdLOA9HLeV1YsTrvFO3f3+n2VqtVNo/nkue1vrg45lyKams1b/FiPfz440oYP14J48frkSee0Btr1kSFk3YeOBDzGG310IQJMT/DbU6nkt58U394/HH9Zvx4jRs3Tvc+8ICemT1b6+Ms+dYblfZ/n8WTU6f2+f11YUjIbrfr0KFDxr1+6NAh2e32bo3n5eXFDAm11ebNm6PCQm0dWfpLRUWF8vLy4m7jcrmigj7txxISElRXV6e///3vuvnmmzV69OiL7ksnoUsTCoVUVVUVMzhTXFysgwcPyuPxxF0arDuVn5+vsrIyeTyeLi9hFgqF5PP5VFlZ2S+BIUJDAAAAAAAAAND/CAkBADAMpaSlGaGKonYdayhqMFb7kFBmZqbcbrdxr7vdbiPc09XxTZs2xQ0JtdW2bdsUiUT69dmVvgol5eXlxQ0nxQsJffDBB8ZYamqqLrvsMp0/fz7uvoSEes7n88UNyrS//9o7ceKEmpub5fP55PF44pbP51Nzc3PUsnSXKhgMyufzyeFwEBoCAAAAAAAAgCGCkBAAAMPQ+rw8I1SRU1FhesiDoi6l2u7l11atktvtViAQMO71QCAgt9vdrXGbzRY3HJSdnS23263W1la1tLSooaGhX59fl8t1SZ2Edu/ebYxlZ2fLYrHo5MmTcfclJNR9wWAwbsDGbrfHXTZuIIlEIgoEAvJ4PP0aGnI4HPJ6vQoEAqYE8gAAAAAAAABgqCEkBADAMERIiBoqlVNRYdzL6y8SnOmq6urqmOGgnJwcIxzUpi2w019hj5aWFuXl5UUFeGKJFxJqP5aTkyOLxaIvv/wy7naEhLouEonI6/XGDb9UVlYO6k45hIYAAAAAAAAAYHAiJAQAwDCUZ7cbwYq1xcWmBz0oqqf1wccf/2OpscLCXnk+LgwJxQoHXbh9Xl6eWlpaeuX8F9OVzkW9HRJau3atERI6f/58v13rYBMMBlVaWhq3e1B9fb3Z0+x1hIYAAAAAAAAAYHAgJAQAwDC0x+MxghVvpaebHvSgqJ7Wsuxs414u37u3V56PtpDQxcJB7Z04ccL459bWVvl8vksO0rS0tMjn86mkpKTbS5r1dkiosLBQFotFLS0tKi8v1w033HAJVzb0RCIROZ3OuIEWp9M5bIIsZoWGqqqq5PP5FAwGzf4IAAAAAAAAAGBAIiQEAMAwFD5zxghWzE9NVb7LZXrYgzK3xt1+e7dr3uLFps65qLZWyatXG/fx8VCoV56PvXv3djkcFEtDQ4Py8vKUl5eniooKY7ylpUXNzc1qbm7uECpqbm6Wz+fT0aNHjfGjR48qLy+v2yGh9PR0jRo1ShaLRaNGjVJ6erpyc3Ojxmw2m9LS0nT99dfLYrHoF7/4hXbv3h1z37Y5jh8/Xj//+c910003qaCgoEefzVAUCARkt9vjdg8KBAJmT9NUbaEht9sdt9MSoSEAAAAAAAAA6FuEhAAAGKYyCwuNcEVqbq7pIRXK3MoqK+t2bXM6TZ3z2uJi4x5+5//CLANFS0uLGhoa1NzcbIx5PB4jPOTxeIzx5uZmY7ysrMwYb21tZVmvASwcDquqqipuSMXj8Qyb7kHdEQ6H5ff7+zU0ZLfb5XQ6VV9fr1AvBQoBAAAAAAAAYLAhJAQAwDB12O+P6ia0tabG9KAKRXW18l2uqC5CnkOHzH6kLqqtY1Bzc3NU+KdtvKedi9D/6uvr43YPKi0tlczqPAAAIABJREFUpXtNN5gZGmpsbFQ4HDb7IwAAAAAAAACAfkFICACAYax9N6GUtWtVVFtreviDoi5WRbW1eis93bh31+flmf0oYZgIhUIX7R7k8/noHnSJzAgNlZaWyu12ExoCAAAAAAAAMKQREgIAYBg7HgopJS3NCFu8lZ5uegCEoi5Wqbm5UV2wPm+3pBfQV3w+X9yQicPhYBmrPtIWGnI6nXE7OPVmORwOeb1eBQIBQl8AAAAAAAAAhgxCQgAADHOeQ4eiAhdvpafTUYgakFVUW6tl2dlR9+sej8fsRwhDXCgUksPhiLtslc/nM3uaw0ooFFJ9fX2/hoaqqqrk8/lYRg4AAAAAAADAoEZICAAAqHzv3qjgRcratcqpqDA9FEJRbbW1piZqibH5qakqKisz+9HBEBaJROT1euMGRyorK1maagDo79CQ3W6X0+lUfX093aMAAAAAAAAADCqEhAAAgCRpj8cTFcCYn5qqJZs2aWtNjekBEWr4Vr7L1WF5sfmpqfqoqsrsRwZDWDAYVGlpadyQSH19vdnTRCdCoZB8Pp8qKyv7pctQaWmp3G63GhsbWZoMAAAAAAAAwIBGSAgAABgO+/1KSUvrEMhIWbtWqbm5WldcrJzKSorq01pXXKzV+flKWbu2472YlsYSY+gzXeke5HQ66R40yASDQfl8vrjLxvVmORwOeb1eliYDAAAAAAAAMOAQEgIAAFGOh0LKs9s7hDMoyuzKs9t1nKV90EcCgcBFuwcFAgGzp4lLFIlEFAgE5PF4+i00xNJkAAAAAAAAAAYKQkIAACCmtrBQrM5CFNVflZKWpszCQh32+81+JDBERSIROZ3OuCEPt9vNMlJDVCQSkd/vl9vtjhsS6+2lyQKBgP7+97/r2LFjZn8EAAAAAAAAAIYRQkIAAOCiPm9u1kdVVfqoqkrr8/Ioqk+r7V4jGIS+FggEZLfb4wY6WDJqeAmHw/L7/XI6nXHvjUup4uJiJScnKykpSStWrNB7771HlyEAAAAAAAAA/YKQEAAAAIBhJRwOX7R7kMfjoXsQFAqFVF9fr8rKyl4LCS1fvlwzZ85UcXGxbDabkpOTtWHDBtntdrndbqO4/wAAAAAAAAD0NkJCAAAAAIaN+vp6ugehx4LBoDwejxwOR4+7CD377LNas2aNMfbmm29qyZIlxtf5+flKTU3VlClTtGzZMtXU1Jh92QAAAAAAAACGCEJCAAAAAIa8cDisqqqquAEOn89H9xZ0WSQSkd/vl9vtVmlpaZdCQtnZ2Zo0aZIKCgqMsZdeeknLly+P2m7NmjWaOXOmbDabCgsLZbfb5XQ61djYyD0KAAAAAAAAoMcICQEAAAAY0i7WPcjhcCgUCpk9TQxybUuTxVvKLi0tTbNnz47qLDRt2jRt3LgxartXX31Vb7/9dtRYRkaGPvzwQ+Oe9fl83LcAAAAAAAAAuoWQEAAAAIAhqavdg4C+EGtpsrS0NL3yyivG1+np6Zo6daoKCwuj7svp06fr/fffjxrbsGGD5s6dGzW2bds22e12ud1uugwBAAAAAAAAuChCQgAAAACGnIt1D6qsrKQLC/pN29Jkn3zyiRH0KS4u1p///GctWbIk6t7MysrS008/raKiog737dy5c7VhwwYVFBTo7bffVmJiorZu3SqbzaaioiK9/vrrysrKUl1dncLhsNmXDQAAAAAAAGCAISQEAAAAYMgIhUJRnVsuLLvdrvr6erOniWHs008/1apVq7RgwQItXrxYxcXFUffo0qVLNW/evJj3b2ZmphITEzVjxgwtXrxYBQUFUd/Pz8/XpEmTtHDhQq1fv16lpaXyer0KBAJmXzYAAAAAAACAAYCQEAAAAIAhwefzxV1arLKyku4qGDDOnTsn6asuQ4FAQG63W6WlpZozZ45SU1P1wQcfRN2/69at03PPPafExEQtX768w/391ltvKSUlRTNmzIh5/7/zzjvKzMzU3/72N5YlAwAAAAAAAIYpQkIAAAAABjW6B2GoOHv2rGbOnKlFixYpMzPTuIeTkpKUlJSk7Oxs5eXlKTExsUMXoeLiYr3yyiuaNWuWkpOTtXjxYm3atEk2m03bt29XUlKSESKaM2eOVq9eLY/HQ3AOAAAAAAAAGEYICQEAAAAYtOgehKEuEAiooqJCpaWlUV2DlixZ0uF+/9Of/qSNGzfKZrNpw4YNmjlzpoqLi1VYWKitW7cagaF58+Zp3rx52r59u2w2m8rKyrRjxw65XC6zLxcAAAAAAABAHyIkBAAAAGDQoXsQhqNwOKz6+nqVlZV1WHIsOztbU6ZMUVFRkdLT06NCQDabTYWFhVq6dKnmzZsX1aUoPz9fc+bM0euvv67U1FQtXLhQLpdLgUDA7MsFAAAAAAAA0MsICQEAAAAYsM6ePat9+/ZFjdE9CJAikYgCgYDcbrdKS0u1dOlSvfzyy3rvvfe0cOFCFRUVGc9EVlaWZs2apbVr13Z4Xt544w29/PLLxtfJycnasGGDbDabcnNztXHjRnm9XrMvFwAAAAAAAEAvICQEAAAAYMByOByaOHGiDh48SPcgII7XXntNs2fPVmpqatRzsXXrVk2dOlUZGRkdnpmCggJNmTIlqrNQcnKyVqxYYXydnp6uiRMnauHChdq+fbsaGxsViUTMvlwAAAAAAAAAPUBICAAAAMCAVV5ersWLF2vWrFkqLCzsNCDkdDoJLmBY27BhgyorKyV9tSyZ3++X0+nUunXrNHPmzJjPzfr165WYmBg1NmvWLK1Zs8b4esWKFXrxxRdjPnMEhgAAAAAAAIDBhZAQAAAAgAGjpaVF586dM74uLS3V+++/rxdffFFvvPFGzO5BgUDAxBkDA9vRo0f1l7/8Rfv371dpaamys7OVlZUlm82mJUuWKDk52Xietm3bpokTJ2rLli3G2Isvvqh333037hJ/BIYAAAAAAACAwYGQEAAAAADTff7551q7dq3eeustPf/88zp8+LB8Pp/Wrl2rNWvWaMuWLXr66ae1fv16vfHGGyosLKR7ENBFTqdT69evV3Z2tmbNmqVPP/1UDodD77zzjt5++20j7LNs2TLNnj07KjQ0adIk5eXlxQ0JERgCAAAAAAAABgdCQgAAAABMdfz4caWmpurs2bOSpJycHP3lL3+RzWbTunXrtGrVKtlsNqWkpOipp57Sli1b6B4E9MDp06ejwjsHDhzQm2++KafTqby8PD3zzDN6//33jcDPypUro0JD3S2n08mzCgAAAAAAAAwghIQAAAAAmOqTTz5Rdna2JKm+vl7FxcVKTEyUzWbThg0btHz5cqWkpOjdd9/V/PnztXr1amVkZNCpBOgF1dXVWrdunRYvXqySkhI5nU4j5JOUlKSlS5f2OCTUfllAt9tNYAgAAAAAAAAwGSEhAAAAAP3q/Pnz+uKLL4zOQefPn9e+fftUVVVlhArmzp0rm82mrKwsvfjii9q6dasRIFq5cqW+/PJLk68CGNqOHDmiyZMnKyMjQ+vWrbvkoFD7wJDX61UoFDL7EgEAAAAAAIBhh5AQAAAAgH7zxRdfaOXKlUpLS9PMmTP1ySefqL6+Xna73QgRFBYW6tVXX5XNZlNqaqpsNpvC4bBOnz4tp9Np9iUAw4Lf79c777yjgoIC7d+/X263W6Wlpb0WFrLZbCotLVV9fb3C4bDZlwsAAAAAAAAMC4SEAAAAAPSblStXGksO+Xw+TZs2TStXrowKDmRmZmrZsmXatWuX0tPTtWLFCpNnDaBNKBSSx+Pp9cCQ0+lUY2Oj2ZcHAAAAAAAADGmEhAAAAAD0m+TkZH322WcKBAKy2+3asGGDpkyZopycHCMskJqaqo0bNyolJUVr1qzRqVOnzJ42gBj6IjBkt9vldrtZjgwAAAAAAADoA4SEAAAAAPSbDRs2aPHixVGhgAULFmjBggVGQODdd9/VzJkzWVoMGERCoZDcbnfU0oGXWg6HQ42NjYpEImZfHgAAAAAAADAkEBICAAAA0OtOnTql5ORkffnll8ZYMBjUli1bNGnSJGVmZhpBgC1btmjq1KlyOBwKh8Nyu91R+wEYXAKBQK8Ghtq6C4XDYbMvDQAAAAAAABjUCAkBAAAA6HW7du3Sq6++qhUrVigSicjr9Rov/BctWqTExERt377dGJs1a5bOnz9v9rQB9LJAICCn09lr3YWqqqrU2Nho9mUBAAAAAAAAgxIhIQAAAAC9LjMzUy0tLXrhhReUlpYW9ZK/uLhY8+fP1/PPP6/c3FyVl5frgw8+MHvKAPpQJBKR3++Xw+HolbBQaWmpfD4fS5EBAAAAAAAA3UBICAAAAECvO3v2rHw+nzZu3Kinn35aW7Zs6fCSv6CgQB988IHKysroIgQMI+FwWD6fT6Wlpb2yFJnX62UpMgAAAAAAAKALCAkBAAAA6FXhcDiqW8gbb7yhP//5zyouLjY6gASDQbOnCWAACAaDcrvdstvtlxwYcrvdhIUAAAAAAACAOAgJAQAAAOgVZ86ckd1u7/Cyv7CwUM8995zeeecdffzxx2poaDB7qgAGmN5cjoywEAAAAAAAABAbISEAAAAAlywSiai4uFgvvfRSzJf2mzdv1tNPP62cnBxFIhGzpwtgAAuFQvJ4PJfcXYiwEAAAAAAAABCNkBAAAACASxIMBmW327Vq1Sq99dZbHV7UO51ObdiwQbW1tWZPFcAg0tZdqLS0tMdBIbvdLp/PRzgRAAAAAAAAECEhAAAAAD106tQpbdy4UevWrdOWLVv05ptvatWqVVEv5+vr6yVJ586dM3m2AAazYDAot9vd47BQaWmpGhsbzb4MAAAAAAAAwFSEhAAAAABc1L59+7RkyRLNnz9f+/btUzgc1kcffaQVK1YoOTlZs2fP1qRJk/Tcc8/p1Vdf1cqVK+VyucyeNoAhJhwOy+1293gpsqqqKoVCIbMvAwAAAAAAADAFISEAAAAAce3evVvbt2/X+fPnVVFRoenTp6uoqKjDy/fExETl5eVp586d+uijj1RdXW321AEMUZFIRD6fr0dhofZdzgAAAAAAAIDhhJAQAAAAgLjeeOMNBQIBRSIReb1ePf/888rKyop66V5QUKDnnntOwWDQ7OkCGEYuJSxUVVWlSCRi9iUAAAAAAAAA/YaQEAAAAIC4mpqa9Nlnn8nhcKi4uFizZ8+O2Ulo2bJlZk8VwDDV07CQ3W5XIBAwe/oAAAAAAABAvyAkBAAAACAuv99vvHhPT0/XokWLol6y19fXKxgMyuv1mj1VAMNcW1iou12F/H6/2VMHAAAAAAAA+hwhIQAAAAAxRSIRud3uDi/TU1JSVFRUpNLSUoVCIbOnCQAdhMNhOZ3ObgWF3G632dMGAAAAAAAA+hQhIQAAAAAdhEIhORyOTl+mr1y5UrW1tWZPEwDiCgaDKi0t7XJQyOl0KhKJmD1tAAAAAAAAoE8QEgIAAAAQpb6+vtMX6Ha7XX6/X/n5+fL5fGZPFQAuKhKJyOPx0FEIAAAAAAAAwx4hIQAAAACSOl9erK0cDgfLiwEYtLrTVYigEAAAAAAAAIYiQkIAAAAALrq8mNvtZgkeAINeJBJRZWVll4JCdEsDAAAAAADAUENICAAAABjmAoGA7HZ7p8uLBQIBs6cIAL2qq8uP0T0NAAAAAAAAQwkhIQAAAGAY83q9cZcXC4fDZk8RAPqE3++/aEjI4XCYPU0AAAAAAACg1xASAgAAAIahSCSiqqoqlhcDMKx1JSjEsmMAAAAAAAAYKggJAQAAAMNMMBjsdHkxm80mv99v9hQBoN9cbOkxu91OaBIAAAAAAABDAiEhAAAAYBipr6/v9EV4aWmpQqGQ2VMEgH7ncDjiBoUITwIAAAAAAGAoICQEAAAADAORSEROp7PTF+BOp5NOGQCGrXA4HDck5HA4zJ4iAAAAAAAAcMkICQEAAABDXCgUitslw+fzmT1FADCd2+2OGxQKh8NmTxEAAAAAAAC4JISEAAAAgCEsEAjIbrfHfOFtt9sVDAbNniIADAgX6ybE70sAAAAAAAAMdoSEAAAAgCGqvr4+7tI5dMUAgGilpaV0XQMAAAAAAMCQRUgIAAAAGGIikUjcZXPcbrfZUwSAAamyspKQEAAAAAAAAIYsQkIAAADAEBIOh+VwODp9ye33+82eIgAMWISEAAAAAAAAMJQREgIAAACGiGAwKLvdHvPltt1uVygUMnuKADCgERICAAAAAADAUEZICAAAABgC/H5/py+2HQ6HIpGI2VMEgAEtEol0+nuUkBAAAAAAAACGAkJCAAAAwCDndrs7fantdrvNnh4ADArxwpY2m41ubAAAAAAAABj0CAkBAAAAg1QkEpHD4ej0hXZ9fb3ZUwSAQSPe79PS0lKzpwcAAAAAAABcMkJCAAAAwCAUCoVkt9tjvsy22+0KBoNmTxEABo36+vq4XYQ8Ho/ZUwQAAAAAAAAuGSEhAAAAYJDx+/2dBoQcDofC4bDZUwSAQSMcDnf6O7WtCF4CAAAAAABgKCAkBAAAAAwi8bpduN1uRSIRs6cIAIPGxZZttNlsqqysNHuaAAAAAAAAQK8gJAQAAAAMEm63u9OX2D6fz+zpAcCg43Q64waEbDYb3dkAAAAAAAAwZBASAgAAAAa4eJ0u7Ha7/H6/2VMEgEEnXvCSACYAAAAAAACGIkJCAAAAwAAWCoVUWlraaUAoFAqZPUUAGHS6EhAqLS1lCUcAAAAAAAAMKYSEAAAAgAEqGAzKbrfHfHntcDh4eQ0APdCVgBAhTAAAAAAAAAxFhIQAAACAAcjv93f68trpdBIQAoAe6EpAyGazKRAImD1VAAAAAAAAoNcREgIAAAAGmHgvsT0ej9nTA4BBJxKJqKqqqksBofr6erOnCwAAAAAAAPQJQkIAAADAABGJROR0Ojt9ce33+82eIgAMOpFIRA6Ho0sBIbfbbfZ0AQAAAAAAgD5DSAgAAAAYAOK9xLbb7QqFQmZPEQAGnVAoJLvdTkAIAAAAAAAAECEhAAAAwHTxXmI7HA4CQgDQA4FAgIAQAAAAAAAA0A4hIQAAAMBE8V5iV1ZWKhKJmD1FABh0/H5/l8JBBIQAAAAAAAAwnBASAgAAAEwS7yU2L60BoGfcbneXA0J+v9/s6QIAAAAAAAD9hpAQAAAAYIJ4L7Hr6+vNnh4ADDqRSISAEAAAAAAAABAHISEAAACgH0UiETmdzpgvrO12Oy+tAaAHIpGIHA5Hl8JBdrtdwWDQ7CkPOS6Xy6iTJ08a4z6fr0/Hjxw5oqampj6+OgAAAAAAgKGBkBAAAMAQEQwG1dTUpIMHD0a9qKMGVhUXFys3N7dDbd26Vbt37zZ9fhergwcPqqmpiReyGHbqGxtV39ioPV6vPq6qogZYZRcUaG1m5kVr/Ycfascnn5g+387Ke+iQ6hsb9Xlzs9m3fJedP39eLS0tysjIMOrw4cMKhUIKhUIqKirql/H8/Hy1traa/XEAAAAAAAAMaISEAAAABrGDBw/K4XAoKysr6uUcRfVHZWVlyeFw6ODBg2Y/CkCvC585oz1erzKLipSSlqb5qakU1a+VkpamPLtd3kOHzH4cOnXmzBkdO3ZMwWDQtAoEAqqpqdHmzZu7HGBdsmSJLBaLampqurT91KlTdc011+iaa665hE8LAAAAAADAfISEgAGu7f/UpysE1Vfl8XiM+6x9234AA9uRI0eUm5trekiEotoqNzeXsBCGjD1er95JTzc9JEJRbfXehx/q8ABbjrKpqUkZGV919TEzJNS+IpFIl+Z+ww03aMSIEZo2bVqXrzc5OZmQEAAAAAAAGPQICQEDTGtrqzwejz7++GPTX/ZRw7Py8/PlcrkUDAbNfhwAxNDa2qodO3bEfH43b96swsJClZSUqLy8nKL6pEpKSlRYWKjNmzfHvA937NjBci8YtD5vbtZ7H34YM6SRsm6dlmzapNTcXK0tLqaoPqll2dlasmmTklevjnkfbsjLU/jMGbMfFUmSx+NRRkaGAoGA6eGg7oSEnE6nbrvtNo0ZM0bf/va3daaLnychIQAAAAAAMBQQEgIGiNbWVrlcLpaLoQZUORwOugsBA0gwGOzQPSgzM1Pl5eUD6v/ip4ZPHT58WOXl5crMzIy6L7OyshQMEjbF4HLY7++wrFjKunXauGuX8l0u7TxwgKL6tbbW1GjV9u0dAkPvffihPm9u7pPn4PTp013edu/evcrIyDD9b1Fb+f1+NTY2XnTe06dP19q1a5WRkSGLxaJNmzbF/BymTJmiq666Sj/5yU80ceJEJSUldQgJZWVl6ZZbbpHVatWtt96qhIQE7d+/3/h+SkqKLBaLLBaLCgoKdOutt+qKK67QLbfcooaGBuXm5uraa6/VlVdeqcmTJ+vcuXNd/vwBAAAAAAB6gpAQMAA0NTV1Gg7aunUrXSGoPq2ysjIVFhaqsLCw07CQy+Uy+zEBhr1gMNjhb0V5efmA+r/3qeFbgUBA5eXlHYJCTU1NZj86QJfs8XiiQhjJq1drbXGximprTQ+KUFRRba1Wbd8eHWBLS+uToNDOnTuVmZmpzMxM2e122e127du3T/v27VMgEFAgEFBra6s+++wzVVRU6Pjx46b/DWqrtr9D8Zw5c0bf//731dLSonA4rCuvvFLjxo3rsF1iYqJGjhypuro6SVJVVZWuvvrqDiGhBx98MCpktGzZMl177bUKh8PGmMvlksVi0R133KGDBw/qs88+049//GPdfPPNeuaZZ3Ts2DHt3LlTI0aMUHZ29iX89AAAAAAAAC6OkBBgMp/P1yGQsXnzZrlcLvn9ftP/Qys1vCoQCMjj8aikpCRmVyGWjwHMcfLkyaiAUGZmpnw+n+m/Myjqwjp8+HBUVyE6CmEw+Ly5OaqDUPLq1dpaU2N6MISiLqwshyOqq1BKWlqvLz0WCASMkFBXqqmpyfS/PW3VlZBQVlaWnnjiCePriRMnasSIETpy5Igx1tLSossvv1yzZs2K2nfChAkdQkJ+vz+q+8/x48dlsVhUXl5ujLWFhDIzM42xOXPmaMSIETp+/LgxNmrUqA7nBAAAAAAA6G2EhAATORyOmOEgs//jKkUFg0H5fL4O3YXy8/MJCgH9rLW1Vfn5+VEBIZYWowZy+f1+bd68mb8dGBTCZ85EBYTe2riR7kHUgK6tNTVRQaH3PvywV4NC58+f73JAyGazqbm52fS/O23lcrlks9niXl9CQoL++te/Gl9/+umnslgseuWVV4yxPXv2yGKxKC0tLWrfefPmdQgJ1dbWasKECbrxxhs1evRo3XTTTbJYLNqyZYuxTVtIqLq62hhLSUnRyJEjo4512223adKkSV39UQEAAAAAAPQIISHAJBd2ENq6dStLxlADssrKyqLu1Y8//tjsxwcYVvbu3UtAiBp0dWFHIYfDYfajBMSUZ7dHdRDKd7lMD4FQ1MUqp6Iiaumxj6qqevW5+Otf/xo3HJSdna3Gxkbj31HM/pvTviKRSKfX5ff79c1vflOjR4+Oqq9//eu67rrrjO06Cwm9/PLLUSGhlpYWffe739Wjjz6q06dPS5LC4bAsFotycnKM7dpCQu2XcE5JSdH3vve9qOPfdtttmjhxYk9+ZAAAAAAAAF1GSAgwQVNTU1TooqSkxPT/mEpR8crlckXds7t37zb7MQKGhZMnT0Y9e3SbowZTeTyeqPv35MmTZj9SQJTDfn9U0CKnosL08AdFdbU27trV68uOffbZZxcNCGVmZurQoUOSpCNHjigjI2NABZjjhYQWLFig119/vcP4woULZbFYVFJSIukfy43NnDkzarsLlxurqqqSxWLRtm3bjLG25cYICQEAAAAAgIGKkBBggtzcXDoIUYOuLuwo1NTUZPajBAx57ZelLCwsNP33AEV1t9ovW0k3IQw0G/LyjJBFam6u6aEPiupupaxbd8ndhI4dO6aKigrl5OR0aYmxtoCQ9I8ws8fjMf3vTSAQ0CeffKJQ6P+zd+9BUd13/8A303mSZjpPOpPJZDq286RpmrSdzDhNm4ZpfmnaTI8oIkSjQaNR02i93yJGMYoooqjEO6JEwSsoIIKIy2WRi0hWXBSENSyrGy6KkQVWgxCUjbx/f+Ce7LIXFtjlLPh+zXzmeXL2XL57OBfq983322L3u77++us2/zdMQ0MD/ud//gfTpk0TlwUGBuLFF1+EVqsF0BUIeu655yxCQgaDAb/4xS8wa9YsPHr0CACwfft2hoSIiIiIiIiIyKMxJEQ0wLpPG8OAEGswlUKhEK/fnJwcqW8noiEvKSlJvOd0Op3kzwDWE1TNzTA0N8HQ1IjmJj0MTY1d/93c3Kv9dJ9etaOjQ+rbiggAcK+lxWIUIU4zxhrY0iJXW4VzWg3OVWm6/q+2Cue02l7tx3zasd1xcU5f/62trSgtLUV6erpVCOjChQuorq7GtWvXHAaEzPfV1tYmPvNVKhVUKpXF7y0DsTwlJUWc+qy75uZm/PWvf8Wzzz6L//f//p/V515eXnj22WfxzDPPiJ8/ePAA8+fPx/PPP48//OEPCAgIwPLly/H000/Dy8sLNTU1AICMjAwMHz4cr7zyCkaMGIHw8HDIZDK89tpr2LdvH06fPo3hw4dDJpNh+PDhUCgUCA0Nxf/93/+J+7p//z5GjhyJ//3f/8WLL76IqVOnOv2zJCIiIiIiIiLqLYaEiAZQR0eHRYcvp41hDbaqr6/naEJEA8Q0hUd8fDxOnTol+f3PekKquRmG5q5gkL0yNDf2Kix05swZ8Vq+efOm1LcWEQDgqkYjhiv2JCd7QGiE9USUtgq5pmCQvdJqehUWCo+JEa/lO01Ndq/5jo4OaLVaZGdnW4V/srKyoNVqLYKc9+/f7zEgZK6zsxNlZWXi876srAxGoxFGo3FAlhcUFPAdQ0RERERERETkBIaEiAaQ+V/Ts8OXNfD106gQXR28TTA0N6G5l6NC5OfVkcf8AAAgAElEQVTnc+oYogFw+fJl8V4rKirygGcIa8hXc5ONQFDTT+8LW585sd/i4mK+N8jjJGZmisGKY7m50odHWEO/tFU2AkFVP5Wtz5zYb/Tp03anHOvo6EB1dTUuXLhgFQxKT09HaWkpWltb7d4nZ86ccSogREREREREREREgwdDQkQDSKlUip1kpaWl0ncGsp6MstGx29eOXoPBgJqaGvE6TkpKkvq2IhqycnJyONUYa+DKzrvCfJ2+vj/MQ9KcqpI8xZG0NDFYkXLpkvQBEtbQLlshoCoNcq9fF8v2qEI9jyiUpFSK13JiZiYA4NatW7h06RJSUlIsgkEpKSkoLi7G3bt3nbpPvv32W6jVanfeikRERERERERENMAYEiIaQOZTjdXU1EjfIcga+tXUfcqYRrujQhiaG50eVejUqVPitWwwGKS+tYiGJIaEWANVzc3N9kOk5uvZC5v28O4wD5fK5XKpby0iABBDFWHR0dIHSFhDu7Rau1OL9RgSqtL0uP+US5fEazkqPt4qGJSYmIji4mLcunWr1/dJZ2enG+4+IiIiIiIiIiKSEkNCRAPI1EFmClawWG4tq4DQ45CQ6XMbncKG5kan9m0+5ZhOp5P61iIaksyDpXq93j3PCTfVjh07IAiCRZWVlUneLpbtarb5vnA+JOTMaELmvwMReQJXhYQOpKVZPe9M5T9unMNtPwgIsNpm7PjxkgRZzpaXY+qMGRg7fjziXDz92pHsbKvvuXrLlgHfx0DXQbkcS9eswYcffQQfX1/4+vlh4pQpmL8sEFv2f4XU4mLnQkI9TDtmHhLaGhMjBoPy8vJQXV2Njo4OqW83IiIiIiIiIiLyIAwJEQ2QhoYGsXMsMzNT8g5B1hAvu1OMOQ4JNTfpYWjqOShUXFwsXs/l5eVS315EQ9JgDpZeuHABhw8fxubNmxkSclPV19cjOjoa0dHR/Z7C1OF0lH1Yz1YxJESexlUhoVMXLyIsMhIrwsIsgj5hkZHY/NVXDreNiIlBWGQkPggIgK+fH8IiI7HlwAFJAi2RCQli+1du3OjSfaeqVNgYFYWNUVHw9fPrU8DHFfsYqMqqrMTS4GAIgoCPpk/H2u3bsPVgLMJ278LHn/5HPM8b9+xxKiSUq+15NCHz61mr1aK1tVXqW4yIiIiIiIiIiDwUQ0JEA4Qhof5XcnIy5syZgzFjxsDHxweTJ0/GunXrcO3aNcnb1t/KysqCv78/tmzZ4pL92e/I7Tkk1DUqhOOpYxgSInK/wRwSMlVhYSFDQm4qnU4nntvU1NS+78vsXWA+HaVYFutaf+7slGMMCZGncfV0YwqNBv7jxkEQBIzw9kaqSuXUdullZRg5ciSWrlkjabAlVaXC2PHjMXLUKMScOeO244wdP77fAR9X7MNdpaiqwvzPP4cgCAjZtg053UcE0lZhwfLlXSGhqG4hocefW5S4rdbhcc2vZyIiIiIiIiIiIkcYEiIaIAwJ9a8OHz4MQRAwc+ZM5OTk4NKlS9i7dy8EQcDZs2clb5+9OnHiBARBwPz58x2ut2HDBgiCAD8/v/4f10H4x/mQkOOpYxgSInI/hoRYjspVIaFms6BPn7YXQ0KO3xsMCZGncXVI6Nz16wh6/PtcVwAkyqltImJiIAgCYs+elT7gotEgQ6126zGGekhoy4EDEAQBcz77rGuZKeij1YhhoBP5+Rjz/vuIOHDAIiRkqxgSIiIiIiIiIiIiV2NIiGiAMCTUvxr/uDPg/PnzFssjIiJw8eJFydtnr5wNCV27dg1r165Fenp6v4/Z3NT4UyDI4agQzQ5HhXB0DIaEiNyPISGWo2JIqG8qKirEamhoEJc3NDS4fbn5f5P03BESOpKVJd6XUz75xKlt/jNnDj748EPk9BACGSo1lENCGWo1xrz/PgRBwJHs7K7lNkJCvamhFhLq6OiATqdDVVUVqqqqLD6rq6tDU1MT2traJGodEREREREREdGTgSEhogHCkFDf6/bt22KHi1arlbw9vSlnQ0KuLFNIqKfRgGyW+bQzDtZjSIjI/RgSYjkqT5turKdpKl0dEnr06FGv1u/s7ERbWxtOnToltkOlUqGlpQUtLS1QqVQDslwul6Ojo8Ml58CVFixYgJdeegkvvfSSxfIDBw5g2LBhaGlpcctxS0tLsX79erfsuyfuCAmdu34dH370kXhvnjh/3uG6yUqlR4Zd3FlDOSS0+/hxCIIA/3Hjfgp9WUwZZj2dmKdON9bbZ2x3HR0dqKurQ2lpKUpLS8XlTU1NSEtLE8ucveVNTU29Pn5/nl22tpXyWUVERERERERE5GoMCRENEIaE+l43b94UO1t0Op3k7elNMSRERH01WEJChYWFWL58OcaOHYvRo0dj+vTp2Lt3L+rr6+2GhO7cuSMuN1VgYCAMBgNUKhVWrVqFCRMmiJ+NHz/e6rg1NTXYu3cvZs6cCT8/P/j4+GDKlCkIDw9HeXm51foXL160Oubu3bvR0NCA2NhYcT9jxozBnDlzkJSUhOYegi+9bUNubq5VG7oHfI4ePWq1jvm7z9b36F5jx47t5XvD3hSV+j6tZ6tcHRK6cuUK8vLyoNfre1z3/v37uHfvnuT3ikajwalTpzx2RKHw8HCrkNDly5cRFBSEH3/80S3HPHjwIJ555hm37Lsn7goJrd2+XbwXgyMiHK4bunMnBEHA8fx8i+WKqipEnzqFwJAQTJo6FT6+vvAeORJjJ0zAvGXL8FVqqs39ZX3zjdXzYNaiRTh3/TqO5eRg/uef4/0PPhA/8x83zuE23auv7XIU8Nl+5Aim/fe/8PXzg4+vL6bOnImtBw86HFnJ2ZBQ2pUrWL1li9hWn9GjETB5MpatXWt1zl1RC1asgCAImLFggcXy7GtqZJRf/SnwY1Y2Rw2yVT0c29Uhod48Y21pa2tDWloa5HI5Ll26ZPWZLd9//z2amposQkEdHR3iftRqtdPH78+zy9a2Uj6riIiIiIiIiIhcjSEhogHS15BQcHBwj52BgiBgx44dVtvq9XrEx8dj7ty5Yufl5MmTsXHjRlRUVFh1XNnqlLxy5QqCgoIwbtw4cXlsbKy4XWNjIxISErBgwQL4+/uLx9i8eTM0Gk2/O9Mcfedt27b1qd3l5eXYu3cv5s2bB39/f3h7e2P8+PFYvnw5cnNzHbapsbERJ06cEL/vyJEj8eGHHyIwMBBHjx5FdXU1DAYDMjMzHbZ9xowZDs+7vWM7c66bmxpR+Y3aer83ruPiRSU+++wz+Pn5wc/PD4GBgbhcouJ0Y0QeaDCEhGJjY8VnzKRJk7B+/XqEhoZi4sSJ+PTTT5FlNvWOeUiooaEBU6ZMwZQpU+Dr6yuGhHJycuDj44PRo0cjICDAbkjo/PnzeP/xlC6LFy/GsWPHkJiYiPXr18Pb2xve3t6Ii4uz2ObGjRuIjY1FbGws/Pz8IAgCtm7dirlz52LMmDFYuXIlNm7ciDlz5ojHDQoKgl5v+3nYlzZoNBrExsYiKirKbkhIpVIhNjYWa9eutfleMH0P830EBweL3y02NhbHjh3r1c/xp2kq+xoSauzxGO4ICSUmJiIxMdFhR7bp2J4UMvbEkYQA2yEhdxuKIaGkoiLx3vwgIMBh2GXSxx9jso1pyVZu3CjuY96yZdgUHY3NX32FwJAQjBw1CoIgYEVYmM2Q0IRJkzBh0iT4jB4tBn6iT53CyFGjMMrHB2PNApj+48ZBUVWFsMhIhEVGYuLHHzsMCfW1XfYCPoEhIfDx9cXcwEAEhoRg6syZ4v7nLl2K7MrKPoeEYs6cge/jZ/38ZcsQERODiJgYLAoKwogRIzBixAhsctMoUkvXrEGGWo11O3YgYPJk8Tv5+vlh/ufLcCw7q1choVxtlSQhIWeesSYdHR0oLS21eL59//33LmnLd999hytXrliFjQYSQ0JERERERERENJQwJEQ0QPoTEvr888+Rm5trVevWrYMgCPD29sbFixcttrt58ybmz58PQRAQFhaGc+fOoaioCLGxsRgzZgx8fHyQkZEhrl9TU4P169cjJCRE/IfsrKws+Pn5YdGiRQgODhZHdTCFbW7evIkFCxaIHZT5+fm4dOkSjh49Cn9/f/j6+iI7O7vPnWjfffcdcnNzIZfLxTalpaWJ37+8vLxP7Z42bRoEQcDatWuRl5eHixcv4tSpU5g+fToEQUBMTIzN9tTV1YnndPXq1eK2ycnJ4j7HjRsHg8GA6upq5ObmYuvWrRAEAZ988onFz06pVNr9jrY6Mntzrpubm1D97Q2Ehq5DyJo14n4z5Gfh7++PwMBABAUF4YPHf0k+ZswYVGm+6VWHL0NCRO7n6SGh7Oxs8fmyYcMGizBNQ0MDNmzYID4bu4eEzGv58uUQBAFz5sxBQEAAjh8/joaGBhgMXaFOf39/i5BQWVkZfHx8IAgC9uzZY7U/hUKBESNG2AzgmMoUQPLx8cGnn36KGzduWHyenJzsMITb3zY4M1XY2bNnHb4XXDbdmMGAZrNR5PoUEuphxCWDwb0hIUcd2abfvzwpJPTDDz/Y/V4PHjzAvHnz8Pzzz+O1115DQEAAli9fjqeffhpeXl6oqalBREQEZDIZZDKZGEp+5plnIJPJUFFRgaSkJPzjH/+AIAh499134ePjg2+++cbucf70pz9h9uzZCAkJsQgJxcXFYfjw4eJ+TTo7OxEeHo433ngD7733Ht5++21ERkais7MTACzal5GRgX/961949tln8cYbb+DKlSvifrZv347f/e53eOqpp+Dl5QUvLy/s27cPAFBQUIB3331X/A7+/v4oKirq8/Vii7tCQueuX7cIuxyUy22uE3fuHARBwMaoKKvPlq9f3xVkPHjQ6rMT58/D53G4csfRo3bbMOezzyAIAqbOnImxEyZgy4EDyPrmG5y7fh0J58/D188P/uPG2dzGXkjIFe0yBXwCpkzBR9OnI1Wlsvh8++HD4rn7YtOmPoWEjufni6ElW22NSkwUj7H35EmX/MyzvvlGfO7PX7YMH06ejNG+vgjZuhX7Tp7ErmNHMffx+R0xYgS27P/K+ZGEnDi+O0NCPYWFvv/+e8jlcsjl8j5NDdYX3333nd3PbD27nH0u2drW0bOKiIiIiIiIiGgwYkiIaID0JyS0adMmq+Xl5eXi6Au2Qi1ffPGF3c7N8+fPi+EQrVZr8Zn51F4ff/wxLly4IH5248YN+Pr6imGblStXimGb7sdQKpUQBAGjR4/G1atX+9WZ5sx0Y71p97Rp0xASEmJzH5MmTYIgCDbbvOLxFAK2tq2pqcGECRPg7+9vsdzZ6cZ6+o69Pdemjtu62mpxv9OnT+8aNejxdtXffospU7r+unn3rp2WncI9dPgyJETkfp4cEmpubsbHj0ecmDhxohjqMa+GhgbxmepMSEgQBBw4cMDq8y1btliEhObOnQtBEDBlyhQ0NdmeVtE0Co+/vz9u3rxp9bn5KEWlpaUO9+Ht7W01Ml5/2+BpISGDwWAxklxvQkLOTm05ECEhWx3ZnhYS0uv1qKurszua0NKlS/Hiiy9Cq9UCAEpKSvDcc89ZjfBTUVEBmUyGf//73+K7f/jw4aioqMDEiRORkJAgrrtnzx68/PLLaG9vd3icYcOG2T2OeUho5cqVePXVV9Hc3AwAuHPnDoYNG4bt27dbbefj4wOtVovGxka888478PLysti/rdE5Ojo68Mtf/hIKhUJctnjxYqxatcrmOesrd4aENn/1lXh/BoaE2Fxn5caNGDFihFVIxhTG+fCjj+zuP+RxCH2KjVGIugd+BEFA6K5d1scIDe1TSKi/7TIFfARBwPG8PJvrLH78e+8Ib28kK5W9DglN++9/IQgC/jNnTo/nJ2DyZIejPTlbqSqV+L0EQYCPr6/F98vVVuFclQbBW7b89M47ndpzSMiJUYQGKiRkLyz03XffQaFQuGzkoJ6YpjIzfy51Z+vZ5exzyda2HEmIiIiIiIiIiIYShoSIBkhfQ0KnT5+GXC63WHbnzh18+umnEAQBn332mVUH5cWLF8WOTVudowaDAbNnz4YgCNi5c6fFcvOwypYtW6y2S0pKglKpFIMpgiBArVbbPEZgYKA46k5/OtR6GxJy1G7T/19eXm5zP9u2bev6q+K9ey2Wf/311z1+3507d7olJNSnc/24s9c8JLR9+zbLEYKamxG9by8EQcCCBfN/6vB1YtoYhoSI3M+TQ0JFZtPpREZG2l0vMjLS6ZDQyJEjbb6zmpubxffc5cuXxf1FRUXZPe65xyN0CIJgNeWXwfBTSGjmzJl295Gfny/uIzo6WlzuijZ4ZEjI7N1hFRp9XH0NCBkMliEhex3PvamEhASn1ktKSkJtba3k94z5zy0+Ph4NDQ1W93xbWxueeeYZBAUFWSyfOnWq3fBOXFycuKyhoQEPHz5EfX09Hj16JC6/d+8eZDIZiouL+3wcU2f5/fv38fOf/xwREREW6y1duhTDhg2z2u7EiRPisujoaDz99NPiiEOA7Y53vV4PmUyGPXv2WCwzBZpcxZ0hobQrVzDC2xuC0DXFVFa3abMUVVUYO348ZixYYHN7eXk5zl69anf/e0+eFO9/eXm5wxCM98iRNveVo9VCUVVlcxt7ISFXtMsU8LE1zZqpDqSliftZt2NHr0JCcbm54rYRMTF2j/Gl2XSZhzMz+/0zT3j8Rximshlg0mqQpa7odg60P1UfA0LdQ0KJiYlQq9Xita5Wq8VnorPLnXnGOjMNmbtUVFRALpc7/NxeSKin5xJDQkREREREREQ01DEkRDRA+hoSslVbHv8F6gcffGA1RYrBYMCOHTu6/nr2P//BnTt3bFZYWBgEQcCMGTMstjUPqxQUFNhtg+kYAQEBdtc5dOhQ11/S+vjYHGXC2eptSMhRu22VXq8Xz0vs4w6D4OBgi3W2b9/e4/e9ceOG1bFdERLq87lubrQICRWeL7AKCZ0+nQJBEDD14497NW0MQ0JE7ufJIaFYs85V86kru1d6errTIaFPP/20x+MeNpuGxtFxq6t/evZ98cUXVp+bQkIbNmywu49bt26J+/jss89c2gaPDQkZuqasNDQ32p9arEnf9XkvAkIGg3QhocTERNTU1Eh+z5j/3OyFhK5evQqZTIaDBw9aLA8NDbUb3rl8+bLVfiorKzF16lS8+eab8PLywltvvQWZTIbU1NQ+H8fUWV5cXAyZTIZXX31VnHbHy8sLr7/+On7zm9/g/v37dtuXnJwMmUyG1tZWcZm9jvdVq1bhZz/7GV555RUEBQXh2rVrVuv0lztDQueuX8esxYvFe3RPQoLFZ/tPn+4KcB850uN+FFVVSLt8GSe//hpJRUVIKirCzrg4cd9JRUUOQ0IfTZ/udJt7Cgm5ol2mgMzS4GC7+z5bXi7ux1aQylFIaGNUlLjt7uPHxbZ1L/NpzWxN+dbbOlFQYBESOpqdbXtdbRWWh4aK6yUU5FuFg3K1Gpzr5ehGUoSEEhMTxfDhQNNoNEhLS7P7uaOQUE/PJYaEiIiIiIiIiGioY0iIaIC4KiSUmZkp/qPyuXPnbK5jGlXGmRozZozFtuZhlWvXrtlth+kYCxYssLuOM53DzlRvQ0KO2m0wGHD79m3ExMTgv//9L3x8fGyel+XLl/f6+9oqV4SE+nOub9bViMvVFeVdISFxVIgmZGVlQBAETJo0yalpxkzFkBCR+3lySGjTpk3is6W4uNjueuaj8fQUEjIP4tirzZs3O3Vcg8EA78ejeNgKH5lCQt1H0+teY8aM6QpSTp3q0jZ4ckhIrOZmNDd1Dws1Ov2e6F7m17Ner+93FRUVOey4zs7OxvXr16HX6/H9999Lfs+YqqamBtnZ2TAYDFb3vL3wzrp165yaBgzoGiXoV7/6FaZNm4YHDx4AANrb2yGTyZCSktLv45hCQjExMQ6fX7bal5KSAplMJgaJAMcd77du3cK2bdvw5z//GU899ZTFdGau4O6Q0K74ePEenRsYaPHZklWrMMrHx+5oO+euX0f0qVP478KF8Bk92uHv8sfz8x0GfmbaGa2oryGh/rbLFPBZtXmzw7b4PJ5WOWDy5F6FhD5ft87p/x1kqhVhYf3+eZ96PJKrGCJVq+2uu/XgQXG9HUcOW4aErvdt6jPz61mv11uEXlpbW8Vnp7PLe3rGKpVKcRuNRmMRMnK3jo4OKBQK5Ofn213HUUiop+cSQ0JERERERERENNQxJEQ0QFwREtJqtRg7dmzXXx5v3253vblz50IQBMyePRsXL17sscy3dSaQY36MpUuX2l0nJydH3NfXX3/d5w613oaEHLX71q1b4lRtn3zyCRISEnD+/HnxXGzdutVmSMiZ72urXBES6s+5Nt/vjetaq9EgsrMyfwoJ9aLjlyEhIvfz5JDQ2rVrxWdLaWmp3fUKCwudDgkFBgb2eNx1Zp2/jo5rMPwU8Pnoo4+sPjOFhHbv3u1wH+PGjYMgCJgwYYJL2zAoQkIuLvPr2RWuXLni1PQ3pt+/HP1uMND1ww8/2PxOpmnAVqxYYbHcmWnATEpKSiCTyZCeni4uM003ZgoJ9ec4punGli1bZrGeTqfDokWLHLbPVmf8oUOHxI73zs5OtLW14e7du1AoFBb7nzZtGl5++WW4krtDQhlqtRh0GTlyJNLLyiyWLwwKsrvt6sejhgqCgKkzZiAsMhK74uMRmZCAyIQErHs8yqQzISFnRgVydhtXtMtRwMe8/N5/H4Ig4P0PPujVPhZ/8YXYho1RUWLbHNWxnJx+/7zlZqMfjfD2drhuVGKiRRtdcb2ZX8+uYO8ZW1xcbBEoArru/7S0NJSWlqKjo8Mlx3fku+++g1wux/fff293HVeHhGw9q4iIiIiIiIiIBiuGhIgGSH9DQk1NTViwYEHXP9zPmuVw+i7TyDNz587t9XGcDduYjuEo/CLVSEKO2r13714IgoDx48ejrq7O6nPTNDKeOJJQX861xX5vXLeaQkaRnSWGhHrzvRgSInI/Tw4JmY8k1D1sal69GUnImZDQFrMOakfHNRh+GsWn+7SaBsNPIaEdO3Y43IetkYRc0QZnAj7mz3WGhKx178DuHg4y8cSQkGmEH1sCAwPx4osvQqvVAugK/fz61792OiRkMBjwi1/8ArNmzcKjR48AANu3b7cICdk7znPPPefUcVavXo0XXnhB3LajowMTJkxAeHi4w+1sdcZnZmZCJpOhra0NxcXF+Mtf/oLKykr89re/xb1798T1pkyZgjFjxtg9b33h7pBQ98BKREwMzl2/jl2Pp+SKPnXK5jaHMjLEbRatXGlznVizEOFAhYRc1S5TwOeLTZsctqWvIwmZT+V1xN6UX26qcRMmiMfOcTBd2J6EBHG98H37BkVIyFY4yJxOp0NRUZFLjm1LW1ubRQCpp5COq0NCtp5VRERERERERESDFUNCRAOkvyGh6OhoCELX9GA9Tae14/Ff8Y4dO9buOs3NzUhJSUFubq7FcmfDNqZjBAQE2F3n0KFDEAQBPj4+DkNNPZUrQ0KLFi3q6lRYvdphm7uHhJz5vo2Njaivr0djY6O4zBUhof6c657Oi0KhYEiIyEN5ckgoNjZWfLbI5XK76zkTFu1NSOjIkSPi/jIyMuyu9+2334rrrVq1yupzU0how4YNTj2XzdvmijZUV1eLnyUnJ9vcPtFspAmGhKyZOrDthYNMOjo6kJSU1OOoTwNVpaWlaGlpsdveBw8eYP78+Xj++efxxz/+ETNnzkRwcDB+//vfi+ucPn0aw4cPh0wmw/Dhw7Fw4UKLfWRkZGD48OF45ZVXMGLECISHh0Mmk+G1117Dvn37rI7zhz/8AQEBAVi+fDmefvppeHl5oaamBnFxcRbHiYuLA9A1isaXX36J119/He+88w7eeecdbNq0CZ2dnTbbp1AocPDgQbz22muQyWT429/+hsuXL4s/H19fX/z1r3/FW2+9hYyMDHz//fdYuHAh3nzzTQiCgLfffhuTJ0/GnTt3+nax2DEQIaGvUlPF+/ST2bNx7vp1zF6yBP7jxkGh0djc5guzEGZcbq7HhIRc1S5TwGdpcLDddpy9elXcz38XLuxVSGjj4z8IEAQBkSdODGhIaN6yZeKx0y5ftrteREyMy9vorpBQT+Egc+Yhnrq6Oly6dAk6na5fo+40NTUhPz8faWlpqKurc2obW88uZ59L9p57tp5VRERERERERESDFUNCRAOkPyGhCxcuiKMRpKSkWH2elZWFr776Svzvixcviv/wfOnSJZv7NE0BExUVZbdT1FHYxvwY5eXlNtcxjYBjL5DjbLkjJLRy5Uqbn0dERNgMCZl/X3shLdPoEt988424LCkpCYIgYN68eeKyW7duITMzExqNxqn29+dcMyRENHh5ckhIqVSKz5Zdu3bZXS8yMtKlIaErV6781LEaGWl3PfMpGI8fP271uSkkNHPmTLv7yM3NFfdh/o51RRvu3Lkjfnb48GGb22/bts3h89s8hPQkhoS+++473L1716l1W1tb8eDBAxgMBtTX10OlUkGlUqGiokJs30AsP3PmjDiqkT137961Gmlo3rx58Pb27tf5ImsDERJSVFXB//G0hYIg4Gh2NkZ4eyNowwa72yxZteqnoMmVKzbX2ZecPOAhIVe1yxTwmfzJJ3bbsf/0aXE/63bu7FVIKN7s2d3TaEWzlyzByFGjcCgjwyU/7x1Hj4rHtjdS1Lnr1xEYEvLT8/vSJY8MCen1erS3t/d5+7q6OigUCqSlpUGj0VgsLy0tRVVVFZqamsTlTU1NuHTpEoqKiizCQHV1dcjPz4dOpxuQqcyIiIiIiIiIiJ4EDAkRDZC+hoTq6urEzszQ0FCb6+zfv99qpJpVj/8hf+nSpWhqarL4rKGhAXPnzoWfnx9u3Lhh8ZmzYRuDwYCVK1dCEAQEBwdbfWbqQB49erTdYIuz5cqQUFRUFARBgJ+fH7RarR1Db2cAACAASURBVMVn1dXVGPe4I6d7SMj8+9r6OWg0Gvj7+2Pp0qUWy7Oyuqbzmj59urjM1PGcnZ3tdPv7eq4ZEiIavDw5JGQwGDBt2jQIQtcoZ7ZGi2toaMCkSZNcGhIyGAzi1JuTJ0+2GLnNvEIed8D6+/vj5s2bVp+b3quCINgdYWbNmjUQBAHe3t6oqqpyeRtM58bWaEZNTU2YPHmyw+f3rVu3xM/NRyNSqVSYNm0aoqOjJb9GzMvVIaG+un37ttgOhUIBo9EIo9E4IMsLCgpw8+ZNh+0LCQlBaGio+N91dXV44YUXkJiY6O5T88QZiJDQuevXsSIsTLxXJzy+7486mAYr+HFgXRAExKan217nyy8HPCTkqnaZAj6CIOB4Xp7NdRYGBUEQBIzw9sapixd7FRI6d/06/jNnDgRBwNgJE5D1zTc210lWKjHC2xsfBARAUVXlkp915rVrYtsWrFhhc52Migr4vf8+BEHAnM8+c9l15uqQkKt0nyZMp9PZDA/pdDrk5+dbhYSIiIiIiIiIiMj1GBIiGiB9DQmZwiFjxoxBZmYm8vPzrSosLMwqJHTz5k1x1JzFixcjKysLKpUKZ86cwaxZszBy5EiLaVKam5uRn58vhloEQUB6ejry8/Mt/hK++zFMHaWrV69GQUEBVCoVjh07hvfffx+jR4+2CML0tu7cuWO3TUqlsk/trq2tFTteAwICcOTIEWRlZeHo0aOYOHEixj/+h/25c+ciPz8fV69etfl9g4ODkZ+fj+LiYiQkJGDixImYOHGiVeiqrq4Ovr6+8Pb2RkpKCr7++mvMmzcP48ePx82bNx1+xzt37vT5XNs7L+fPn4fBYMDt27eRn5+P/fv3QxAEjB8/Xvw+zvxsGBIicj9PDwmdO3dOfL6sX7/eIijU0NCADRs2wMfHx+UhoatXr2L06NF2RzHKysrCiBEjHI6wYwoJTZ8+HZ9++qnVs9s0CpwgCNi5c6db2rB58+auTuyxY1FdXW3x2f79+3sMCRkMBvGdZR4IiouLgyAIiIuLk/waMS9PCQl5upycHPzzn//Ee++9B0EQ8Pe//x2xsbFSN2tIGqiQ0NHHgWxTfTh5ssP148yerVNnzMDZq1ctPj+SnY1RZs/WgQoJuapdphDNyFGj8NH06UhVqSw+3/p4Cl1BELBq82aH+7AXEjpRUCC2ZWlwsFUI6OzVq/h4xoyuZ3hcnEt/3pGPpxoWBAFRSUkWnymqqrA0OBiCIMB3zBgkFRUN+ZAQERERERERERF5HoaEiAZIX0JC5tOR9FTdQ0IGgwGNjY1ISkrCggUL4O/vD29vbwQEBCA0NNSqs7axsdHuviMiIuy2sbGxEQkJCZg/fz78/PwwatQoTJ48GZs2bUJlZWW/OhQ1Go3dNk2ZMqXP7a6pqcHWrVsxadIkeHt7w8/PD/Pnz0dycjIOHz5ssY/169c7/L4jR47E5MmTsXXrVnz77bc2j5ebm4vZs2fDx8cH/v7+WLJkCVQqVY/f0Xw6st6ea3vnxcfHBwaDAeXl5TY/nzVrllM/G4aEiNzP00NCBoPB4pkZEBCAtWvXYu3atQgICMD777+P+Ph48fMdO3bg8OHDYsgzISEBhw8fxieffAJBEDBt2jQcPnwYhw8fRlFRkcPjXrhwAe8/Holh4cKFOHLkCE6cOIG1a9dixIgR8Pb2dhiSMYWEdu/ejfDwcPj6+iIoKAgbNmzArFmzxDavWLECer3eLW3QarUYO3YsBEHAxIkTsWvXLuzfvx9Lly7F7NmzcerUKbEd+/btw+HDh63e3Tt37hSDRgcPHsT+/fvh7++PsWPHora2VvLrw7wYEiJPM1AhoXPXr+NDs9Df2h07elw/xGy6Qb/338fS4GAER0RgbmAgRnh7iwEXQeiaUmtjVBQSL1zAuevXERETg41RUZj08cddz+YpU7AxKgobo6JwUC63Opaiqkr83NY2OVptv9uVqlKJ+/P18+t6voaFYerMmfAZPRpzly7F0uBgfPzpp+L2cz77DNmVleKxbe3j03nzsDEqCtsPH7b6XgflcnHEno+mT0fozp2IiInByvBw+D9+9q5z4mfRl9oUHY0R3t4YMWIEFq1cKf5MTOfHf9w4HM7KcukxGRIiIiIiIiIiIiJnMSRENED6OpIQi+WJxZAQkfsNhpCQwdAVllm+fDnGjh0LHx8ffPTRR9i0aRO0Wi0KCwutwoimUW/Mp/zqXrt37+7xuLW1tdi7dy9mzJiBMWPGwMfHB5MnT0Z4eHiP01yah4QMBgOSk5Mxd+5c+Pv7Y8yYMZg9ezYSExPR3NzstjYYDAao1WqsWbMG48ePx6hRozBlyhTs3bsXt2/fxtmzZ63OS1JSksX2DQ0N2L17NyZNmoSRI0fiww8/xBdffGF3BEApiyEh8jQDGRJau2OHeB+f/Pprp7aJPnUKsxYtwhh/f4zw9obf++/jv4sWISopCbE2ng+RCQk4d91yOq/uZWvknaxvvnH4hwgKjabf7TqSnW2zLVmVlQjduROTP/kEPr6+8PH1xcczZuDL2FiLcNK569dt7sNUk6ZOtXkO08vKELJ1K6Z88glG+/pi5MiR+CAgAItXrsQRB1O+uaLic3OxNDgYHwQEYOSoUfD188PUGTMQunOn1ShMDAkREREREREREdFAYkiIaIC0traKnWMpKSmSd9axWP0phoSI3G+whIQGY3UPCbHcXwwJkacZyJAQi+XOkldUiNfy5v37kZKSgkuXLkGv10t9mxERERERERERkQdiSIhoAJl3kNmbvoTFGgyVmZkpXssNDQ1S31pEQ5JcLhfvs5qaGsnv+6FUDAkNbOn1evFaTkpKkvrWIgLAkBBr6FTKpUvitbw1JgaJiYlipaeno7S0FHfv3pX6liMiIiIiIiIiIg/BkBDRADLv8NVoNJJ32rFYfSnzzt74+Hh0dHRIfWsRDUk5OTnifabT6SS/94dSMSQ0sKXT6cRrOScnR+pbiwgAsDsuTgxWyCsqJA96sFh9LfOQ0OHTp1FdXY2srCyLsFBiYiKys7Oh1WrR2trq9H1y//59/PDDD268E4mIiIiIiIiIaKAxJEQ0gMrLy8VOsvz8fMk77VisvlRFRYV4HcvlcqlvK6Ihq6CgQLzXKioqJL/3h1IxJDSwZf7eYEiIPMWRtDQxWJGkVEoe9GCx+lrHcnPFazmrqEi8xltbW6FWq5Genm4VGLpw4QKqq6t7DPsrlUpkZ2fzjwKIiIiIiIiIiIYQhoSIBpDBYLAYgaW+vl7yjruBrDFjxvSqpG4vy3alpKRYjIhFRO6h0WjEe02hUEh+7w/2unHjBmJjYxEbGws/Pz8IgoBFixYhNjYWSUlJkrdvKJdCoeB7gzxOVlGRGKw4cPas5EEPFquvtc1sVKyrdp6xd+/eRWlpKVJSUqwCQ5cuXUJ9fb3VNp2dnRajEDkTFKqoqBDLfMQinU7n9uWcApmIiIiIiIiIyDkMCRENMPPpYzIzMyXvuGOxelPmo0EkJSXxr4qJ3Ki1tdUiWKrX6yV/BgzmunjxIgRBsFmffPKJ5O0bqqXX65GYmChexwaDQepbiwgAUFNfLwYrIg4dkjzowZK+Ro4a1esK3blT0jZnVVaK13FYdDTaHz7s8dq/desWiouLrcJCKSkpuHTpEu7evSuu1326Mnu/+z969AhtbW0Wv7fU1NSgpaUFLS0tyMrKGpDlcrncI//3yYIFC/DSSy/hpZdeslh+4MABDBs2DC0tLW45bmlpKdavX++WfRMRERERERHR4MWQENEAMxgsRxPiFDKswVI1NTUWHb3l5eVS305EQ55cLhfvueLiYsmfAyxWb6u4uFi8hlNTU6W+pYgsRBw8KIYrTpw/L3lIhSVtJRUV9brSy8okbXP06dPiNZyYmdmr67+jowPV1dW4cOGCVWAoPT3d5jRltoJCDx8+xN27dyV/35SWluLUqVMeO6JQeHi4VUjo8uXLCAoKwo8//uiWYx48eBDPPPOMW/ZNRERERERERIMXQ0JEErh8+bJFUEin00n+j6oslqPS6/UW04zJ5XKpbyOiJ4JOpxPvu8TERI4mxBpU1X0UIZ1OJ/UtRWShoKTEYjShrMpKyYMqLJazJa+osBhFqMbGlGHOam1thVarRVZWllUwyFFQqKGhQRzVR+p3jqmMRqOrHhEuZSsk5G4MCRERERERERGRLQwJEUnEfHSIxMREaDQayf9BlcWyVTU1NThz5ozFNGMGA6eLIRoo5u8LTlPJGkxlPsUqRxEiT9T+8CF2x8WJIYvo06clD36wWM5UVmUltpldu0fS0lx2X9y9excFBQUOg0J5eXkAAI1G43FTojoKCT148ADz5s3D888/j9deew0BAQFYvnw5nn76aXh5eaGmpgYRERGQyWSQyWTIzMyEIAh45plnIJPJUFFRgaSkJPzjH/+AIAh499134ePjg2+++cbucf70pz9h9uzZCAkJsQgJxcXFYfjw4eJ+TTo7OxEeHo433ngD7733Ht5++21ERkais7MTACzal5GRgX/961949tln8cYbb+DKlSvifrZv347f/e53eOqpp+Dl5QUvLy/s27cPAFBQUIB3331X/A7+/v4oKirq76VDRERERERERIMEQ0JEEuno6EBqaqrFiEIqlUryf1RlscxLp9NZjAIRHx/vsUP4Ew1Vpr/SN1V+fr7kzwYWq6cqKiqyuG5v3rwp9a1EZJOmutpiNJZjubmSB0BYrJ7KfJqxsOho3Glqcul9YWuqse4ll8vFZ73U7xxT1dfX4/bt23a/19KlS/Hiiy9Cq9UCAEpKSvDcc89ZjfBTUVEBmUyGf//737h69SoMBgOGDx+OiooKTJw4EQkJCeK6e/bswcsvv4z29naHxxk2bJjd45iHhFauXIlXX30Vzc3NAIA7d+5g2LBh2L59u9V2Pj4+0Gq1aGxsxDvvvAMvLy+L/dsaSaijowO//OUvoVAoxGWLFy/GqlWr7J43IiIiIiIiIhpaGBIikpDBYLAYISI+Ph4pKSlQq9WS/wMr68mumpoaZGZmWlybSUlJnCqGSCKmv9RnUIg1GKp7QKi8vFzqW4jIobS8PIvAxeHsbMlDICyWrcqqrLQKCF3VaFx6P7S3t/cYEDKv27dvS/7eMVVxcTHi4+Ntfq+2tjY888wzCAoKslg+depUu+GduLg4cVlDQwMePnyI+vp6PHr0SFx+7949yGQyFBcX9/k4ppDQ/fv38fOf/xwREREW6y1duhTDhg2z2u7EiRPisujoaDz99NPiiEOA7ZCQXq+HTCbDnj17LJaZAk1ERERERERENPQxJEQksY6ODovpOMynIMvPz4dGo8GNGzdQU1Mj+T+6soZm6fV63LhxAzdu3EBRUZHF1GKcYozIcyiVSov7MjMz06Om92Cx9Hq91e80SqVS6luHyClH0tIsghfRp08jq7JS8lAIi2UqeUWFxRRjYdHRyHLDFFGVlZUOpxnLzc1FQUEBTp8+jcTERDQ2Nkr+/jGVo5DQ1atXIZPJcPDgQYvloaGhdsM7ly9ftnl+pk6dijfffBNeXl546623IJPJxGk1+3IcU0iouLgYMpkMr776qjhFmJeXF15//XX85je/wf379+22Lzk5GTKZDK2treIyWyEhAFi1ahV+9rOf4ZVXXkFQUBCuXbtm85wRERERERER0dDEkBCRh9BoNEhKSrIKZ7BYUpdSqURHR4fUtwgRwToolJiYCJVKxbAQS9LS6/VQqVRW01Py/UGDSfvDh1ZBofCYGI4qxJK8siorcTg72+LaDIuORlpenlvuBaVSCbVaDa1WC71eD71eb3fd1tZWtLS0SP4eMlVFRYXFNFrm7IV31q1b59Q0YEDXKEG/+tWvMG3aNDx48ABA18hLMpkMKSkp/T6OKSQUExNj95zba19KSgpkMpkYJALsh4QA4NatW9i2bRv+/Oc/46mnnrKYzoyIiIiIiIiIhjaGhIg8SEdHB8rLy5Gamip5MITFUiqVFn+JSkSeofvUY6bKycmBWq3m6HMst1dNTQ1u3LgBtVqNnJwcq3BQfDynGKPBK6uoyCqMER4Tgz3JyThRWIgUlQryigrJgyOsoVtnSkuRolLhWG4u9iQnW12P7phirK/Ky8sRHx8v+XvJvIxGo822mqYBW7FihcVyZ6YBMykpKYFMJkN6erq4zDTdmCkk1J/jmKYbW7ZsmcV6Op0OixYtctg+WyGhQ4cOiSGhzs5OtLW14e7du1ZBqmnTpuHll18GERERERERET0ZGBIi8lAGgwHl5eXIyclBTk4O5HK55KER1tCs1NRU8Tq7fPkybt68KfXlT0Q9aGho4HuB5ZGVmpqKhoYGqW8Ron7RVFdjd7dpnVgsT6gjaWmoqa+X+hYR3bx5E/Hx8R4VTrYXEgKAwMBAvPjii9BqtQC6Qj+//vWvnQ4JGQwG/OIXv8CsWbPw6NEjAMD27dstQkL2jvPcc885dZzVq1fjhRdeELft6OjAhAkTEB4e7nA7WyGhzMxMyGQytLW1obi4GH/5y19QWVmJ3/72t7h375643pQpUzBmzBi7542IiIiIiIiIhhaGhIhoyDAYDFAoFBal0+mkbhYRkdvodDqGhVgeUampqXzn0pBzVaNhWIjlEfVVUhI01dVS3xJWWltbER8fD41GI3k4SK/X4+uvv0ZLS4vd9j548ADz58/H888/jz/+8Y+YOXMmgoOD8fvf/15c5/Tp0xg+fDhkMhmGDx+OhQsXWuwjIyMDw4cPxyuvvIIRI0YgPDwcMpkMr732Gvbt22d1nD/84Q8ICAjA8uXL8fTTT8PLyws1NTWIi4uzOE5cXByArhF/vvzyS7z++ut455138M4772DTpk3o7Oy02T6FQoGDBw/itddeg0wmw9/+9jdcvnwZQFfAyNfXF3/961/x1ltvISMjA99//z0WLlyIN998E4Ig4O2338bkyZNx584dl14bREREREREROS5GBIioiGDISEielK1trZCo9GgoKCAo8+x3F5yuRw5OTkoKCiARqPh1JQ05N1raUFxeTmOpKXhSFoag0Mst9ZXSUk4kpaGxMxMXNVocM9B6MUTtLa24ocffoDBYIBOp4NKpYJKpYJOpxMDPO5ertFokJKSgvj4rqnP7Ll79y4ePHhgsWzevHnw9vZ292kiIiIiIiIiIvIYDAkR0ZDBkBAR0ZPJaDQiLy/P6h2gUqmkbppHaW9vh0ajsTpXSqUSt2/flrp5RERW2tvbbT7fzctRKIQGTmdnJ8rKysRAaVlZGYxGI4xG44AsLygo6HHa5JCQEISGhor/XVdXhxdeeAGJiYnuPj1ERERERERERB6DISEiGjIYEiIiejLpdDp2HPeC0WhEfX09CgsLLc5XXl4edDodjEaj1E0kIhLZe8abBx2JnJGTk4N//vOfeO+99yAIAv7+978jNjZW6mYREREREREREQ0ohoSIaMhgSIiI6MnDUYT6R6/XQ6VSWZ0/tVqN9vZ2qZtHRASj0WgVauxe9fX1UjeTiIiIiIiIiIhoUGBIiIiGDIaEiIiePPX19TY7jPV6vdRNG1RaWlqgVqutzmNJSQlHZCIiydl71puPhMZR0IiIiIiIiIiIiHrGkBARDRkMCRERPVnsjSJUWFgoddMGrfb2duh0OqvzWlhYiNu3b0vdPCJ6gimVSodBIf7eT0RERERERERE1DOGhIhoyLAVEuJIEkREQ5dOp+O0M25UX19vNcVPXl4edDodR+wgogFn63f97s8nTpNIRERERERERETkGENCRDRk2Oo44BQpRERDU3t7u81OYo4i5HoGgwEqlcqqM16tVrNDnogGVFlZmcOgkFqtlrqJREREREREREREHo0hISIaMhgSIiJ6cpSUlNjsIOZz331aWlqgVqttdsrzvBPRQLAXEOV7gIiIiIiIiIiIyDkMCRHRkMGQEBHRk8FWUEWhUEClUkndtCdCe3s7NBoN8vLyLM5/SUkJ37tE5Hb2ppo0fxYRERERERERERGRbQwJEdGQYavDgJ2VRERDS319vd2OYU59NbCMRiN0Oh0KCwsZFiKiAWM0Gq1Cit2rvr5e6mYSERERERERERF5JIaEiGjIYEiIiGho0+v1djuEdTqd1M17otXX11uFhZRKJW7fvi1104hoCKqtrXUYEiosLJS6iURERERERERERB6JISEiGjJshYSMRqPUzSIiIheor6+3O3KEWq2Wunn0mK2wUGFhIcNCRORy3Z81DI8SERERERERERH1jCEhIhoybIWEiIho8HM0YoRSqWQg1APp9XqoVCqGhYjIbQwGg8OQUF5eHt8PRERERERERERE3TAkRERDhkajYUiIiGiIUavV7AAexAwGg1VYqKSkhNOBEpFLdH++cKQ5IiIiIiIiIiIixxgSIqIho3snQV5entRNIiKiPmpvb0dJSYnDgFBLS4vUzSQnMSxERO7Q3t5u8x2RkZGBo0eP4uDBgxzBjIiIiIiIiIiIyAxDQkQ0ZCiVSovOAZVKJXWTiIioD2xNH9l9irH29napm0l9UF9fj8LCQoufZ1lZGdrb29HW1oaNGzdi//79SEpKQmtrq9TNJaJBwHzEuczMTOzYsQPz5s3D559/js2bN2P9+vW4deuW1M0kIiIiIiIiIiLyCAwJEdGQ0b0TuaysTOomERFRL7S0tFgFPm0FhDjF2OBnKyx05swZfPnllwCA+/fvY8eOHWhra5O4pUTk6YxGI/Ly8pCWlobPP/8cQUFBiIuLE58tWVlZ2L9/v9TNJCIiIiIiIiIi8ggMCRHRkGA0Gq06knU6ndTNIiIiJxiNRlRVVTkMBykUCqjVaqmbSi5WW1uLvLw8KBQKpKenY/HixSgqKgIAHDhwgCEhInKKTqfDypUrsX37dmRnZ1u8OxITExEWFiZ1E4mIiIiIiIiIiDwCQ0JENCQYDAarzuTa2lqpm0VERA4YjUbodDoxJGKv8vLy+EwfwoxGI06cOIHTp08jISEBS5YsQU5ODu7duyeu8+DBAxw/fhz379+XsKVE5KmampoQGhpq9f6Ii4vDwoULcfToUb5HiIiIiIiIiIiIwJAQEQ0Rer3eqlPAYDBI3SwiIrLj9u3bPYaDFAoFVCoV2tvbpW4uuVlcXByKi4uhUqmwefNm7N6922pUwLS0NISEhKCyslLClhKRJ2pvb0d0dLT47jh16hQ2bNiAOXPm4KuvvhIDp5yukoiIiIiIiIiInnQMCRHRkKDT6aw6lltaWqRuFhERmTGNHFRYWNhjOIijBz1ZHj16hMzMTMTFxWHNmjVITU1FamoqFAoFSkpKUF1djcDAQNy9e5ehMSKy6fz581i7di1WrFiBOXPmIDQ0FMnJyeJ7JTMzE2fOnJG6mURERERERERERJJiSIiIhgS1Wm3VwUxERJ6hvb3dqWnFOHoQdXZ2orOzE1euXMG2bdvEjv0VK1YgLS0NAFBcXIzIyEgcOXIEDQ0NEreYiDxJXV0dEhISIJfLbb5fNmzYAL1eL3UziYiIiIiIiIiIJMOQEBENCSqVyqIDoLCwUOomERE98VpaWmyGOB2FgzhVJAHA/fv3ERMTg0OHDmH16tVYs2YNFAoFDhw4gM8//xzffvstHj58iLi4ODQ3N0vdXCLyILbeO6mpqVi/fj3mz5+PqKgoqZtIREREREREREQkGYaEiGhIsNXRTEREA89oNOL27dtQKpVOh4MKCwtRX18vddPJA3V2diIsLAypqak4c+YM5s6di5MnT4rXS3FxMTIzMyVuJRF5kvb2dnHkOrlcjm3btmHevHnYvHkz0tPTERUVxXcOERERERERERE9sRgSIqJBz2AwWHU463Q6qZtFRPREMY0a5OyUYgwHkbOMRiOuXbuGgoIChIaGitdPVVUV9u7dyylGicjK9evXER0djYULF2LNmjVITk62eP8olUqpm0hERERERERERCQJhoSIaNCrra216njmdDVERO5nNBpRW1vbq1GDTKO9MRxEvdXW1obo6GjxejMFAFpaWqRuGhF5ENMIZMuWLcPRo0ftvov4HiIiIiIiIiIioicRQ0JENOiVlZVZ/aM/ERG5h2k6MVvPXmfCQQxxUn9cvXoVR48eRUREBBYvXoz4+HgolUoYjUacPHkSW7ZsgVwux6NHj6RuKhFJqKqqCrt370ZsbKzN91FaWhoKCwthNBqlbioREREREREREdGAYkiIiAatuLg4HD9+HMeOHYNcLodCocDZs2exf/9+AEBHR4fELSQiGjr0en2vpxNTKBTIy8uDWq1Ge3u71F+BhoiHDx/izp07uHbtmnidnTt3DgsXLkRHRwfq6uqQmpoqdTOJyAPk5ubafDctW7YM6enpnKKYiIiIiIiIiIieOAwJEdGgFR8fj9DQUCxfvhxz5szBF198gfXr1yMuLg5NTU2Qy+VSN5GIaFDrazBIoVBAqVSivr6eozSQW9XX1yMlJQVZWVlYsmQJtFotAGDv3r24c+eOxK0jIqkZDAar99Pp06cRFBQkBlkZYiUiIiIiIiIioicJQ0JENGh1dnYiMjISJ06cwJkzZ3DgwAEsW7YMy5Ytw9y5c1FTUyN1E4mIBhXTVGJ9DQaZRg1qaWmR+qvQE+KHH37AmjVrkJubi3379mHDhg1oaWlBTk4O7t27x98FiAiXLl3C+vXrsX//fpw+fRrR0dHYsWOH+O5Sq9VSN5GIiIiIiIiIiGjAMCRERIPatWvXsG7dOiQnJ0OhUCA8PBzt7e04dOgQOjs7pW4eEZHHa29vx+3bt1FWVtbrUJCpysrKOGoQSebo0aO4efMmsrKyMHfuXCiVShiNRuj1eqxbtw4PHz6UuolEJKG2tjbExcVh27ZtWLFiBebNmyeOPpqZmQmFQgGDwSB1M4mIiIiIiIiIiAYEQ0JENKgVFhbi7NmzCAkJQVxcHPbt2wcA/Itg8sW4KwAAIABJREFUIiIHWlpaUFVVBaVS2edgkFKpRG1tLadpIck9ePAACQkJ2LBhAzZv3gyFQoFjx44hMDAQp0+fRm5urtRNJCKJaTQaKBQKZGdn47PPPsOBAwewceNGLF26FHv37kVJSYnUTSQiIiIiIiIiIhoQDAkR0aCl1+vFzuq0tDQsW7aMHYFERDb0dxoxUxUWFkKj0TAYRB6ps7MTOp0O69evx4oVK1BUVAQAuH//PrRarcStIyIpGY1G5OXl4cSJE1i3bp3Fu00ul0OhUECv10vdTCIiIiIiIiIiIrdjSIiIBh2dTofjx4/j+PHjyMrKEv+BPysrC83NzVI3j4jIIxgMBuh0un6NFmQaMUin06GlpUXqr0TUo/Pnz2P9+vXiFEL19fX47rvvEBwcjLa2NqmbR0QSqq2txY4dOxAdHW3zfXf27FlOm0lEREREREREREMeQ0JENKjU1tZi586dOHPmDJYvX45NmzaJ/7Cfk5MjdfOIiCTT0tKC2tpalJWV9SsUxKnEaDArKSnByZMnoVQqkZ2djejoaAQGBvL3BCICABw7dgxpaWkW77yEhASkp6cjMTER8fHxUjeRiIiIiIiIiIjIrRgSIqJBJSEhAUajEXq9HllZWVi3bh2OHz8OhUKBAwcOYNeuXVI3kYhoQLS3t7tkCjFTlZWVMRhEg15nZyfS09ORkpKC5cuXY9WqVbhy5YrUzSIiD2EwGKzef6mpqQgPD0doaCjmz58Pg8EgdTOJiIiIiIiIiIjchiEhIhpUoqOjAQBqtVqcFiA0NBQKhQLFxcU4cOCAxC0kInIP81BQYWFhv0NBhYWFUKvV0Ov1Un81IpcLDw/HoUOHkJ2djby8PE4hREQilUplMcXY1q1bMWfOHISFheHkyZOIjY2VuolERERERERERERuw5AQEQ0q+/fvh1wutxg1Y+fOnUhNTcVXX32Fa9euSd1EIiKXaGlpcWkoyHwasZaWFqm/HpFbffvttygpKYFCoUB6ejquXr0qdZOIyEO0tLQgKysL+/btw8KFC7FmzRqcOHEC4eHhUCgUyM7O5qh6REREREREREQ0ZDEkRESDTm1trUWnd3p6Or788kusWrUKnZ2dUjePiKhPDAYDamtrUVZW5pLpw7qPFsSRVOhJdPDgQaxZswYLFy7E7t27pW4OEXmAmpoaBAUF4fPPP8exY8fEd2Z0dDTi4uKgUChQUlIidTOJiIiIiIiIiIjcgiEhIhpUOjs7xZEBzOvw4cM4efKk1M0jInKK0WiEXq+HTqez+Uzra+Xl5aGsrAz19fUcBYGeeFqtFvn5+VAoFDh48CDS0tJw5coVNDc3S900IpJQU1MTdu3ahQ0bNiAsLMyiVq9eLY4m1NjYKHVTiYiIiIiIiIiIXI4hISIaFK5du4a1a9di3rx5WLJkCb788kukpqaK0+c8ePAA9+/fl7qZREQ2mU8dplQqXRYKUigUUKlUnEKMyIaMjAyo1Wrk5+cjPDwcGo0G3377LTIyMqRuGhF5AJ1OZ/E+zc7ORlZWFhITE7Fy5Urs27dP6iYSERERERERERG5HENCROTxOjo6EBMTgx9//BFXr17FsWPHEBoainnz5iEqKgr19fVSN5GISNTe3u6WUYLMRwrS6XQwGAxSf1Uij1ZZWYnVq1cjIiICaWlpUKlUqKmpgVKplLppROQBjEYjCgsLrd61Z86cQVpaGpYsWQKtVit1M4mIiIiIiIiIiFyKISEi8ni3b99GUlIS2tvbLf4BPykpCStWrEBRUZHUTSSiJ5TRaITBYIBOp0NZWZnNzkZXhII4UhCR8yorK8X//+TJk5g3bx62bduGQ4cO4dChQzAajRK2jog8SX19PbKysnDo0CHs27cPR48exdmzZ6FQKBAVFYWIiAg+M4iIiIiIiIiIaEhhSIiIPN6PP/6INWvWiNOLmVdFRQW2bdsmdROJ6AlhMBhQW1vrlmnDFAoFCgsLGQoi6gO1Wo29e/dCrVbjzJkzFp8VFRVhx44d2Lt3Lx48eCBRC4nIU23atAlLlizB1q1bsWvXLmzcuBFhYWHYuXMn5s+fj+LiYqmbSERERERERERE5DIMCRHRoKDRaLBw4UKEhITgxIkT4ggbDx48wJEjR6RuHhENQe4OBCkUCiiVSmg0GtTX16O9vV3qr0w0aBmNRiQnJ2PWrFlWHfrl5eXiPUdEZO6HH37AqlWrIJfLrd7RSUlJiPz/7N17bFTnncZxVyu1u1qpK1VVtcqu1O12291VpWi72220Vbe71R7ATgiXBAKFhFCSpmAgTSHcAoGEu8M9gYCJgXCxARuDscG3gYzBGAfb2EM8gTHhJNhgHCbOgAecAQ/2s3+QmXiY8Q1sn7H5fqT3D16Oz/xmxuNz5Pfx+1u/Xjt37uQaDQAAAAAAgH6DkBCAPiGwM0BCQoImTZqkadOmac2aNVqzZo0uX75sdXkA+rjeCAQFWoeZpimPx2P1Uwb6nY8++kgnTpzQ/PnzlZSUpJs3b6qlpUWLFy8OhvIAoLU7d+5ox44dcjqd7V7DHQ6H1aUCAAAAAAAA3YKQEICoVVdXJ6/XK5/PF/JL+uzsbO3Zs0fl5eW0DQHQZb0RCLLZbCotLZXL5ZLb7WYHAqAXNTU1KTU1VTNnztSJEye0YsWK4GcSAO6Vl5en06dPKzMzU3l5eSHX8pycHO3cuVPbtm1TTU2N1aUCAAAAAAAAD4yQEIColZycrKlTp2rLli1hLQBM07S6PABRzu/3y+PxyDRNORyOHg0EFRcXy+l0qrq6ml2CgCjx2WefKTU1VQcOHODeAUCbWlpalJKSoiVLlujQoUOy2WzKzc3V2rVrFR8frxkzZighIUGLFi1iB1MAAAAAAAD0eYSEAEStjIwMnThxQnPnztXLL7+sTZs2KS8vT3a7XX6/3+ryAEQRn88nt9st0zRVVlYmu93eY4GgwsLCkLZh/DwCopfH4wl+dt1ut9XlAIhifr9fdrtdmZmZmjFjhmbPnq3k5OTgz5C8vDxt2rTJ6jIBAAAAAACAB0JICEDUqqys1NGjR2Wz2bR9+3a9+uqrmjZtmrKzs2WapoqLi60uEYAFPB6Prly5oqqqKpWVlfVYGIhAEBCd7ty5o1OnTuno0aPyer3tHmuaZvDzzOcXQEdqa2s1Z84crVmzRvn5+SH3BKmpqVq8eDE/SwAAAAAAANCnERICELXcbnfIL+bz8/O1bds2zZw5UwsWLNCdO3esLhFAD/L5fL3WLoxAENA3tLS0aMeOHcrMzNS6des0Z84c3bp1q83jA0FCh8PRi1UC6Kvq6+u1aNGisHuEQBvknTt30roQAAAAAAAAfRohIQBRq7CwMOwX9LW1taqoqNCpU6esLg9AN7p3d6CebBdGIAjou06dOqWPP/44+O/k5GQVFBREPLZ1q7Ha2treKhFAH+bz+bRly5bgz479+/dryZIlmjhxojZv3iybzSa73S6fz2d1qQAAAAAAAMB9ISQEIColJyeHLeoH2otVVFSopaXF4goB3I/e3h0o8LPD6XSqurqaQBDQxyUmJurzzz8P/vvGjRvavHmzJMnhcCg/Pz94jxDYRaiwsNCSWgH0TcePH9cbb7yhWbNmaeLEiVq4cKHS09OD9xW5ublKT0+3ukwAAAAAAADgvhASAhB1fD6fFixYoH379oUs9Hs8HqtLA9BJfr9fHo9H1dXVwd2BejoMZLPZVFpaKpfLpdraWn5mAP3QRx99JJvNFjIXCAl5vV7NmTNH169fD9lFiNZAALrK7XZr7969ys7Ojni/sWTJEl25csXqMgEAAAAAAIAuIyQEIOo4HA6988472rhxY/AX8eweBPS+K1eu6OOPP1ZdXV27x3m9XrndbpmmqbKysoitAnuiXVhpaalM05Tb7abtB/AQ27t3rxoaGrRx40Z9+OGHkr7ZRchut7N7GID74nK5wu4/MjIytGjRIk2ePFnr16+3ukQAAAAAAACgywgJAYgqgb/837Nnj+bOnauNGzdq4cKFmj17ti5evGh1eUC/dv78eR08eFBXr17Vtm3bVFBQoPLyci1evFjS3V2+AmGg3moVRrswAB0pLi5WUlKS3n33XUkK2UWourra4uoA9FV+v192u102m03Z2dlavXq14uPjlZCQoEOHDundd9/lZwwAAAAAAAD6HEJCAKJGfX29EhMTtWDBAr388suaOHGi1q9frxMnTqi5udnq8oA+78aNGyovL9f58+eDc2fOnNHKlSu1ceNGZWVl6fDhw8rPz9err76qc+fOyel06tixY70SBrLb7cHdgWpra+X1ei18tQD0FZcvX9a0adPk9Xrl9/uDu5kVFhZaXRqAPu6zzz5TYmKipk6dqvnz5ys9PT1sZ0MAAAAAAACgLyEkBCBqHDt2TOvXr9eePXuUl5en+fPn69ChQ1aXBfQ5kdqEnT17Vu+++64uXLigvXv3atOmTWpqapLH41FGRoYWLFigsrKy4F/ML1u2TFOmTNHMmTO1bNkyHTx4sFsDQaWlpXI6nTJNk92BADyQlpYWXb16VdLdlqWBnzMej8fiygD0ZS0tLVqyZIlmzJihnTt3tnlPY5qm1aUCAAAAAAAAnUZICIClbty4Ib/fL6/XG/YL93feeUfZ2dlWlwhELZfLpdzcXLnd7uBcpDZhfr9f8+fPV0lJiaqqqlRaWqpp06YpOTlZNptNKSkpmj17dthnMC8vT+np6Vq6dKkWLlx4X2GgwsJCORwOmaYpt9vN7kAAekxtbW3wZ4/L5bK6HAD9QFVVlTZs2KCtW7e2uxMiYWcAAAAAAAD0FYSEAFiiublZ27dv16xZszR9+nRlZWWF/cI9NzdXmzdvtrpUoFfcuXNH7733Xth8oEXYJ598Iim0PVhOTo7y8vI0Z84ctbS06Pr163r11Vf1ySefqKqqSseOHQvuDBQfHx/SImPp0qVat26dbDabsrOzNXny5LCQ3qFDh2Sz2bRlyxYlJCR0qlWYy+VSdXU1O3gA6FVerzf4866wsJAFewDd6vjx4+3eBxFMBAAAAAAAQF9BSAiAJfLz84Nb8x84cEDTp08PCxzcvn1bjY2NFlcKPJi6ujplZWUpOTlZJ0+ebPfYGTNmqLa2VqZp6s6dO/r444+1adMmXbhwQTt27NDOnTslSXa7XUuWLFF1dbVM09Ts2bOVkZHRbpuwmTNnKikpKfgZS0hI0IYNG4L//tOf/qSMjAzl5ubKZrNp+/btWrRokVauXKkNGzYE52kVBiDa+P1+FRcXB39GsWMZgO4WadfTe4fP57O6TAAAAAAAAKBDhIQAWOKtt96SJPl8Ptntds2cOTPkl+y1tbUWVwg8OIfDobVr1+rmzZv66quvtHz5cuXn50c8trS0VLNnz1ZiYqI+/PBD+f1+vfnmmzp79qyqq6t19uxZTZ48WRkZGWHtwZYuXarNmze32yZs69atmjVrlrKzs5WVlaXZs2crMzMz+H8LFizQihUrtG/fvuB5iouLg63CPB4Pi18AopLL5eL+AUCPczqd7YaEysrKrC4RAAAAAAAA6BAhIQCWOHjwoD755BOVlZXJZrPp9ddfV05OTnCXEqA/cLlcOnPmTPDfx48f1+rVq8OO8/v98ng8SkpK0q5du1RWVia73a74+HgtWbJECQkJSkhI0Pr165WRkRHWHmz9+vVauXJlh23Cdu7cqRUrVmjdunXBnYfuDQO53W524QDQZ9TW1gZ/ljmdTqvLAdCP+f3+YFvDtgbtVgEAAAAAABDtCAkBsEx1dXXwF+opKSlat26dcnJyVF9fb3VpQI/IyclRcnKyTNOU0+kMhoECn4PExEQtXbo0+O+ZM2dqy5YtwX+npqZq165dYe3BVq9erWnTpikpKandNmGFhYUqLS2VaZqqra0lDASgT2sdECouLqb1IYAeZ5pmuyGhwsJCq0sEAAAAAAAA2kVICIAlAm3G7v3F+ttvv61du3ZZXR7wQLxer9xud0gYyGazad68ecEWX5HGnj17gq338vPzgy3CDh8+rJycHC1cuFAZGRkh7cGys7O1e/duZWdntxkG4q/aAfQ3Ho+HgBCAXuf3+1VYWNhuUIi2hwAAAAAAAIhmhIQAWCIQmmg9SktLdevWLd2+fdvq8oBO8Xg8wTCQw+FQcXFxmwtG7733nhITE9tdVMrJyVF8fLxyc3P15ptvKjc3N9gibM2aNdq/f3/YX6sTBgLwsPF6vcGgsd1ul8/ns7okAA+R1ruYRRp2u53gIgAAAAAAAKIWISEAva51m7HWv0xnkQ/RyO/3y+PxqLq6WqZpqqysrMO/IL93HDhwQEuWLJHNZlNubq7efvvtNo/dsGGDli1bpqSkJMJAAHCPewNCtE0EYIXS0tJ27/1M07S6RAAAAAAAACAiQkJAHxIXF6dBgwbJMAwNHDhQcXFxiouL08CBAzV27FgtX75cbrf7vs+/e/duxcXFyTAMzZ8/vxsr/0brNmOHDh1SQkKCxo0bp6FDh2ro0KF64YUXtGfPHv76Fr3O5/PJ4/GEtAiL1BKvqyMvL0/z5s1TYmKi3n77bS1atEjz5s2LeGxxcbEcDodM05Tb7WbxG+gnIl2/Y2NjFRsbq9///vfas2eP7ty5I6l3rsX3o6CgIFjXSy+91K3n7uxzJiAEIFq0bnnY1uAPIAAAAAAAABCNCAkBfcwHH3wgwzCUmpoanPvqq6+Um5urQYMGacSIEbp27doDPcbw4cN7bGGydTumSZMmadCgQdqyZYuam5t1584d5ebmauDAgZo3b16PPD7QlRZh3TGSk5M1d+5cJSQkaNOmTUpJSdGxY8cIAwEPmUjX7y+//FLr1q2TYRhavHhxyPE9eS1+EJMmTer2kFBAe8+ZgBCAaONwONq9B3Q6nVaXCAAAAAAAAIQhJAT0MZEWGQPeeustGYahPXv2PNBj9NTCpGmaIb84nzRpkl577bWwv7Jdvny5DMNQeXl5t9eAh0N3tAjrjlFaWiqn0ynTNOXxePiLcuAh1tb1u7m5WRMmTJBhGKqqqgrOExL6BgEhANHI5/N1eC9Ii1gAAAAAAABEG0JCQB/TXkgoIyNDhmFo5cqVD/QYPbEw6fV6w35pvm7dOp04cSLs2MzMTBmGod27d3drDeh/vF5vWIuw3g4C2e12lZaWyuVyqbq6mjAQgIjau36vWLFChmHowIEDwTlCQnfV1taG/LwlIAQgmtz7RxD3jrKyMqtLBAAAAAAAAEIQEgL6mM6EhJKSksL+78svv9SqVas0YsQIDRs2TOPGjdO2bdvU1NQUduy9i3Q7duxQXFycDMPQhg0bgvOrVq1SbGysDMPQ4cOH26zZ7/dH3MXF4XBEPD49Pb3Dc+LhEdgV6MqVK8FdgXq6RVikUVhYqNLSUpmmqdraWnk8Hvn9fqtfHgB9RGdCQhkZGcG5SIGZq1evauPGjZowYYJGjhyp0aNHa968efr0008jPqbH49GaNWs0evRojRgxQs8995zeeOMNFRYWhhzXlXuEQEjo8uXLmjFjhp544gk9//zzys7ObrOG1atXB2t49tlntXXr1ohhynufMwEhANHO7/cHdzpra9TW1lpdJgAAAAAAABBESAjoYzpqNzZgwABduHAhZP769esaO3asXnnlFdXX10uSKisr9fTTT+u1115TS0tLyPGRFiZv3LgRFhKSpLNnz3YY6HG5XBF3X2krYLFs2TINGjQoWCseDpF2Bepo0aWnWoQ5HA6Zpim3282iNIBu0Zl2Y+fPnw/OR7oW5+bmatiwYTp37pwkqbGxUStWrFBcXJwuXrwYcmzg2h8fHy+32y1JqqurU3x8vAYPHhx2XGfvESZNmqTx48frlVdeUW5uroqKijR16lQZhqHKysqINUyZMkVffPGFpLu7bowaNUqvvPKK7ty5E3J86+fsdDqDP5eLi4vZoQ1A1GodaGwraE6wHAAAAAAAANGCkBDQx0RaZLx586Zyc3M1ceJEnTx5Muxr1qxZI8MwdOnSpZD51NRUGYahDz/8MGS+O0NCbrc74i/LAwuW96qvr9fgwYOVmJjY9ouAPitadgVq3SLMNE1ahAHocZGu31988YXWrl0rwzC0dOnSkOMjXYs//PBDpaWlhcw1NTXp8ccf17p160LmA9f+e4PDZ8+eDQkJdfUeYdKkSWGBoIsXL8owjLBrd+DcZ8+eDZkPtBVt3V6t9XO+NyDE4jrQN/lu3dbFmisPxcg6nKf0A1ltjpIyh+U19tcBAAAAAACAriEkBPQxgUXGgQMHKi4uToMGDZJhGBoyZEjEoE5LS4uGDx+uMWPGhP1fZWWlDMMIW1jsrpCQz+eLuBOMy+WK+NxaWlo0f/58TZo0Sbdv3+7wtUD0ipZdgWgRBiBa3Hv9jouL0+OPP64XX3xRqampam5uDjk+0rW4Lc8//7ymT58e/Hfg2j9y5MiwY5ubm3X69OmQ47pyjzBp0iQNHz487JyGYWjZsmVhNdx7rHQ3EGwYhl555ZWQ+eHDh2vq1KnBn+FOp5Of2UAfUne1XseKTivx/XQtfGszg9GrY+/+PH1YVqlr19kFFAAAAAAAoD2EhIA+5t6dCJqbm+VwODRs2DAZhqHS0tKQ4xsaGmQYhgzDCC5Kth4DBw7U3LlzQ76mu0JCZWVlXdpuf8uWLRozZoy+/PLLLr8u6H2BXYGqq6st3RUo0CLM6XTSIgxA1GqvXWgkka7Ft27d0p49e/TSSy9p6NChwWu5YRiaMmVK8LjAtX/ixIntPsb93CNMmjRJL7zwQti54uLitGjRorBzv/jii2HHNjc3a8CAAXrmmWeCc16vV08++aQmTZoUDAgB6Bsu1lzR9t1ZlodEGIzAOJhdQFgIAAAAAACgDYSEgD6mrUXG3NxcGYahqVOnhsy3t0jXlq6EhJxOZ8SQkGmaEcMcbYU30tPTNXLkSF2+fLnTdaJ3eDweud3ukF2BrAgCtd4VqLq6ml2BAPQp3RESeuONN2QYhjIzM9XY2BicHz9+fMSQUEfX/vu5R5g0aZJeeumlsPm2QkKRAkX3hoQ8Ho/sdrsGDx6sSZMmyTTNTtcDwDq+W7e1d39em0GNJau2aG1iKoPRo6O9sNCxotNWf0wAAAAAAACiDiEhoI9pa5GxublZv//972UYhiorK4Pz7bX7kKQLFy7oypUrIXORFia/+uqriG1HTpw4ERYS8ng8EUMe1dXVEWs4dOiQnnrqKX366afBOa/Xq9ra2nZeCXQnn88XbA9WVVWlsrIyFRYWWrYrkMPhCO4K5PF4rH55AOCBPWhI6ObNmzIMQ5MnTw479t6QUHvX/paWFrndbjU1Nd3XPUJnQ0KdaTf25z//WbW1tcGf/4MHD9bMmTMj1gIgutRdrY/YVuzdbZlKzfpQOYVVsp00GYxeGYc+cCol40TE0NDe/Xny3aKVNQAAAAAAQAAhIaCPaW+R8ejRozIMIyzgs27dOhmGoTNnzoTMf/XVVxoyZIiKiopC5iOFhCRpyJAhYW1HNm7cGBIS8vv9EcMl97ZBCzhy5IiGDRumqqqqsOcZqQbcv0B7sCtXrljeHiywK5DL5QruCuTz+ax+iQCgxzxoSOj27dsaOHCgJk2aFHJcU1OTBg8eHBISkqQ1a9bIMAydPXs2ZL68vFyPP/64bt68Kanr9widDQm1rqF1eFmSMjMzZRiGNm7cGLwu2O12DRs2LOK1v6CgQC6X64HnAXSPuqv1Slj3flg46NAHTsvDIgxGeu7psLBQ4vvpBIUAAAAAAAC+RkgI6GPaW2Rsbm7W+PHjZRiGampqgvMNDQ169tln9dJLLwXbeV27dk2vv/66pk+frubm5pDztBUSWrp0qeLi4lReXq6mpiYVFxfrlVdeCQkJORyOsECI3W6P2BaqsLBQAwcO1Jw5c7R9+/aQ8cYbbxASuk/R0h4sEA5zOp3BXYHaajcHAP1dd7QbW7BggQzDUFpamr766itdu3ZNCQkJMgwjLCR0/fp1jR07VlOmTNEXX3whSbp8+bImTJigrVu3Bo/r6j1CV0JCgRri4+PldrslSZ9++qlGjx6tF198Ubm5ubLZbCouLpbf74/4nM+ePSvDMDRkyBC1tLTc9zyA7nHtujckILRk1RalZJywPBjCYNw7tu62hQWFAAAAAAAAQEgI6FPi4uI0aNAgGYahgQMHKi4uTqdOnQo5xmazBf9/8ODBwflr165p7dq1GjVqlEaMGKFx48YpKSkpuJOAJO3evVtxcXEyDEMDBgxQXFyczp07F/x/r9erpUuX6qmnntLw4cP19ttv68yZM8HHGzFiRMSgSFvtoqZMmSLDMNochITa5vV6w9qD2e12S3cFMk0zuCtQpFAYADysIl2/d+/eHfHY9q7FN27c0Ntvv63Ro0crNjZWzz//vPbv36/nn39ehmGEXbc9Ho9Wr14dvPaPHz9eaWlpYcGfztwjVFRUBOtq/Vj5+flh9ba+7t9bw9ixY7Vw4UIdPnxYNptNTqdTycnJbT7n+vp6jR49Omwnw67OA3hwvlu3Q1qMLVm1RRm2M5aHQRiMtkZKxomQoNDB7AKrP0YAAAAAAACWIyQEoFt4vd6IARLafdw/n88nj8ej6urqYHuwSK3cemPY7faQXYE8Hg+7AgEAusTtdocEWk3TtLokAF2QcdhOQIjR58a9QSFHZVXH3+wAAAAAAAD9GCEhAA/M7/dHDK8UFxdbXVrU8/v98ng8unLlikzTlMPhUHFxsaXtwRwOh0zTVG1tbZu7QAEA0BWmaYYETwPtxwD0Ddeue0OCFrQYY/Sl8e62zOD37rpNKVZ/nAAAAAAAACxFSAjAA3M4HBF3nvH5fFaXFjU8Ho/cbrdM05TT6VRZWZllQaBI7cF4rwAAPcHv98vpdIYEiNmJDuh7Wu8itDYx1fLQB4PRlZFTWKUlq7YEv4c/LP3I6o8UAAAAAABA+K3jAAAgAElEQVSAZQgJAXggtbW1EYMoD+MOAV6vVx6PJyQI1LqtCu3BAAAPE5/PF7I7Xmlpqfx+v9VlAegi363bIbsI0WaM0auj6IJsRZ/oSOtx8kKXz7Mj7ZugW+L76VZ/rAAAAAAAACxDSAjAffN6vRFDMJMnT9aMGTPaHX2Vz+cLBoGqqqpUVlYWsdUa7cEAAA8zj8cTco/gcrmsLgnAfXJUVgXDFSvXp1gfGmE8HKPogmxF52U70fY4UvRJl87ZOux27Tp/QAEAAAAAAB5OhIQA3Be/3x+yO0DrNiJ9fZeAQBCourpapmmqrKws4nPtrVFcXBzWHqyvv8YAgP6ruro6ZGe72tpaq0sC8ABatxrbkWa3PjzC6P+j6JPQQFDR+btzgRESFDp/N1DUifO+k7SflmMAAAAAAOChR0gIwH1xOp0RW1z1lZZWfr9fHo9HV65ckWmacjgcKisrsywIVFhYqNLSUrlcrmB7MJ/PZ/XLBABAl7S+PygsLOwz9wUA2rZ9d1YwWJGee9r6AAmjf497A0Jfh4SOnDR15KQp28kLkXcW6kRQqHXLsdyjJ63+aAEAAAAAAFiCkBDwEKuvr1dVVZWqqqpUVFSkoqIiZWZmdmpkZWXp0KFDys7OVk5OjnJzc/Xpp59a/ZTCeDweud1umaYpp9NpaRDIbrertLRUTqdTpmnK7XazeAoAsERjY6Pq6upUVVWliooKFRUVqaCgoFP3ANnZ2cH7hqqqKpmmqatXr4bsutcfdhYEcFfrFk2WB0gY/XsUtRUA6jgkdKTofIfnT889Hfxe3r47y+qPFgAAAAAAgCUICQEPkbq6OlVUVHR6EfB+hs1mU0lJiWpqatTU1NQrz8vr9crj8cg0TVVVVamsrEx2u92yMFBpaakcDkcwCOTxeHrldQAAoC2NjY0yTVMlJSXKzs7usfuArKwsHTt2THV1dVY/ZQDdhJAQo9dGUYSAUGd3EjrxdUuyds5PSAgAAAAAAICQENDv1dfXq6KiokcXBNsbgcDQg/L5fPJ4PKqurg4GgQoLCy0LAhUXFweDQLW1tfJ4POyYAACIKk1NTTJNs0fDwR3tOFRRUaH6+nqrXwoAD4CQEKPXRpvhn86GhNrfTYiQEAAAAAAAACEhoN+qr6/vsH1YQUGBKisr5XK5VF9fr/r6+k7v/hM43jRNuVwuFRUVtRtEstlsMk2z3fP7/f5gEMg0TZWVlYW0LumJkZOTo+zs7GDbtMB8fn6+7Ha7jh8/rsrKSlVXV8vj8ejGjRu6evWqrl69GrJDUFNTU5fnb968eR/vLAAA7WtqalJVVVW71+VAyzCXyyXTNFVfX6+GhoZOn7++vl51dXVyuVwqLy/vMIhUVFQUdWGh1tfoq1evhtyjeDyeHp/vrR0XgQdFSKh7x6Spr2rQoFgZhqElKzZaXk/0jAvfBH2+HouWv6NBsXdfq0lTXv06KHQh5JjgCASF2nkMQkIAAAAAAACEhIB+p7Gxsc1wkM1mU2VlZY8u0jU0NLS7a0F2drbq6urk9XplmqYcDofKysos2Q2ooqJCmZmZSklJUUpKirKzs3Xt2jU1NDTo0qVLwfn8/Hz5fD75fL5un8/OzmaREADQbWpqatoMBwV292tsbOyRxw6EhyorK2Wz2doMC/XEda+lpaXLx3/++efBa3RKSoouXboUvE7n5+f3yrxpmt3+WgDd7fUl62UYhsZNmBQFQZLeGVlHK2UYhmbNW9oj50/ef5yQ0L2j6JOwXYMCY/CTQ1uFhCKPb3YTutDmYxASAgAAAAAAICQE9Cv19fVhC4PZ2dkqLy/v9O4A3amxsVGmaUZcKGy9a0937QiUkZGhvLy8sP+z2+0qLS2V0+mUaZpyu926du2aPB6PLl68KNM0ZZqmLl68KI/HI4/HI7fb3ePzlZWVSk1Nlcvl6vX3pjOmTJmiH/7wh/rhD38YMp+UlKRHHnlEXq+3Rx63oqJCixYt6pFzA0B/Fgi/3hsQrqmpsSSQ2tDQoPLy8og1dfd9yYEDB/Txxx93+DybmprU3NwcvA8IXKMD9weB63Tr+4Oemi8oKFBaWlpUhoW5B0BrhIS6//yEhCIMQkIAAAAAAAC9gpAQ0E/U19eHLcK5XK6oWXiqqakJCwsdPny4W0NCqampSk1N1dGjR1VTUxPS3qu1gwcPqrKyMrhQZ+Vwu926detWL78bnbds2bKwBcLTp09r9uzZunPnTo885rZt2/Sd73ynR84NAP1VSUlJWEvRuro6q8uSdDc0HCks1J1BocA9QEdhIdM0lZGRERLYsfo+IFpxD4AAQkLdf35CQhFGq5CQ7eSFkHFvSOje/w+2KiMkBAAAAAAA0CFCQkA/0NTUFBLAKSgosGTnoI40NTWFLRJG2vmnvVFcXCyHwyHTNFVbWyuPxyO/3y+32x1cIAyMkpIS3bx5M6yOlJQUnTp1yvKFwcC4ceOGBe9G50RaIOxpLBACQNfU1dWFXFsrKyujJiTcWn19fdj9Sne59x6grbDQRx99pJSUFMuv/a2H3+/vttehO3EPAEnavXu3Bg4cKMMwNGDAAA2KjdWg2Fi9Omeh1m3aI8MwZBiGxjw7XmmHT+kPE/+kuMefkGEYmjZzgd5Ysk6DYmPDAjfTZr2hQYPuzq94+/3g/L3n3Jt1Ui+8NEVxcY9r5KgxWvnO9ojhj4z8Ck2f/aaGPzVSQ4YO14iRv1P8yzO0PmnfNwGR7FLNeX25Rv3uOQ0d9pSGPzVSf5w8Tcn7j4eca1HChmDNAwYODHnOgWMO5JVr2qw3NGTocA0ePEQjn/md5i9arZzjrgiBoGN64aUpio2N05ChwzRjziJtTz1yXyGhB3p9Zr0RfH2eHjlary9crcMFZ9s8d6T3M+zxM09q/ISJio2N0+/GPq/3dh6S7aSp1et36qmnn9ETg59U/MszdNDmCA3rtPVepNu/Cfu0Gq1DQiGBoEijndePkBAAAAAAAAAhIaBfME0zpL1YNC4MttY6KHTo0KGIQaDS0lKZpqnq6mp5PB75fL52zxkpJNRWWCjaQkKfffZZxDBTwK1btxQfH6/vfe97+ulPf6pnnnlGM2fO1Le//W099thjunjxolasWKGYmBjFxMQoNzdXhmHoO9/5jmJiYlRZWam0tDT993//twzD0G9+8xvFxcXp7NmzbT7Ov/7rv+qPf/yjFixYELJAmJycrEcffTR43oCWlhYtW7ZMP//5z/Xb3/5Wv/rVr7R+/Xq1tLRIUkh9OTk5+t///V/91V/9lX7+85+rvLw8eJ41a9boH//xH/Wtb31Ljz32mB577DFt2rRJknTs2DH95je/CT6HIUOGqKioqONvOADo51oHb1r/TI1GDQ0NIa1Ru2u3o7buAe4NC0VbSKi2tlZXrlxp83lxD8A9QDRoayehgzaHtu3O0zOjxuqZ0c9q3PiX9Nbardr0fobGPPt7TZu5QLaTbe/Ks32vLSwkFHLOUWM1fsJErVq/U+9uSde4378kwzC0dXdeWB1PjxilZ8e9oPScUtlOmko7fErPjntBcY8/ETxu1fqdGjx4iLanHpHtpKlDHzj15xnzNWhQrHZnFIacs72dhAKPN/6Fidqfe1q2k6a27s7TkKHD9FL8K8pvtZNNalaxnhj8pJ4eOVpbUnK0P7dMb63dque/fi5dDQk9yOvz3Pg/aH9uWTC4NGz4CI2fMFF5hec7/X7e+/gT/jBZazem6J33UjVi5O8UF/e4Vq3fqfipM7Rx2wEtWr5BAwYO1MvTXgupqd33Yv+x+w4JHSn6hJAQAAAAAABABwgJAf1A69CNaZpWl9OhpqamkB0PcnJyZLPZdOTIEdnt9vsa+fn5bS4QBkZmZqaOHDmi0tLS4C5E0TBSUlL00Ucftfl6TZs2TT/4wQ90/vx5SVJZWZm++93vhv11f2VlpWJiYvR///d/OnPmjDwejx599FFVVlZq1KhR2rt3b/DYDRs26Ec/+lFI+CrS4zzyyCNtPk7rBcI5c+boJz/5ib788ktJ0ueff65HHnlEa9asCfu6uLg4nT9/Xl988YV+/etf67HHHgs5f6RdBJqamvQ3f/M3stlswbk//elPmjt3bpuvGwA8DO69pvYFLpcr5B7gfq/9rUdH9wBpaWnBNqemaVp+7Q+MU6dOKSUlpc3XinsA7gGiQUftxsaOmyDDMLR5R2ZwbvOOLC1fk9TlkNC959zWKvASaNH12oKEkGOnz35ThmFoV3pB2Plbh4Q2bcvQkhWbQo7JOe5SbGycZsxZ1OmQUODx9maeDJlfsmKjDMPQpm0ZwbmXp70mwzC0JSUn5NhZ85Y8ULux+3l9tu+1hcy/tXarDMPQ8tXvden9bH1MIORjO2lq7abdMgxDI0eNUd6Jb8I6f4z/swbFxoaEp9p9L2YvvP+dhNppNUZICAAAAAAA4C5CQkA/UFRUFFxsq6+vt7qcTmm9i0BHC3udGWlpaZ0+Npp2EeooJNTY2KjvfOc7mj17dsj8c8891+bCXXJycnDu6tWrun37tmpra9Xc3Bycv379umJiYnTq1Kn7fpzAAuGNGzf0l3/5l1qxYkXIcdOmTdMjjzwS9nV79uwJziUmJurb3/52cLcBKfICodvtVkxMjDZs2BAyF1jMBICHVX19fY+07+pJrdujZWRkdMt9QGfH3r179eWXX1p+7e9MSIh7gLu4B7BeZ0JCTwx+ss1gxv2GhAY/OTRkLu/EJzIMQy9Pmxucyy+6oMFPDtXQYU+FnSPvxCfB9lftjZGjxmjCHyZ3qubA4z319DNh59m6O0+GYQQDR/lFF/T4E4PDnoftpKnE7QcfOCTUldcnUg0Hck/LMAyNnzCxS+9n4JgnhwwLmduVbpdhGJo5d0nI/GsL3pJhGMrId7R7zm/ei/j7Cwl1sIsQISEAAAAAAIC7CAkB/UDrnYRcLpfV5XSosbExWG9WVpacTucDj5KSknYXBfft26cPPvhAH330kS5dumT5omDrkZeX1+YOUGfOnFFMTIy2bdsWMr9w4cI2F+5Onz4ddp5z587pueee0y9+8Qs99thj+uUvf6mYmBhlZGTc9+MEFghPnTqlmJgY/eQnPwm2B3nsscf0s5/9TH//93+vGzdutFlfenq6YmJiQtqtRVoglKS5c+fqL/7iL/TjH/9Ys2fP1scffxzxNQOAh03rnYSiveWodPd6EKj3+PHj3XIf0FE46NChQyopKZHT6dT169ctv/YHRmVlZcgOOa1xD/AN7gGs1ZmQ0Ogxz3V7SCjSOQfFxmrKK7OC/848ckaGYWjscxM6DIhkHzunRQnvasyz4/XE4Cc1KDZWg2JjZRiGnhv/h07VHHg8wzCCX996DBg4UH+M/7NsJ++27zIMQ6PHjAurZVd6wQOHhLry+kSqIe/EJxowYICGDn+6S+9nW8fsPnhChmHozWVvh8wvWLJWhmEo7fCpTr8XR4oihYSm3w0InfwkQkDofKdeN0JCAAAAAAAAhISAfqGmpia42Jadna2GhgarS2pTU1OTCgoKgvWWlJR0y3ndbnfERcEDBw7I6XSGLJrabDZVVlZavjAYGF6vt83n1dbC3ZtvvtmpFiDS3VDW3/7t32rcuHG6deuWJMnn8ykmJkYHDhx44McJLBBu2bKl3fcoUn0HDhxQTExMcBFRanuBUJIuX76s1atX69/+7d/0rW99K6SVCQA8rFpfV4uKiqwup12tdz7KzMzstnuWtsJBdrtdbrc7eJxpmsrLy7P82t96+P3+iM+Je4BQ3ANYpzMhoTHPju9ySGjbnrx2Q0KRztmVEMy9I37qDBmGobfWbtWhD5zB+WdGje1ySKgzj/dNSCg8cNMdIaGuvT7hNbQXEmrv/WzrmEBIaFHChg5DQp16L4oihITucwchQkIAAAAAAADfICQE9BOtW45lZ2erpqbG6pLCNDQ0hCxkZmdnq7GxsVvOfW9IKFI4KCAlJSWqWo61/gv6ewVagMyaNStkvjMtQALKysoUExOjQ4cOBecCrUYCC4QP8jiBViOvvvpqyHGmaerll19ut75IC4Tvv/9+cIGwpaVFjY2NunbtWthOC+PGjdOPfvQjAcDDrqGhISR4U1RU1G3X1+5kmmZIu9HuCgpL4SGhe8NBAR999JFSUlIsv/a3Hnfu3In4nLgH4B4gWjxoSOiw/eOQNlyBsWHLvgcOCbXXTiu/6ILSc0qVc9ylrA/uhn6ee/7FsOO6EhJq7/EC4Z+0Qx8Gj338icEaPHhI2HHd0W7sQV+fQLux378wqVPn7q6QUJfei6ILOlL0SVhI6EhR18JBhIQAAAAAAAC+QUgI6CcaGxtDFt4Ci4T19fVWl6bGxkZVVFSE1JaZmdmtQaZASKi9cFBAWlqaCgoKLF8U9Hg8crlcunbtWrvPbfr06frBD36g8+fPS7q74Pd3f/d3nV4g9Hg8+uu//mu99NJLam5uliStWbMmZIGwrcf57ne/26nHmTdvnr7//e8Hv7apqUkjRozQsmXL2v26SAuEubm5iomJUWNjo06dOqV///d/17lz5/QP//APun79evC4sWPHavDgwe2+dgDwsHC5XCHX2OzsbFVVVUVF+7H6+vqQMHOgvu6sraNwUIBpmkpJSVFtba3l9wBut1tOp7Pd58U9APcA0eCN5Ru/bgP1R9lOmsrId2j268uUc9zV6VDJ408MDrbhCow5ry9/4JCQ7aSp6bPflGEY2r7XFjKftOuwYmPjlPVBpXKOuTRg4ECNHRfaliznuEtxjz8RFhLKOe4KCTa1fs4z5iySYRjakpIT8jWH7R/r8ScG690t6cG5l6e9FvHYWXOX9EpIqPXrs3V3Xsj8W2u3yjAMLV+T1Kshoa6+F7aT5tchoVdlK7oQMv/25r3akXY07Pi25hPWbtWMucsJCQEAAAAAgIcaISGgH2lsbAzZqad1WKimpqbXFwrr6uoihoOys7NVV1fXrY9VX1/fYTgo4OrVq7p582Zwge7ChQu6cOGCLl68GLJw15PztbW1KioqUkpKioqLi9ut99atW5o8ebK+973v6V/+5V/04osv6vXXX9c//dM/BY85ePCgHn30UcXExOjRRx/V1KlTQ86Rk5OjRx99VD/+8Y81YMAALVu2TDExMfrpT3+qTZs2hT3OP//zP+uZZ57RzJkz9e1vf1uPPfaYLl68qOTk5JDHSU5OlnT3r/1Xrlypn/3sZ/r1r3+tX//611q+fLlaWloi1mez2bRt2zb99Kc/VUxMjP7zP/9Tp0+flnR3cfGJJ57Qf/zHf+iXv/ylcnJy1NDQoKlTp+oXv/iFDMPQr371K40ZM0aff/55579JAKCfq6mpCQsMZ2ZmqqKiotuvux1pbGyUaZqy2WwR70u6+56ko3BQa5cuXZLX6w1ejwPX6dbBoZ6eN01TWVlZwV2N2sI9APcA0WDhW5v1xOChGvHMGOUXXdDKd7Zr5DO/61Ko5OVpr2nQoFgl7TqsnOMubdx2QOMnTOyWkNBBm0NPjxil58b/Qftzy2Q7aWpv1kmN+t1zen3h6uBxk6a++nUwZ5MO2z9WRr5Dr7w67+sAVHgw5emRozXhD5PDnnPmkTN6euRojXl2vPZmnQyGiCZOma4Jf4hX3olvdrhJzSrWE4Of1NMjR2tLSo7255bprXXb9PTI0b0WEgq8Ps+Oe0HpOaWynTSVcuC4hj81UuMnTFRuYVWvhoTu570IhoRazW3fa5NhGHr8icHKbxUe6mh+UGyc3kxIJCQEAAAAAAAeWoSEgH6osrIybEGudWsP0zR7ZIehhoYG1dTUqKKiIuIiZbS1QGlublZtba1SUlKUkpKi/Px8ffXVV/rqq6906dKlHp2/fPmy0tLSgoti7bl27Zpu3boVMhcfH6+BAwf21EsDAOijGhoawnbtaR3SraioUE1NTY9ci+vr61VVVRUxsBx4fJfL1e2Pe7/8fr/Ky8uD1+nTp08Hr9OnT5/u0fmKigodPnxYly5dardG7gEQDRa+tVmvzFyoJ4cM15NDhmn0mHHakpKjpF2HNSg2VoZhfB2+iNXkP82KGCrJPPKRXp72mp4cMkyDnxyqGa8t1paUHBmGoQEDBmrY8BGynTQjnnN76hGteXdXcH7AgAEaFBurjPyK4Pkz8is0fdYbGjZ8hIYMHa5nRo3VkhWbQgI7WUcrNeO1xRr+1EgNGhSrkaPGaNmq9zRy1JiQxwocv3lHpp4ZNTbkOX/zeA69Omdh8PFGPvM7zXtzpbI+qAx77sn7j2nCHyZr0KBYDR48RC9Pe01Juw4Hn/ug2NhOh4O66/V5euRozVu4SocLzrZ77nvfz7Ye/7UFb2nQoNjgcxo5aoxsJ0099fQzGjBw4N1jB8Vq9uvLuvReLErYEPa8Au/R/tzTGv7UyLAdqtqbHzrsaT0z+jl2EgIAAAAAAA81QkJAP9XY2CiXy9VmWCcwCgoKVFJSoqqqKlVVVam+vj5kNDQ0qKmpKWy+pqZGVVVVqqioUFFRUYePEy2tz+7V1NSkq1ev6urVqyF/yd/T812xYMECLVy4MPjvmpoaff/731dqaup9nQ8A0P9FavEVKbRTVFQkp9Opqqoq1dTUhF3vm5qa1NDQEDYfuG8oKSlpMxR0bzgoGlqf3evmzZvB6/TNmzd7bb6zuAdANFj41ubguJ9dbxiMaBnpuaeD38uEhAAAAAAAwMOKkBDQzzU1NammpkYlJSXtLuD1xLDZbKqsrFRDQ4PVL0OfduTIEf3P//yPfvvb38owDP3Xf/2Xtm7danVZAIA+oKGhQZWVlRHbfvX0KCkpsaTdaX/CPQCiASEhRn8ZhIQAAAAAAAAICQEPlUBgqLy8vMO/+r+fkZ+fr5KSErlcLoJBAABEmYaGBrlcLpWUlHS4A+D9jIKCAlVWVhIMAvoZQkKM/jIICQEAAAAAABASAh5qgTZidXV1crlcqqysVFFRUcgoKCgItiNpPbKzs5Wdna2cnBzl5eUpPz9fLpfL6qcEAAA6qbGxUfX19TJNMxgeinS9LygoCJuvrKyUy+VSXV1dVLYTBdB9CAkx+ssgJAQAAAAAAEBICMB9crvdstlsYcPtdltdGgAAAIBusn13VjBYkZ572vKgR38dL7w0pcNhdY19fWzdbQt+LxecKLP6owUAAAAAAGAJQkIA7pvL5QoLCdntdvn9fqtLAwAAANANMg7bg8GKzbtyLA96MBj3O9Ympga/lx2VVVZ/tAAAAAAAACxBSAjAffP7/SosLAwLCjkcDqtLAwAAANANXOc/CwYrVm5IsTzowWDcz8gprAppnee7ddvqjxYAAAAAAIAlCAkBeCAejydi27Ha2lqrSwMAAADQDVqHK2g5xuiLo3WrscRt+6z+SAEAAAAAAFiGkBCAB2aaZsS2Yz6fz+rSAAAAADyg3KMngwGL5et2WB74YDC6Mg594AwJurnOf2b1RwoAAAAAAMAyhIQAdIvi4uKwoFBZWZnVZQEAAAB4QL5bt5WwdlswZLF5V47lwQ8Go7NjbWJq8Ht3++4sqz9OAAAAAAAAliIkBKBbeL3eiG3HqqurrS4NAAAAwAMqOFEWshtLSsYJy8MfDEZHY+P7WSHftxdrrlj9UQIAAAAAALAUISEA3aa6ujpiUMjr9VpdGgAAAIAHtGd/HkEhRp8Z7+3KCfl+/bD0I6s/QgAAAAAAAJYjJASgW5WWloaFhIqLi60uCwAAAMAD8t26rcRt+0KCF+/ReowRZSOnsErvJO0P+T7NOGy3+uMDAAAAAAAQFQgJAehWPp9Pdrs9LCjkcrmsLg0AAADAA4oUFFq+bodSsz60PBzCYGzbe0RLVm0lIAQAAAAAANAGQkIAup3b7Y7Ydszj8VhdGgAAAIAH5Lt1O6z1WCAs9N6uHKXnnFZOYZXlgRFG/x+HPnBq76FT2vh+lpav2xH2PVlwoszqjwsAAAAAAEBUISQEoEc4HI6wkFBhYaH8fr/VpQEAAADoBgUnypSwdltYMIPBsHqs25Qi1/nPrP6IAAAAAAAARB1CQgB6hN/vj9h2zOl0Wl0aAAAAgG7iu3WbsBAjakbC2m1yVFZZ/bEAAAAAAACIWoSEAPQYj8cTse2Y2+22ujQAAAAA3cx1/jPlHj2p7buzCA0xemWs25Si7buzVHCiTHVX663+CAAAAAAAAEQ9QkIAepTL5QoLCdntdtqOAQAAAAAAAAAAAADQiwgJAehRfr9fhYWFYUEhh8NhdWkAAAAAAAAAAAAAADw0CAkB6HFerzdi27Hq6mqrSwMAAAAAAAAAAAAA4KFASAhArzBNM2LbMZ/PZ3VpAAAAAAAAAAAAAAD0e4SEAPSa4uLisKBQWVmZ1WUBAAAAAAAAAAAAANDvERIC0Gu8Xq/sdntYUMg0TatLAwAAAAAAAAAAAACgXyMkBKBXVVdXh4WEbDabvF6v1aUBAAAAAAAAAAAAANBvERIC0OtKS0vDQkLFxcVWlwUAAAAAAAAAAAAAQL9FSAhAr/P7/RHbjrlcLqtLAwAAAAAAAAAAAACgXyIkBMASbrc7Ytsxj8cjSWppabG4QgAAAAAAAAAAAAAA+g9CQgAs43A4wkJCx48fl9/v186dO3X79m2rSwQAAAAAAAAAAAAAoF8gJATAMn6/X4WFhSEhoRUrVqioqEhJSUnavXu31SUCAAAAAAAAAAAAANAvEBICYCmPxxMSEnr//fc1ceJELV++XBkZGTp37pzVJQIAAAAAAAAAAAAA0OcREgJgOZfLpby8PK1du1bx8fFavHixtm3bpqamJvl8PqvLAwAAAAAAAAAAAACgzyMkBMByly9f1ty5czVz5kylpaXJZrMpISFBx44ds7o0AAAAAAAAAAAAAAD6BUJCACzlcrk0ZcoUrVq1SikpKUpOTtaOHTuUmJio+fPnq7q62uoSAQAAAAAAAAAAAADo8wgJAbDUrVu3dPjwYeXl5SktLcXPSJ8AACAASURBVE2JiYnasmWLtm3bpj179shut+vSpUvB9mMAAAAAAAAAAAAAAKDrCAkBiCrFxcWy2WwhIykpSXv37tWePXusLg8AAAAAAAAAAAAAgD6JkBCAqOLz+WS328OCQufPn9eyZct09uxZq0sEAAAAAAAAAAAAAKDPISQEIOqUl5dr4cKFmjVrlubPn6+EhAQlJibKbrdrzpw5amxstLpEAAAAAAAAAAAAAAD6FEJCAKJKS0uLZs+erbfffluZmZmy2Ww6dOiQUlJStHXrVm3fvl1Op9PqMgEAAAAAAAAAAAAA6FMICQGIKjdu3NBbb70lv98fse2Yy+WyukQAAAAAAAAAAAAAAPocQkIAos6WLVvU3Nwst9sdFhKy2WzyeDxWlwgAAAAAAAAAAAAAQJ9CSAhA1KmpqdGWLVuUm5ur/Pz8YDgoIyNDS5cu1ZQpUzR//nzt27dPLS0tVpcLAAAAAAAAAAAAAEDUIyQEICrV19fryJEjunXrlgoLC5WUlKT4+HgtXrxYGRkZcjgcKi8v16lTp6wuFQAAAAAAAAAAAACAqEdICEDUO3r0qKZMmaIdO3aEtB0rKSlRWlqa1eUBAAAAAAAAAAAAABD1CAkBiGp+v18zZ85UQUFBSEDo8OHDevXVV1VWVmZ1iQAAAAAAAAAAAAAARD1CQgCi2tWrV/X+++9LkoqLi2Wz2ZSWlqZp06Zp8eLFwZDQ5cuXdfv2bStLBQAAAAAAAAAAAAAgahESAhDVmpubtXnzZnm9Xn366adasWKFJk6cqJUrVyovL082m03V1dW6cuWK9u3bZ3W5AAAAAAAAAAAAAABEJUJCAKKe2+3Whg0btHDhQr3zzjtKS0sLaT129OhR7du3T/Hx8Tp79qzV5QIAAAAAAAAAAAAAEHUICQHoc0pLS4MBofT0dM2aNUuzZ8/WpUuXtHPnTjU3N1tdIgAAAAAAAAAAAAAAUYWQEIA+x+fz6YMPPtDGjRsVHx+vVatWKTc3V6ZpWl0aAAAAAAAAAAAAAABRiZAQgD7n2rVrWrZsmV555RXt3r07pPWY1+u1ujwAAAAAAAAAAAAAAKIOISEAfc6SJUu0dOlSlZSUhASEbDabCgsL5ff7rS4RAAAAAAAAAAAAAICoQkgIQJ9z69YtHT9+XKmpqTp69GhYUKigoEB2u93qMgEAAAAAAAAAAAAAiBqEhAD0aW63OywktHHjRu3bt8/q0gAAAAAAAAAAAAAAiBqEhAD0eS6XKyQktGzZMu3atYu2YwAAAAAAAAAAAAAAfI2QEIA+78yZM5o9e7aWLFmi9evXa/r06UpLS5PD4bC6NAAAAAAAAAAAAAAAogIhIQD9wuXLl5WcnKwNGzYoPj5es2bN0rRp05SQkKBz585ZXR4AAAAAAAAAAAAAAJYiJASg3zBNU/v379fcuXNls9mUn5+vgwcP6vPPP7e6NAAAAAAAAAAAAAAALEVICEC/smfPHq1YsUI2my04ysrKrC4LAAAAAAAAAAAAAABLERIC0K/s27dPmzdvDgkJ2Ww2VVdXW10aAAAAAAAAAAAAAACWISQEoF+5c+eOLly4EBYSstlsKi8vl9PptLpEAAAAAAAAAAAAAAB6HSEhAP1Sdna23nvvPWVkZMhmswX/nZ2dbXVpAAAAAAAAAAAAAAD0OkJCAPqdI0eOaOrUqVq6dKkWLFigJUuWaNWqVbLZbDJN0+ryAAAAAAAAAAAAAADodYSEAPQ7CxYsUG1trWpra2Wz2bR///6QtmMej8fqEgEAAAAAAAAAAAAA6FWEhAD0O++9956am5slSQ6HIyQgZLPZVFhYKL/fb3GVAAAAAAAAAAAAAAD0HkJCAPqdixcvKiUlRRUVFbpy5YrsdntYUMjpdFpdJgAAAAAAAAAAAAAAvYaQEIB+yTRN7d27Vz6fTx6PJywkZLPZ5Ha7rS4TAAAAAAAAAAAAAIBeQUgIwEPB5XKFhYTsdjttxwAAAAAAAAAAAAAADwVCQgAeCn6/X4WFhWFBIYfDYXVpAAAAAAAAAAAAAAD0OEJCAB4aXq83Ytux6urqDr92wYIFio2NlWEYSk1N7fbj79XY2KiDBw9q6tSpGj58uIYOHaoXXnhBe/bsYfcjAAAAAAAAAAAAAECXERIC8FAxTTNi2zGfz9fh13766addCv109fjWAiGjgoICNTc3686dO8rNzdXAgQM1b968Lp8PAAAAAAAAAAAAAPBwIyQE4KFTXFwcFhQqKyvr8Ot6MyQ0f/58vfvuu2Hzy5cvl2EYKi8v7/I5AQAAAAAAAAAAAAAPL0JCAB46Xq9Xdrs9LChkmma7X9ebIaGjR49GrCczM1OGYWj37t1dPicAAAAAAAAAAAAA4OFFSAjAQ+Hq1avauHGjJkyYoJEjR2rkyJH64x//qOTk5JCgkNfrlXS3LdmMGTP0+OOP6+mnn9a6det07ty5NkM/XT3+fqWnp8swDB0+fLjbzgkAAAAAAAAAAAAA6P8ICQF4KOTm5mrYsGH/z979B0ddH/gf33pzWqd3vY7XcTr25lrrt7adzjDXH1emPau9uQ8JK6CoiBRBOLUivy34AwsYRQw/UgUUUZRIgBKESBKW/IAssNEYV5KYBLIlu+TWkugmJcYFFtaEXcnr+wfNp1myG5KQsAn7fMy8x+Gznx/vTXbzj895v1VbWytJCgaDeuqpp5ScnKxt27aZkZDT6ZTP59Odd96pSZMm6dChQ/rss89ks9k0Z86cqNFPb8+/FMuWLVNycrJaWlr67Z4AAAAAAAAAAAAAgCsfkRCAhPDhhx8qKysr4lggENDIkSP1xBNPRKwmtGDBAhmGoUOHDkWcv3bt2qjRT2pqaq/O76uWlhaNHj1a69ev75f7AQAAAAAAAAAAAAASB5EQgIQ2adIkPfjgg2YgVFRUpNtvv11jx47tcm5ZWVmX6Ke9vV133HGH7rrrrh6d31ft7e165plnNH36dJ09e/aS7wcAAAAAAAAAAAAASCxEQgASQltbm95++2098sgjuvPOO2W1WmW1WmUYRkQktGvXLhmGoYkTJyocDkfc4//+7/+6RD8nT56UYRh6+OGHuzwz2vl9lZ6erokTJ+rzzz+/5HsBAAAAAAAAAAAAABIPkRCAhPDss8/KMAzZbDYFg0Hz+NSpUzVz5kyVlJREREITJkyQy+WKuEd3kdBDDz3U5Zn9FQnt3LlT9957rz799NNLug8AAAAAAAAAAAAAIHERCQG44p05c0aGYWjmzJldXps6dapmzZolv98fsd3Y6NGjZbfb1dzcbJ7b3XZjPd2erLfy8vJ099136+OPPzaPBQIB+Xy+Pt8TAAAAAAAAAAAAAJB4iIQAXPHOnj2rpKQkTZ8+PeJ4KBTS6NGjNWvWLEmS2+2W3W7XnDlzZBiG0tPT5XA4zG3H1q5dGzX6SU1NlWEYOnToUMTxWOf31L59+zR27Fh5PJ6I4wcOHNAzzzzTp3sCAAAAAAAAAAAAABITkRCAhJCSkiLDMJSVlaUvvvhCJ06c0IoVK2QYhhkJhcNhOZ1O7dixQ6NGjdI999yj9PR07d+/X7t379akSZOiRj8+n0933nmnJk2apEOHDumzzz7r9vyeKCkpUVJSkp5++mlt2rQpYjz77LNEQgAAAAAAAAAAAACAXiESApAQTp8+rZdfflkTJkzQyJEjNWXKFGVnZ2vKlCkyDENWq1W1tbUKBAKy2+3aunWrHnzwQSUnJ2v06NFauHChqqqqZBiGkpKSZLVaI+7v9Xr1+OOPy2q1auzYsUpNTe32/IuZNWuWDMOIOYiEAAAAAAAAAAAAAAC9QSQEABfwer2y2+0Rw+FwqLW1Nd5TAwAAAAAAAAAAAACgT4iEACAKp9PZJRRyOp3xnhYAAAAAAAAAAAAAAH1CJAQAUbS2tsrhcHQJhbxeb7ynBgAAAAAAAAAAAABArxEJAUAM9fX1XSIhu92uQCAQ76kBAAAAAAAAAAAAANArREIA0I3y8vKo246Fw+E+3e+JJ5646AAAAAAAAAAAAAAAoL8RCQFAN8LhcNRtx9xud7ynBgAAAAAAAAAAAABAjxEJAcBFNDc3R912zO/3x3tqAAAAAAAAAAAAAAD0CJEQAPRAdXW19u7dq8LCQhUWFiovL08FBQUqLS1VaWmpbDZbxCguLjZfKy0tlcfjkcfjUVNTk06dOhXvtwMAAAAAAAAAAAAASDBEQgAQRTAYlNfrVVlZmex2e5cI6FJHR2Dk8XiIhgAAAAAAAAAAAAAAA45ICAD+piMMKi4u7vco6GLDbrfL5XIRDAEAAAAAAAAAAAAABgSREICEFwwGVVVVddGQp7S0VDU1NXK73WpoaFBLS4s5LnTq1KmI191ut9xut0pLS1VQUHDR50S7JwAAAAAAAAAAAAAAfUUkBCBhhUKhbuOgsrIyNTQ0DMjqPsFgUE1NTaqsrIwZDZWWlrKyEAAAAAAAAAAAAACgXxAJAUhIp06dirqtWGlpqRoaGhQKhS7rfDqCoQvnU1BQoIaGhss6FwAAAAAAAAAAAADAlYdICEDCOXXqVJfVeyorKwfFqj2hUEhut7vL/AiFAAAAAAAAAAAAAACXgkgIQMLpvIJQQUGBmpqa4j2lLoLBYJd5DoaICQAAAAAAAAAAAAAwNBEJAUgoXq93yIQ3oVAoIhQqKyuL95QAAAAAAAAAAAAAAEMUkRCAhFJZWWlGN16vN97TuahgMBgRNQEAAAAAAAAAAAAA0BdEQgASSmlpqRndtLS0xHs6PdIxX5vNFu+pAAAAAAAAAAAAAACGKCIhAAmlrKzMDG4aGhriPZ2LYiUhAAAAAAAAAAAAAEB/IBICkFC8Xm9EdBMKheI9pW51XvmorKws3tMBAAAAAAAAAAAAAAxRREIAEkooFJLdbjfDG7vdrlOnTsV7Wl2EQqGIVY9sNtugnCcAAAAAAAAAAAAAYGggEgKQcFpaWiLiG5vNJpfLpWAwGO+pKRQKqaGhQQUFBRHzc7vd8Z4aAAAAAAAAAAAAAGAIIxICkHD8fr/8fn+XEMdms6mqqiouK/YEg0F5PJ6oc/J6vfL7/QqHw5d9XgAAAAAAAAAAAACAKwOREICE0NzcLJfLJYfDIbvdLrvdrsbGRpWWlnaJcjq2IXO5XGppaVEoFBqQObW0tMjr9aq4uDjmHPx+f8Scq6ur1djYSDAEAAAAAAAAAAAAAOgVIiEAV6xoYVDnUV5eLul8rBMrFuoc7FRVVcnj8aihoUEtLS09WnEoGAyqpaVFTU1N8ng8crlcMaOgzs9qaGiQJHm93qhzJxgCAAAAAAAAAAAAAPQGkRCAK8rFwqBokVCHU6dOqaamRna7vduIZ6BGWVmZGQd16C4SIhgCAAAAAAAAAAAAAPQUkRCAIa83YVDn4fP5Yt6zIxi62ApDlzKKi4tVWVmphoaGmFuaBQIBlZSU9Op9EQwBAAAAAAAAAAAAAC5EJARgSOprGFRSUiK3263W1tZePe/UqVPyer1yu92qrKxUaWlpj1YcKigoUGlpqcrKyuR2u+V2u9XS0hIzCoomHA6rvr5eTqezV++VYAgAAAAAAAAAAAAA0IFICMCQcalhUCAQiPdbuGStra0EQwAAAAAAAAAAAACAXiMSAjCoBQKBhA+DYumPYAgAAAAAAAAAAAAAkBiIhAAMOoFAQB6PRyUlJYRBPdTXYMjhcMjlcqm5uTnebwEAAAAAAAAAAAAAMICIhAAMCn0NgzoiF7/fH++3MGgQDAEAAAAAAAAAAAAALkQkBCBuLjUMIma5uI5gqK8/40RclQkAAAAAAAAAAAAArkREQgAuK8Kg+AkEAnK73X3axs3j8RAMAQAAAAAAAAAAAMAQRiQEYMBd6mo2hEH9r6/BkNPpVH19vVpbW+P9FgAAAAAAAAAAAAAAvUAkBGBAdIRBTqeTMGiQ62swVF1drcbGRoXD4Xi/BQAAAAAAAAAAAADARRAJAeg34XBYjY2NqqioIAwaovx+v1wulxwOB78/AAAAAAAAAAAAALiCEAkBuCQdYVB1dXWvwiC73U5YMsg1Nzf3OhgqKSmR1+tlOzIAAAAAAAAAAAAAGGSIhAD0SV8Cko4tqnw+H1tUDTE+n6/XIVjHdmQAAAAAAAAAAAAAgPgjEgLQY4FAgDAowYXDYdXX18vpdPZqOzKPx8PqQgAAAAAAAAAAAAAQR0RCALrV2toqj8ejkpKSXoVBTqdT9fX1hEFXsNbWVrnd7l59NioqKlhdCAAAAAAAAAAAAADigEgIQBd9WS2mcxjEijGJx+/3y+Vy9fizUlJSIq/XGxGRHTx4UCdPnozjuwAAAAAAAAAAAACAKxeREABJ58OgxsZGVVdX9yoMKikpkdvtViAQiPdbwCDQl8DM5XIpEAjI7/dr4cKF2rJli/7617/G+60AAAAAAAAAAAAAwBWFSAhIcB0rwDgcjh5HHQ6Hwww7gFgCgUCPP1urV6/Wtm3bNHv2bLW0tOjYsWPxnj4AAAAAAAAAAAAAXFGIhIAE1NraKq/Xq5KSkl6tGuRyudTc3Bzv6WOICYfD8vl83a4ulJ+fryeffFLz58/Xjh071NjYGO9pAwAAAAAAAAAAAMAVhUgISBAd24n1Zhsou92u6upq+Xw+hcPheL8FXAE6Vq668HOWk5OjGTNmKDc3V2+88YaWLl2qbdu2qb6+XlVVVaqqqor31AEAAAAAAAAAAABgSCMSAq4AoVBIH3/8cdTXmpubo0YZ3Q2n06n6+nq1trZe5neCRNGxmlXHVmQrVqxQamqq7Ha7srOz9dxzzykjI0N79+7VkiVLlJaWphdeeEEulyveUwcAAAAAAAAAAACAIYlICLgC5Ofna/bs2Wpra5N0PsDweDy92k6spKREbrdbgUAgzu8Giaaurk4zZ85UVlaWXn75ZaWmpmr37t3mZzMvL092u107d+7U8uXLtWLFCvn9/nhPGwAAAAAAAAAAAACGFCIh4AqwYcMGvfDCC8rPz1dFRUWvVg1yuVxqbm6O91tAAtu9e7cWLFigVatWKTs7u8tntKCgwPyML126VJs2bdInn3wiSWpvb9df/vIXPsMAAAAAAAAAAAAAcBFEQsAg19bWpry8PG3dulXPPPOMdu/eHfF6IBBQWlqa3nzzTf3hD3/o8XZiPp9P4XA4Tu8K+LuCggJlZWWZK2H5/X6Vl5eroKBAK1eu1MKFC5Wenq6CgoKIz3FRUZGeeeYZvfnmm9q9e7dycnLi/E4AAAAAAAAAAAAAYPAiEgIGuZUrV6qhoUGSdOrUKc2ZM0der1f19fVyOp3avXu3Vq5cqfz8fM2YMSPqSiydtxNrbW2N8zsCemb58uVas2aNioqKunyeCwsLNW/ePK1evVrV1dVqbW3VG2+8oePHj8d72gAAAAAAAAAAAAAwKBEJAYNMOBxWKBQy//3aa6+pvb1d0vkVVpYtW6bNmzebscSmTZu0YcMG2e12vfDCC1qyZIlWrFih3bt3m9uJ+f3+eL0doE9Onz6tGTNmqK2tzVxZqHMk9OKLL+rpp582AyKHw6ElS5bo6NGj8Z46AAAAAAAAAAAAAAxKRELAIFJUVKQtW7Zo2bJleuedd9Te3q5wOKzGxkaVlJTIbrcrJSXFDIDsdrtWr16trVu3as2aNVqyZImmT5+ud999l+3EMKS1t7crJSVFX3zxhaTz8dzx48dVXl6u/Px8TZ8+XW+//bb5PcjOztajjz6q4uJiBQIB8xoAAAAAAAAAAAAAwHlEQsAgcezYMb311luSzscNL7zwgjZu3CiHwxGxxdJzzz0XsaLKK6+8olWrVikvL09ut1sLFy7U9u3bVVxcHOd3BFyaxsZGbdq0Sfv27dNLL70kt9stSSopKdHChQsjvgfPP/+8li5dav7b6/WqtLRUBQUFOnfuXJzfCQAAAAAAAAAAAADEH5EQECdffvllxL/379+vzZs3q7GxUU6nU1lZWZoxY0bEqkFvvPGGMjIyZLfbtWrVKhUWFqq8vFw+n0+StG/fPv3pT39SbW2tuUUZMNR9+umncrlc5r+rqqq0fft2eb1eORwObdy4UTNmzFBubm5EOPTee+9pwYIFWrt2rVpaWuL4DgAAAAAAAAAAAAAg/oiEgDgoLi7W6tWrzX+3trbKZrPpySefjIgcFi1apHXr1pn/fu6551RYWKgtW7Zo0aJF+vDDDyPuSxiERPDFF19ozZo1am5ultPp1OzZs7V58+aI747dbldqaqpSUlL08ccfq7a2Nt7TBgAAAAAAAAAAAIC4IhICLrPPPvvMXPmktrZW1dXVstvt2r17t6ZNm6adO3eakcP69euVkpIiu92ubdu26YknntBTTz2lLVu2qL6+Pt5vBYibkydPKicnR1lZWWpsbFRzc7NKSkrM705GRoZmz55trsTlcrkUDofjPW0AAAAAAAAAAAAAiBsiIeAyO3z4sD7++GOtWLFCy5cvj1j55Pnnn1dqaqr57x07dmjhwoVyu9366KOP9N5776mtrS3ebwEYlMLhsNxut2w2m2bNmtVldSGn06kTJ04oIyMj3lMFAAAAAAAAAAAAgMuOSAi4TFpbW+XxeORwOGS325WVlaUZM2YoLy/PjBhyc3M1c+ZM/elPf1J5ebnef/99ZWdnx3vqwJDR3t6uFStWKC0trcv2Y3a7Xfv379eyZcviPU0AAAAAAAAAAAAAuOyIhIABFggE5HK5ogYLixYt0iuvvGL+2+FwaN++fXrhhReUnp6urKwstba2xvstAEPG3r17lZKSolOnTsnpdHb5zu3atUuLFi1SIBCI91QBAAAAAAAAAAAA4LIiEgIGiN/vV0VFRdQ4qGNkZGRo7ty5Ki4uVn19vcLhcLynDQxpmzdv1muvvabMzEwFg0G5XC5t375dGRkZysjI0Pr16/XEE08oMzNT5eXlOnLkiILBYLynDQAAAAAAAAAAAAADjkgI6GeNjY1RVzCJNsrKyrRgwQIVFRVp79698Z46cEXKy8tTWlqa0tLSlJqaqrlz52rFihV66aWXtGnTJjU1NcV7igAAAAAAAAAAAAAw4IiEgH7S2NiokpKSi4ZBDodDLpdLra2tqqur05o1a1RQUKDTp0/H+y0AVyyfzye73a6cnBwtWrTI/D46nc54Tw0AAAAAAAAAAAAALgsiIeAS+f3+HsdBXq83YkuxTz/9VF9++WUcZw8kDp/Pp5ycHC1evDjiu+n1euM9NQAAAAAAAAAAAAAYcERCQB/5/X5VVFRcNA4qKSmRz+eLiIMAxEdpaanmzJmjJ598UuvWrTO/p4FAIN5TAwAAAAAAAAAAAIABRSQE9FJP46Dy8nL5fL54TxdAJ1u2bJHNZtPmzZs1d+5cbdy4kW3HAAAAAAAAAAAAACQEIiGgh3oTB/n9/nhPF8AFWlpatGvXLoXDYTkcDmVkZOjFF180v7t8bwEAAAAAAAAAAABcyYiEgIvozbZizc3N8Z4ugBi8Xq9WrlypL7/8Us3NzdqxY4dWr15tfocrKiriPUUAAAAAAAAAAAAAGDBEQkAMra2tPY6D2FYMGBo6rxZ04MABrVq1Shs3blRWVpby8/PV2toax9kBAAAAAAAAAAAAwMAhEgIuEA6H5fV6iYOAK5zP5zO/z0888YRef/111dfXx3taAAAAAAAAAAAAADAgiISATpqbm1VSUkIcBCSAcDhsfq8LCgpUVFSk6urqeE8LAAAAAAAAAAAAAAYEkRAgKRAIXHRrMeIg4MrjdDojvucOhyPeUwIAAAAAAAAAAACAAUEkhIQWDofl8Xi6jYMcDoe8Xq/C4XC8pwugn5WXl3f5zgMAAAAAAAAAAADAlYhICAmrsbFRDoej20DI5XIRBwFXMK/XSyQEAAAAAAAAAAAAICEQCSHh9GRrMafTKb/fH++pAhhgREIAAAAAAAAAAAAAEgWREBJGT7cWq6+vj/dUAVwm1dXVREIAAAAAAAAAAAAAEgKREBJCc3MzW4sB6KK8vLxLKAgAAAAAAAAAAAAAVyIiIVzRwuGwXC5Xt3FQeXm5AoFAvKcKIA4ujAfLy8vjPSUAAAAAAAAAAAAAGBBEQrhi+f1+lZSUdLu1mM/ni/c0AcRJIBDo8nfB7XbHe1oAAAAAAAAAAAAAMCCIhHDFCYfD8ng83a4e5Ha72VoMSHBer7fL34bm5uZ4TwsAAAAAAAAAAAAABgSREK4ogUCg29WDSkpK2FoMgCRF/VtBPAgAAAAAAAAAAADgSkUkhCtGtFVBWD0IQDR+v7/L34jq6up4TwsAAAAAAAAAAAAABgyREIa8QCAgp9PZ7epBfr8/3tMEMIhUVFSw1RgAAAAAAAAAAACAhEIkhCHtYqsHuVwuVg8CECHaKkIlJSXxnhYAAAAAAAAAAAAADCgiIQxJ4XA46kogHcPhcLAqCICoov3t8Hq98Z4WAAAAAAAAAAAAAAwoIiEMOX6/Xw6HI2YgVF1dzepBAKLy+XysIgQAAAAAAAAAAAAgIREJYUipr69n9SAAfRIOh6MGhj6fL95TAwAAAAAAAAAAAIABRySEISEcDqu6ujpmIFReXq7W1tZ4TxPAIBbtb4jT6Yz3tAAAAAAAAAAAAADgsiASwqAXCATkdDpjBkL19fXxniKAQS7WKmSBQCDeUwMAAAAAAAAAAACAy4JICINac3Nz1O2BOrYX8/v98Z4igEEuEAhE/Rvi9XrjPTUAAAAAAAAAAAAAuGyIhDBoeTyemKsHOZ1OthcDcFHhcDhqaMg2YwAAAAAAAAAAAAASDZEQBp1wOKyKioqYgZDL5Yr3FAEMAeFwOOpWhQ6Hg23GAAAAAAAAAAAAACQcIiEMKoFAoNvtxXw+X7ynCGCIcLlcUf+WNDc3x3tqAAAAAAAAAAAAAHDZEQlh0PD5fDFXDyopKWHlDwA9FisQqq+vj/fUAAAAAAAAAAAAACAuiIQwKMT6H/p2Vky4ywAAIABJREFUu13l5eUKh8PxniKAISLW3xO2KgQAAAAAAAAAAACQyIiEEFfhcFgVFRUxAyGv1xvvKQKD2meffSar1ark5GQZhqFx48bp7Nmz3V7z4YcfyjAMGYYhq9WqzZs3D/n5bNu2TVarVYZhaPr06V3+ljidTmJDAAAAAAAAAAAAAAmNSAhx09raKqfTGTUOcjgcam5ujvcUgSHjwIEDZmhjs9m6Pfexxx6TYRiaO3dun593+vRpGYahV199dVDMR5Lq6+s1evToLpEQgRAAAAAAAAAAAAAAEAkhTgKBgBwOR9RAyOl0KhAIxHuKwJBy4MABPfDAA0pOTtbkyZN17ty5qOcdOXJEDz744GWJhC7nfDwej+x2e5dIiEAIAAAAAAAAAAAAAM4jEsJl5/P5Ym4vVl5ezv/QB/rgwIEDmjdvnpYvXy7DMFRcXBz1vJSUFO3Zs+eyREKXaz4ul8v8G9I5EiIQAgAAAAAAAAAAAIC/IxLCZdWx2ke04XK54j09YMjqiHK8Xq8Mw9CMGTO6nPPJJ59o4sSJamtrixrlHD9+XK+99poefPBB3XvvvZowYYIWLVqkjz/+OOK8bdu2yWq1yjAMJSUlyWq1ymq1avXq1f02n82bN5vP6Bwivfjiixo5cqQMw1B+fn5EINQ5EnI4HARCAAAAAAAAAAAAANDJkI6E/trSooOHD2uLzaYtNpte2bpVS9evZzAGZLyydau22GzasXevDh4+rJNsiYZBpCPKkaQFCxbIMAxVVVVFnPPSSy9px44d+vLLL6NGQnv27NHYsWNVW1srSQoGg0pLS5PVatWxY8cizu3pSkKXMp9Yzzhy5IgMw9Cbb77ZJTYcPXq0Zs+ezZaFAAAAAAAAAAAAAHCBIRkJHfJ4CIIYg2K8snWrDnk88f5KABFRTmVlpQzD0IIFC8zXP//8c40bN07BYDBmlPPhhx8qKysr4lgoFNLtt9+uNWvWRBzvTSTU1/nEekZNTY0Mw1BaWlqXSGjMmDFavHhxT35kAAAAAAAAAAAAAJBQhlQk5P7LX4iDGINyvPnOOzrm88X7K4IE1jnKkaTp06fLMAx5vV5J0oYNG/Tmm29KUswoJ5YpU6Zo/vz5Ecd6Ewn1dT7RnhEOh7Vjx46okZDT6dRdd92lZ555pkfvCwAAAAAAAAAAAAASyZCJhIo++KBLmLEsPV2v7typt997TzllZSqoqdH+ujoGY0BGQU2NcsrK9PZ77+nVnTujxkIHDx+O91cFCerCKMfhcMgwDKWmpioYDGrcuHFqaWmRFDvKaWtr09tvv61HHnlEd955p6xWq6xWqwzD0KxZsyLO7W0k1Jf5XPiMQCAgh8OhTZs2dYmEnE6nwuEwkRAAAAAAAAAAAAAAxDDoI6HWs2e1Y+/eLnFQRlFR3KMRRmKPvbW1yigq0rL09IjPp83hiPfXBgnowijn3Llzuv/++5WUlKS1a9cqLS3NfC1WlPPss8/KMAzZbDYFg0Hz+NSpUy85EurLfDo/w+/3y+FwyG63a+PGjRGRkMvlUjgcliQiIQAAAAAAAAAAAACIYdBHQhcGQut37dLe2tq4ByIMRsfYW1url7dvJxRCXF0Y5UhSTk6ODMOQYRiqr683j0eLcs6cOSPDMDRz5swu9+6PSKi385GkL774wlx9qPO2Yq+++qoZCblcrohriIQAAAAAAAAAAAAAILpBHQntLS2NCC9YPYgxmMf6XbvYegxxEy3KaW1t1fjx45WSkhJxPFqUc/bsWSUlJWn69OkR54ZCIY0ePbpLJBQKhWQYhtasWSNJOnHihNatW6dQKNQv8+kwevRoTZs2LSISevrpp2UYhjIyMrqcTyQEAAAAAAAAAAAAANEN2kjI/Ze/EAgxhty4MBQ65vPF+6uEBBEtyoklVpSTkpIiwzCUlZWlL774QidOnNCKFStkGEaXSEiSJk2apPnz56u9vV0FBQV64IEH+m0+4XBYLpdLc+bMUXJysjZs2KDCwkK99tprmjp1qgzDUH5+fpd7EQkBAAAAAAAAAAAAQHSDNhJ6ZevWiC3G4h1/MBg9HZ23Httis8X7q4QEYLValZycLMMwZLVaZevmc7dkyRJZrVZz2y+r1aqdO3dKOr+F2Msvv6wJEyZo5MiRmjJlirKzszVlyhTz3NraWvNe5eXlmjp1qu6++249/PDDOnToUL/MJysrS06nU3a7XTabTXPmzNGYMWM0evRoPfXUU3I6nTIMQ0lJSbrvvvskSdu2bTPvM2LEiC5zBQAAAAAAAAAAAIBENygjoYOHD5uRxbL0dO2trY17+MFg9HQU1NRoWXq6+Rk+5HbH+yulmpoacxw/ftw8fvz48QE/3vnfwMUEAgE5HI6I7cU6htPpVCAQiPcUAQAAAAAAAAAAAGBIGpSRUOdVhP504EDcow9Ggo2jR7X/6FEdqDv/377cI6OoyPwMv/nOO/323fjyyy97dX57e7uCwaAyMzPNUV5erkAgoEAgoPLy8styvKCgQKFQqEdzfvnll2WxWFRVVdWj82fNmqXvfOc7+s53vtOrnw0GH5/P120gFA6H4z1FAAAAAAAAAAAAABiyBl0k9NeWlohVhOIejDASZhyoO6oDR93a74kyjrrPR0M9vNfe2lrzc7x0/Xqd7KfVTz744AOVlZXpzJkzFz339OnTOnHihPx+f1yH2+1WdnZ2j1cU+ulPf6qrrrpKs2fP7vHPZdmyZURCQ5zX640aB9ntdrlcrnhPDwAAAAAAAAAAAACGvEEXCb1bUWGGFet37Yp7OMJIjBEzDooSC/X0nq/u3NnvW45VVlZqx44d2rFjR7ex0PHjx5WZmaljx47FPRLqGD1ZBaa6ulq33XabRowYoX/913/V2bNne/RzIRIausLhsFwuV8xAyOv1xnuKAAAAAAAAAAAAAHBFGHSR0GabzQwrspzOuMcjjAQYUWKgA3V15ujyWg9DoT8dOGB+lnfs2dMv34/OkVB3sVBHJOT1euMeB3WML7744qLvb86cOcrIyFBmZqYsFou2b9/e5Zy2tjbNmDFD1113nX70ox9p2rRpSklJ6RIJZWVl6de//rUMw9Ctt94qq9WqI0eOmK+npaXJYrHIYrGosLBQt956q6699lr9+te/VkNDg3bt2qUbb7xR3/jGNzR9+nSdO3eub780xBQOh+V0OqPGQQ6HQz6fL95TBAAAAAAAAAAAAIArxqCOhHLKyuIfkDCu6BFrBaHuIqGeriiUU1ZmfpY322z98v2IFglFi4UGWyTU3NyshoYGhUKhmO/t7Nmz+u53v6tgMKjW1lZ94xvfUHJycpfz5s2bp+uvv15Hjx6VJFVUVOiGG27oEgndd999EZHRq6++qhtvvFGtra3msZqaGlksFo0ePVoff/yxPv30U/3whz/ULbfcorlz5+rEiRPav3+/rrrqKu3cufNSfnW4QCAQkMPhiBkIBfppiz4AAAAAAAAAAAAAwHmDLhLqiCqWrl9/SfHHBptNhmFEHXfcdVe31949fnyXa8bec09cIpb8w4c1+aGHNPaee7T1wIF+vffmoqIu73PRypWX/R6XY0yYPDnm56HzeHLJkp5FQh639tcd7XEk9Nq2bfrzn/+s999/Xw6Ho8/DZrPFjIQ6Rk5OjrKzs1VfXx/3OKhjeL1eZWZm6vjx4zG/+1lZWXrooYfMf0+bNk1XXXWVPvnkE/NYMBjUNddcowULFkRcO3ny5C6RkM/ni1j95+TJk7JYLDp48KB5rCMS2rFjh3ls4cKFuuqqq3Ty5Enz2LBhw7o8E33n8/liBkJOp7NHW9MBAAAAAAAAAAAAAHrnio2Esj/8UEvXrtVTS5dGhD5L167Vijfe6PbatPR0LV27VnePH69RY8Zo6dq1WrlhQ1zilrXbt5vzfzo1tV/vnVtertR165S6bp1GjRnTp8CnP+4xZCOhHqwm1PnzfLG4pydj+/btPT732LFjcY+DehMJWa1Wvf/+++a/P/zwQ1ksFj3//PPmsUOHDslisWjjxo0R1y5ZsqRLJFRbW6vJkyfr5z//uYYPH65f/OIXslgsys3NNc/piIQqKyvNY2lpabr++usj7nXbbbfp0Ucf7c2fsivSqVOn1NLSooaGBnk8Hnk8HpWWlsYcZWVl5nlNTU1qaWlRc3Nz1DjIbrfL5XJFBEKBQMD8/HSMxsZGVhkCAAAAAAAAAAAAgD64YiOhjmF3u3XHXXfJMAyNSEpSbnl5j67Lq65WcnKy5j3zTFzjltzyco295x4ljxyp9N27B+w5Y++555IDn/64x0CNCZMna+bjj+ut/PzzIy9Pb+3e3WVklbzX80jI07tIyOFwqKqqSi6Xq8/Dbrd3Gwbl5eWprKxMn376qU6dOhX3OKhjHDt2TEVFRfL7/VG/9z6fT//0T/+k4cOHR4yvfvWruummm8zzYkVCzz33XEQkFAwG9a1vfUsPPPCA2traJEmtra2yWCzKyckxz+uIhGpqasxjaWlp+va3vx1x/9tuu03Tpk3r65+1ISkUCqmpqUkul0ulpaWy2Wz9OvLy8lRYWKi9e/fKbrfL6/VKkvx+vyoqKmKGRJ1HRUWFuaUeAAAAAAAAAAAAAKB7V3wktL+uTgteeMFcKSZ13boeXZOWni7DMPRWfn7cAxe7261Cl2tAn5EIkdCCF174+7GjHnM1oM5BUE/H31cT6n7Lsc6f5/5QWVkZNQ5yOBxqbm42zzt+/LgyMzPNgGIwjC+++CLm+0pNTdXKlSu7HF+xYoUsFouKi4sl/X27saeeeirivAu3G6uoqJDFYlFeXp55rGO7MSKh2EKhkBoaGlRWVtbvUdDFgqHS0lIdOHCgR3EQ0RAAAAAAAAAAAAAA9F5CREKb9+41I6H7p07t0TX/++ijuvvee7XvIhHIlTKIhPoaCXm6fe5AR0IXxkEdBmMkdPbs2Zjv68c//nHUrciOHz+uf/zHf9QDDzxgHps/f76uv/56HT16VNL5IOjrX/96RCTk9/v1ta99TY888ojOnTsnSVq1ahWRUAzBYFBVVVUXjXnsdrtKS0tVWVkpt9stt9utlpaWmKOpqck8r6ysTKWlpSooKLjocwoLC1VUVHRJwRDREAAAAAAAAAAAAABESohIaH9dne797W/NUOjt997r9tydTuegjV0GahAJDa2VhGLFQR3OnDmjzMxM1dTUxD0O8vv9+uCDDxQIBLrM8/PPP9fPfvYzXXvttfqv//qvLq8PHz5c1157ra655hrz9ba2Ns2cOVPXXXedfvCDH2j8+PF68skndfXVV2v48OE6duyYJKmwsFDDhg3TTTfdpBEjRmjZsmWyWCy6+eab9frrr2vXrl0aNmyYLBaLhg0bJrvdriVLlujf//3fzXudPn1aycnJ+ud//mddf/31mjx5cr/8HgeLUCjUbRxUXFwst9utpqYmhUKhfntuMBhUQ0ODampqZLfbu42FLjUU6q9oqL29XZmZmeZobGxUOBxWOByW3W4f8OP79u3TJ5980m+/AwAAAAAAAAAAAACJJ2EioWdXrTIjocVpad2eu2TNGhmGoW3FxRHH7R6P1mdna35KiiZMnizrqFFKSk7W2HHjNOPxx/VGbm7U++09csR8dsd4ZM4c7a+r05/27dPMJ57QnXffbb52x113dXvNhaOv8+ou8Fm1ebMe+N3vNGrMGFlHjdLkhx/Wixs3druyUk8jIVtlpRatXGnO1Xr77Ro/caIef/bZLj/zgYqE9v75zyo8VP332OeCETUIijYu8tz+joRqa2v16aef9ujcM2fOqK2tTX6/X16vV+Xl5SovL49YXehyHN+9e7cyMzMJHAaZU6dORQ10iouL5fV6FQwGL+tcYgVDeXl5/bKqUOeRnZ2tvXv39jgaCgaD8vv9OnjwoDl8Pp/5Oa+pqRnw49nZ2YP2ezRr1ix95zvfiVjNS5I2bNigG264IWog2B+qqqr0/PPPD8i9AQAAAAAAAAAAgCtRwkRCWaWlZmxz9/jx3cYuEyZN0sQo25I9nZpq3mPG449r+fr1WvHGG5qfkqLkkSNlGIaeWro0aiQ0bsIEjZswQdbbbzeDn/XZ2UoeOVIjrVaNHTcuIhKyezxaunatlq5dq/smTeo2EurrvGIFPvNTUmQdNUrT58/X/JQUTX74YfP+0+fNU1FtbZ8jofTduzVqzBgZhqGZjz+utPR0paWna86CBRoxYoRGjBih5f38u++IhGY99ZSeWLLEnKdhGEoeOVIPTp+ulzZulP3In3sXCR29/JFQX7S3t6u6utpcoaS6utpcoWSgj9fV1endd98dlGFDImtqauqy7VdpaalaWlriPTU1NDREjYX6MxTq2K4vNzdXe/fujbnSkN/vV1lZmZqbm+O+Gldzc7NqamrU3t4e599QdMuWLesSCX300UdasGCBvvzyywF55saNG3XNNdcMyL0BAAAAAAAAAACAK1HCREL76+oiYpeNBQVRz9m6f78Mw1DqunVdXnvy+edlGIZe3Lixy2tvv/eerKNGyTAMrd6yJeYcHv3972UYhiY//LDGjhunlRs2aO+RI9pfV6ft772nUWPG6I677op6TaxIqD/m1RHOjL//fv12yhTllpdHvL5q0ybzZ/eH5cv7FAltKy42o6Voc123Y4f5jNfeeaffI6GOACvlxRe1LitL63bs0KIVKzRq9GgZhqEpj/xOtoryXkRCniERCQGdhUKhiECooKBATU1N8Z5WF263u8uKQv0dCcWKhTrGgQMHlJmZGbGqT7xHOByO968mqmiR0EAjEgIAAAAAAAAAAAB6J6EioRVvvGFGKPNTUqKe83RqqkaMGNElkumIce797W9j3j/lxRdlGIbuj7IK0YXBj2EYWvLyy12fsWRJnyKhS51X59V1tjkcUc+Z+/TTMgxDI5KStNPp7HUk9MDvfifDMPS/jz560Z/P+IkTu13tqS+R0MSpU7W7sjLi+IGjbmWVvKc77rpLhmFo6iOPyH7kzxePhHqwihCREAajysrKiEAoFArFe0oxtbS0RIRCe/bsGZBIKFYslJubq8zMzLiHQT2NhNra2jRjxgxdd911uvnmmzV+/Hg9+eSTuvrqqzV8+HAdO3ZMaWlpslgsslgs2rNnjwzD0DXXXCOLxaKamhplZWXp17/+tQzD0K233iqr1aojR47EfM6PfvQjTZs2TSkpKRGR0NatWzVs2DDzvh3a29u1bNky/eQnP9F///d/61e/+pXWrl1rrpDUeX6FhYX6zW9+o2uvvVY/+clPVFlZad5n1apV+t73vqevfOUrGj58uIYPH67XX39dkvTuu+/q1ltvNd/DHXfcodLS0v74SAIAAAAAAAAAAABDWkJFQrbKSo1ISpJhGBo1Zoz2XrBtlt3j0dh77tFDs2ZFvb7g8GHlHzoU8/6vvfOOGdoUHD7cbQSTlJwc9V77jh6V3eOJek2sSKg/5tUR+ETbZq1jbLDZzPs8t3p1ryKhrQcOmNempafHfMYf33rLPG/Tnj399rvPLS9XocvV9bWjR7Xf49aqTRnmc1dlZHQbCR3oYSBEJITBqPNWXoNhe7GL6byi0K5du7R79+5LHrEioY6xc+dO2Ww25ebmqqSkJO5hUMeoqamR3W6P+bOaN2+err/+eh09elSSVFFRoa9//etdVvipqamRxWLR//zP/+jQoUPy+/0aNmyYampqdN9992n79u3mua+++qpuvPFGtba2dvucG264IeZzOkdCTz/9tL7//e/r888/lyT99a9/1Q033KBVq1Z1uc5qtero0aP67LPPdMstt2j48OER94+2klAoFNK//Mu/RPyc5s6dq4ULF8b8uQEAAAAAAAAAAACJIqEiof11dXpk7lwzBnl1+/aI197ctet8JLJ580XvY/d4ZPvoI73zwQfKKi1VVmmp1mzdat47q7S020jot1Om9HjOF4uE+mNeHYHPvMWLY947//Bh8z7RQqruIqHUdevMa1/Zts2c24Wj87Zm0bZ8G5Bx9KiK/lyjkVarDMPQgzOmn18pqGP0YQUhIiEMVp1X5hkKOq8mlJube9HAp7/HsWPH4h4HdYyDBw8qMzMz6s8pGAzqmmuu0YIFCyKOT548OWa8s3XrVvPY8ePHdfbsWfl8Pp07d848fvLkSVksFh08eLDPz+mIhE6fPq2vfvWrSktLizhv3rx5uuGGG7pc9/bbb5vH1q9fr6uvvtpccUiKHgk1NzfLYrHo1VdfjTjWETQBAAAAAAAAAAAAiSzhIqGXMzPNCGX6/PkRrz22cKFGWq0xV9vZX1en9dnZ+t3s2bLefrt5n2hjW3Fxt8HPwzFWK+prJHSp8+oIfBauWNHtXKyjRpnbgfUmEnriuee6nVe08dTSpZcnEvrbmPzQgzIMQ8kjR0ZfPeiop9f3JBLCYNM5EhrMW411aGhoiFhJKDs7+5JHT+KgrKws7dy5c8hEQocOHZLFYtHGjRsjji9ZsiRmvPPRRx91uU9tba0mT56sn//85xo+fLh+8YtfyGKxKDc3t8/P6YiEDh48KIvFou9///vmFmHDhw/Xj3/8Y/3bv/2bTp8+HXN+O3fulMVi0ZkzZ8xj0SIhSVq4cKH+4R/+QTfddJMWLFigP//5z1F/ZgAAAAAAAAAAAECiSbhIqNDlMkOX5ORk5VVXRxyfvWBBzGsXrVxpBiyTH3pIS9eu1cuZmVq7fbvWbt+u51av7nEk1JNVgXp6TX/Mq7vAp/MYc+edMgxDd959d6/uMfcPf4hYIahjbt2NP+3bd1kjoc6rTOUfqj4fBR31nN+SrI/3JBLCYFNaWmpGN1VVVfGeTrdCoZCKi4vN+RYUFMhut1/y6C4OysnJ0d69e2W321VQUKD3338/7nFQx/D5fGpsbIz6s4oV7zz33HM92gZMOr9K0Le+9S098MADamtrkyS1trbKYrEoJyfnkp/TEQmlp6d3+3uPNr+cnBxZLBYzJJJiR0KS9Omnn+qll17Sf/zHf+grX/lKxHZmAAAAAAAAAAAAQKJKuEjowmAlLT1d++vq9PLftuRan50d9ZqMwkLzmjlPPx31nLfy8y97JNRf8+oIfP6wfHm3c+nrSkJPLllizmFzUdFljX96HAnNmWPOsbCmpl/uSSSEwaapqSliNSGPxxPvKUUVCoUigiabzaaioqIBi4Q6x0EdIzc3V5mZmXGPgzqPcDgc9efVsQ3YU089FXG8J9uAdaioqJDFYlFeXp55rGO7sY5I6FKe07Hd2OOPPx5xntfr1Zw5c7qdX7RIKCMjw4yE2tvbFQwGdeLECdnt9oj7P/DAA7rxxhsFAAAAAAAAAAAAJLqEjITeyM01Y5Cp06Zpf12dpj32mO646y7Z3e6o1/xh+XLzmq0HDvQ5xunvSKi/5tUR+MxbvDjmPPIPHTLv87vZs2PeI1oklPraa+a1a99++7LGP69s26Y/vvXWRc+7f+pUGYYh66hR/fbsoRIJhUIheb1eeTyeLtFIQ0ODWlpadOrUqTjNDv2tsrIyIr4pLi5WS0tLvKdlamhoUEFBQcQcLwx4+isSihYHdYyCggJlZmbK7XbHPQ7y+/1qbm7Wl19+GfPnNn/+fF1//fU6evSopPPRz7e//e0eR0J+v19f+9rX9Mgjj+jcuXOSpFWrVkVEQrGe8/Wvf71Hz1m0aJG++c1vmteGQiGNGzdOy5Yt6/a6aJHQnj17ZLFYFAwGdfDgQf30pz9VbW2tvvvd7+rkyZPmeffff79Gjx4d8+cGAAAAAAAAAAAAJIqEjITsHo/uuOsuM1rZUlSkEUlJWvDCCzGveWzhQvN8W2Vl1HNe37nzskdC/TWvjsBn4tSpMefx5q5d5n2eW7Mm5j2iRUKZBw6Y115staJpjz2m5JEjlVFY2C+/70d//3uNtFpjBmD76+pUcPiwkpOTYwZQgyUSam1tvaTrQ6GQGhoaVFVVpbKysojjnYOMzmId70s0tGHDBt1www0KBAL9cm1VVZWef/75Xt8r0YVCoS6hkM1mU2lpqZqamuI2p4aGBtnt9i7z2rNnT78FQh2RUHdxUOeRk5OjpqamuMdBVVVVyszM1CeffBLzZ9jW1qaZM2fquuuu0w9/+EM9/PDDWrx4sf7f//t/5jm7du3SsGHDZLFYNGzYMM2ePTviHoWFhRo2bJhuuukmjRgxQsuWLZPFYtHNN9+s119/vctzfvCDH2j8+PF68skndfXVV2v48OE6duyYtm7dGvGcrVu3Sjq/4s8f//hH/fjHP9Ytt9yiW265RcuXL1d7e3vU+dntdm3cuFE333yzLBaL/vM//1MfffSR+ZkZNWqUfvazn+kXv/iFCgsLderUKc2ePVs///nPZRiGfvWrX2nixIn661//2q+fVwAAAAAAAAAAAGAoSshIaH9dnZ5autSMVsZNmGDGQrHOX5yWZp7/Vl5e9HP++MfLHgn117w6Ah/DMLTN4Yh6zuwFC2QYhkYkJSn7ww97FQntr6vT/z76qAzD0Nhx47T3yJGo5+x0OjUiKUl3jx8vu8fTb5FQd1vJ7a+r04o33hiQlY76OxKqrKxUXl6e/vKXv/Tp+o4YqKCgICIS6ngtmmAwqJaWloiVZjrfp6qqqsfP/+ijj7RgwYJuV0PpzbUbN240txtC7zU0NHQJcjr/XpuammJ+LvpDMBhUQ0ODysrKos5j9+7d/bbFWOfR23seOHBAtbW1KikpUWZmpjIzM1VSUqL6+nrV19cP+PF3331XmZmZys3NVX19fczI7sSJE2pra4s4NmPGDCUlJQ3Y7xAAAAAAAAAAAADA0JGwkdAWu92MQgzD0L0TJ3Z7/tb9+81zJz/0kPIPHYp4fXNRkUZarZc9EuqveXUEPskjR+q3U6Yot7w84vUXMzLMeyxcsaLbe8SKhN5+911zLvMWL+4SAeUfOqRJDz0kwzD08tat/fa77vj53XPffV3e1/66Ov3AMMpyAAAgAElEQVRp3z6NGjPG/Bn3V5w0UJFQxzZJeXl5am5u7vb8UCikqqqqiNAjGAz2y1yamppUWVnZJTa6nIiELl0wGJTb7e6yvdeF25FVVVXJ6/X2eeu5jtDM4/GorKws6opBneOg/l49qD9GQUGBcnNzlZubq4KCgst6vLCwMGIuJSUlcrlcamxsNFcYS0lJ0ZIlS8yfeUNDg775zW9qx44d/fZ5AQAAAAAAAAAAADB0JWwktL+uTvdOnGiGL8+uXn3R81Neesk8f8ydd2re4sVanJam6fPna0RSkhm4dGyplbpunXa8/77219UpLT1dqevWacKkSTIMQ+Pvv1+p69Ypdd06bSwo6PIsu8djvh7tmn1Hj17yvHLLy837dUQyTy1dqskPPyzr7bdr+rx5mrd4sSY9+KB5/aO//72KamvNZ0e7x4MzZih13Tqt2rSpy/vaWFCgMXfeKcMw9NspU7RkzRqlpafr6WXLdMfYsee3MuvB76I3Y/Ef/6gRSUkyDEOjxozRE0uWKC09XSvffFOPLVyopL9tM/bo73+v/MOH+/XZAxkJdQyHwxE1FgqFQmb40XkVoIHU3coznbcfqqmpkSSlpaXJYrHIYrGosLBQv/nNb3TttdfqJz/5iSorK7u9dtWqVfre976nr3zlKxo+fLiGDx9uboeE3vH7/frggw9UUFCg3bt3x4x3Yo3S0tIuo7i4uNf3Gaxx0FAYJSUl2rBhg375y1/qtttuk2EY+uUvf6m33nor3h8vAAAAAAAAAAAAAINEQkdCz65ebcYv73zwQY+uWZ+drUfmzNHoO+7QiKQkjbnzTv1uzhyty8rSW/n5EasTGYahtdu3a39d5HZeF45oK+/sPXIk5vmGYcjudl/yvDYXFUWdy97aWi1Zs0YTp06VddQoWUeN0qSHHtIf33orIk7aX1cX9R4dY8LkyVF/hnnV1Up58UXdP3Wqbh81SsnJybp7/HjNffppbe5my7dLGdkHDyr1tdc07bHHdPe99yp55Egljxypu8eP1+wFC/RGTs6APLfz57m5uVlnzpy5pO9HtEgoVizU1NQku93ep1Vf+iIYDMpms5kRTzQ1NTURoU/nY1arVUePHtVnn32mW265RcOHD7/otawkdGnC4bA8Hk+X4KSoqEj5+fl9CoZ6O/Ly8lRYWDgg24ol8nA6nfJ4PGpublY4HI73Rw0AAAAAAAAAAADAIJDQkRCDMdCj8+d5x44dcrlc5mfd5XKZgU9Pj2/fvj1mJHSxlYUuh5qaGtlstm5fjxUJvf322+ax9evX6+qrr1Z7e3u31xIJ9V1zc7McDsdFY5NAIKCWlhZ5vV5VVlb2eZWg0tJS5efnKz8/X3v27CEKilM05Pf74/3RAwAAAAAAAAAAABAnREIMxgCNgpoa87O84s03L1sktGPHDh08eFDnzp27rN9dSfJ6vbLZbDG3HOsuEvroo4/MYzt37pTFYolYeYlIqH+0traqoqKiR2FJ589fd1paWrqMaCtYVVdXxz2WYZwfFRUV8nq9CgQC/f0RAwAAAAAAAAAAADBIDbpI6JWtW82woqCmJu6hB4PR15FTVmZ+ljdHWV3nzJkzam5u7rINWXfHS0tLu42DSktLzWu8Xq+qqqoG/kv7N6FQSMXFxSouLo55TneRUOdjOTk5slgsOn36dLfnEQn1jtfr7VFAMlCrUfn9/rjHMYzov+/q6mrV19ertbW133/vAAAAAAAAAAAAAAaHQRcJbbbZzLAip6ws7qEHg9HXkeV0dhsJ9UVlZWXMlYM6B0XS31f1KSsri7myT39qaWmRzWaLuoJMh/6OhDIyMsxIqL29XcFgsD/f0hXD7/erpKSkR8GI2+1WOBwesLmUl5fHPYphdD9KSkrkcrnU2Ng4oJ8FAADw/9m7/+Co6nv/49ve3tpO7+3t2I7TsXdu29tvtZ3OMLetlWlr7b1zDz8iouIPbFHUXn8Byg9BEOVHJAYCRPkZUX6GHwZI+BEI+b2BjYS4kgQSSGp2Q1eSyIrGuJAILrDC6/uH3dMsu0k25MfJj+dj5j1Dzp5z9nPOnrPLzHnN+wMAAAAAAAAAPavXhYQyHA4zWLExP9/yoAdFXWuty8oyr+W84uIuuT+uDglFCge15PF42uzs01nnz58PCSC1F9Lp6pBQbm6ubDabzp8/r8OHD+tXv/pVVxxWvxEIBFRVVRVVMMTpdPbI1FN0E+p75XQ65Xa7u6W7FAAAAAAAAAAAAICe0+tCQq6TJ81gxZKUFMuDHpT1NWz48A5X3PLllo87ceNG81qu9Xq75P4IhoTaCwe15vTp0youLpbH42mz4097GhsbVVhYqIyMDLlcrqi2SUlJ0aBBg2Sz2TRo0CClpKRo7969IcvsdruSk5N10003yWaz6Te/+Y2OHDkScVvpyynORowYoV//+te69dZblZOTc83H1N/U1dXJ4XC0GwBxOByqq6vr0bFFO+0Z1TurrKxMdXV1PRIqAwAAAAAAAAAAANB1el1IyH/xohmsiF+9WvvKyy0Pe1DW1o7i4g5XZkWFpWNOLykxr+HE5OQuuz+qq6vl9/uvefvTp09HDPfU19erpKREbrdbjY2N5vKmpiaVlJSouLhY9fX1YfvxeDxM8dXLNDc3q6ysLKqwR0VFRaeup85wOp2Wh12ozpfD4WBqMgAAAAAAAAAAAKCP6HUhISl0yrEVqamWh1QoqqO1IjXVvIYzHA6rb6kwly5dCgn31NfXy263h4WHgh2DiouLo+4YBOtE26GnqKhIPp/P0rEGAgGCQv2wglOTWX19AQAAAAAAAAAAAAjXK0NCZ5ubQ7oJ7XA6LQ99UFS09daBAyFdhPwXL1p9S6Gf8/l8KioqiirE4fF4ek3HF4JC/b8qKipUV1dnWccqAAAAAAAAAAAAAP/QK0NCUmg3oYT165l2jOoTta+8PCTg9nZZmdW3EvqxQCAgt9sdVVijtLRUzc3NVg85TCAQiLoDEtW3q6ioSG63Ww0NDVZfdgAAAAAAAAAAAMCA1GtDQv6LF7UyJeUfHVk2blR2ZaXlIRCKaq32lZcrYf1685pds2MHXYTQbRoaGuRwONoNZjgcDtXV1Vk93Hb5/X5VVVVZHmSheq7oMgQAAAAAAAAAAAD0rF4bEpKkjxoblZicTEchqtfXDqczJCDENGPoLn6/X2VlZVGHMHrL1GLRCgQC8nq9qqiosDzEQvVcBbsM+Xw+qy9BAAAAAAAAAAAAoN/q1SEhSXKdPBkSFIpfvVqb8vOVV11teTCEovKqq7U+Ozvk+kxMTtZHjY1W3zroh+rq6qLqHlRUVNRvwhY+n08ej0elpaWWB1monimHw6GKigp9+OGHfS7kBgAAAAAAAAAAAPRmvT4kJIV3FAp2FVqfnU1nIcqS2ldervXZ2SHdg4JTjBEQQldrbm6W0+mMKmDh8Xj6dbCC0NDAK6fTKY/Ho+bmZqsvPwAAAAAAAAAAAKBP6xMhIUnyX7yozRkZIYEMs3PLxo1akZqq13ft0qb8fIrqlnp91y6tSE0NCwYFa3NGBlOMoct5PJ6ogxQDMURBaGhgVVFRkaqqqtTQ0GD1pQcAAAAAAAAAAAD0OX0mJBR0zOXSypSUiCENirKiVqakqNbrtfrWQD8Tbfcgh8Ohuro6q4fbaxAa6lzl5uZq+fLl2r59u/Ly8iwfT3vXPtOSAQAAAAAAAAAAANHrcyGhoGMulzIcjrBpyCiqJ2plSooyHA65Tp60+lZAPxRt96DS0lL5/X6rh9urERrqeO3du1fjxo3TggULtGXLFsvHE22VlZWprq6OewIAAAAAAAAAAABoRZ8NCbX0UWOjar1euU6e1NtlZRTVLeU6eVK1Xq8+amy0+pJHP9WR7kFMt3RtCA21XUlJSXr99dc1efLkiK+vWbNGW7du7fVdhpxOpzwez4Ccgg8AAAAAAAAAAABoTb8ICQFAXxdt96CKigqmVupChIZCKzMzU/PmzdP06dOVkJCglStXKi0tTfn5+crJydHs2bM1b948TZkyRbGxsXrjjTeUnZ1t+bjbqqKiIrndbgJDAAAAAAAAAAAAGPAICQGAhfx+P92DehFCQ3bNnDlTGzZskN1u11tvvaXnn39eeXl5ys7O1q5du2S325WTk6O4uDjNnTtXWVlZ5rZ79uzR3r17LT8GAkMAAAAAAAAAAABAOEJCAGCRuro6ORyOdoMNdA+yzkALDWVlZWncuHHKzMzUzp07FRsbq3379oWss2nTJs2bN09btmwxl+Xn52v+/PmKi4vTihUrlJiYaPmxRBMYqqqqInwHAAAAAAAAAACAAYOQEAD0sEAgoIqKinZDDHQP6n36e2ho48aNmjFjhrZu3ap58+aFdAkKTkW2cuVK5eXlhWy3atUqvfTSS+bfCQkJZoho9+7d2rx5s3Jyciw/vrbutaqqKjoMAQAAAAAAAAAAoF8jJAQAPaihoYHuQf1IfwsNLVy4UNOnT9f8+fOVm5trLs/Ly9OMGTP0xhtvhG2Tn5+vKVOmaNOmTeayV199VStXrpTd/uXUZGvXrtX48eOVkJCgbdu2WX6cbRVTkgEAAAAAAAAAAKC/IiQEAD0gEAjI7XZH1dGE7kF9V18PDS1cuFCLFy9Wfn5+yPK0tDRNmDAhrIOQ3W7Xzp07w16LjY3VqlWrzL/Xr1+vmTNnmoEjq4+zo4Ehv99v9aUFAAAAAAAAAAAAdBohIQDoZs3NzXI6ne0GEuge1P/09dBQsDIyMjRx4kQz4JOdnW12BNqwYYNmz55trpuXl6dnn31WKSkp5rL4+HgtX748bL9vvfWWduzYYfnxRVNOp1N1dXUEhgAAAAAAAAAAANBnERICgG5UV1fXbvjA4XDI6/VaPVT0AJ/PJ5fLFVVorLfVhg0bNH/+fK1atUqzZs3S2rVrZbd/2SVo/vz55nqbN28OCRTl5+dr4sSJSktLixgSahkwstvtyszMtPxY26uKigp9+OGHVl9OAAAAAAAAAAAAQIcQEgKALtLY2KjNmzfrxIkTCgQCqqioiKo7CZ1JBqZAIKCGhoY+FRrKy8tTenq6du/ebYaA0tPTzaBPXl6eZs6cGTLV2Pbt2zVx4sSwKcyCFRsbqy1btignJ0fLli3TtGnTtG/fvpDQ0KZNmyKGjKwuh8OhqqoqNTc3W305AQAAAAAAAAAAAO0iJAQAXeD999/XW2+9perqah08eFBFRUXtBgw8Ho/Vw0Yv0hdDQ8Fat26dFixYoFmzZmnJkiUhgaDly5drwYIFrW6blpam5557TtOmTdPKlSuVm5sb8trkyZO1du1arV69WvPnz281bGR1FRUVyePxEPoDAAAAAAAAAABAr0VICAC6wBtvvKHLly9HNb1YUVERnUfQLr/fL6/Xq6qqqqhCZ72hIgV4Zs6cqXXr1mnr1q1hryUnJ+v555/X888/rzfffDPs9djYWC1fvtz8e9GiRUpOTjb/zsjI0MaNG5Wammp2NuoNVVFRoYaGBqsvIQAAAAAAAAAAACAEISEA6AJxcXGqqKjQ7t27FR8fr6lTp+qVV15RdnZ2SHjA5XIpEAhYPVz0QX6/X3V1daqoqJDD4bA8CBNN5eTkaMqUKYqPj9fGjRtDwkSzZ89WfHy80tPTlZGRoWnTpoV0EbLb7Zo8ebJSU1PNvxcsWKCVK1fKbrdr586dmjhxopKSkrR+/fqw9+gNRXchAAAAAAAAAAAA9CaEhADgGnz++ec6ffq0JKm5uVmzZ8/Wpk2blJCQoLy8POXk5GjOnDmaN2+e7Ha7HA4HnUXQpZqbm83QkNVhmGupffv2hfy9ZMkSJSUlhSyLjY1VSkqK7Ha7srOzNXHiRK1du1Z2u10LFy5UQkKCuW52drYmTZqkvLw87d69W0lJSUpPT7f8OINVUVEhn89n9WUDAAAAAAAAAACAAYyQEAB0UGFhodauXatZs2Zp9erVstvt2rBhg5555hktWbIkJAQxYcIEHTx4kE4i6HY+n08ej0dOp9PyQMy1VFZWVtiUY/v27dOiRYu0bNkyvfzyy3rqqae0e/du2e12vfrqq2ZXoWBt2LDB/Pf27dv19NNPa9GiRWbQqDdUUVGRPvzwQ6svFwAAAAAAAAAAAAxAhIQAoAMOHTqkd955R5JUVlamZ555Rnl5ebLb7Xr55Zc1adKkkCnG4uLimF4MPS4QCKihoUEul0tFRUWWB2OupVJSUsx7y263a/Xq1Zo1a5b5d2ZmpuLi4pSWlhZx+zfffFNz5swJW75r1y6tXr1aW7ZsCZverCfL4XDI4/Hw/QAAAAAAAAAAAIAeQ0gIADpg4cKFqq+vl9PpVH5+vl5++WUlJydr27ZtysnJ0axZszRz5kylpqZq3759KioqsnrIgPx+v7xer6qqquRwOCwPAEVTL7zwgrZv3y673a69e/dq6tSpZiBo7969mjFjhpYsWaIVK1Zo7969YdvPnj07rDPR1q1b9cwzz2jt2rXasmWL4uPjQ7oPWVVVVVV0GwMAAAAAAAAAAEC3IyQEAB1QW1urnJwc2e12LVu2TK+99pqSkpL07LPP6vXXX1deXp5SUlK0Y8cOnThxwurhAhE1Nzerrq5OpaWllgdkWquMjAwtW7ZMiYmJmj9/fkjHoOXLlys+Pr7VbTMzMzVu3Djt27cvZPmCBQv06quvmn/n5ORo8uTJys/Pt/x4CQsBAAAAAAAAAACguxESAoA27N69W2fOnJEkeb3ekC4swbBQsEPJxIkTVVVVZfGIgY4LTk3mdDotD8pEU+vWrVNcXJz596ZNm0KmJluzZk3I1GTBWrJkiZKSkkKWbdy40fLjISwEAAAAAAAAAACAnkBICABa0dTUpOnTpysuLk7Hjx9v86F+bm6u5syZY/WQgU7rK1OTrV27VosWLVJ8fLyef/75kNfmzp2rVatWhW2TkZGhOXPmKCUlxfLxExYCAAAAAAAAAABATyMkBACteOedd/TXv/5VCxYs0Ny5c0M6ldjtdu3evVuZmZnav3+/tm3bppqaGquHDHS55uZmeTyeXj01WcvpwrKzszVu3Dht3rxZmzdvNpdv375dU6ZM0Zo1a7R69WplZmZaPu5oy+PxKBAIWH0pAAAAAAAAAAAAoI8jJAQArfjkk0906NAh5eTkaMaMGVq4cGHIg/sdO3Zo8uTJWrFiherr660eLtDtAoGAGhoaVFVVpaKiIsvDM5Fq165diouL06pVq7Rnzx5zeUJCgpYvX275+K61HA6HPvzwQ6svAQAAAAAAAAAAAPRhhIQAoIVz587p8uXLCgQCcjqd5gP6jIwMTZ48WUlJSeayqqoqNTc3Wz1kwDLNzc2qq6vr1V2GgrV27VrNnz/f7Dq0Zs0ay8d0LVVWViafz2f1Rw8AAAAAAAAAAIA+iJAQAEj67LPPtH79esXGxio2NjZsajG7/cvOQc8884xWr16t1atX6/Lly1YPG+g1gl2GXC5Xr+0ytHHjRi1evFgvv/yy4uPjLR9PZ6qqqoopyAAAAAAAAAAAANAhhIQADHhffPGFkpOTdf78eTU1NWn+/Plau3ZtxAfz69atU2xsrJqamqweNtCr9aUuQ321ioqK6CoEAAAAAAAAAACAqBESAjDgvfvuu9q2bZu8Xq/sdrveeOMNrVixQsuXL1dqamrIQ/mNGzfqwoULVg8Z6FOCXYaqqqrkcDgsD9f0t/J4PFZ/xAAAAAAAAAAAAOgDCAkBGPAuXryo9PR02e12ZWZmau7cuVq/fr2WLl2q8ePHa/v27SoqKlJzc7PVQwX6hebmZnk8HjmdTssDNv2lysrK5Pf7rf5oAQAAAAAAAAAA0IsREgIw4AU7CNntduXl5SknJ8f8e+nSpVqyZIkCgYDVwwT6Jb/fL6/Xq4qKCsuDNn29HA6HGhoarP5IAQAAAAAAAAAA0EsREgIwoLUMCEWqrVu36sCBA1YPExgwgtOSFRUVWR666avl9Xqt/hgBAAAAAAAAAADQCxESAjBgnTx5UkuXLg17wL5z507l5ubq0KFDeuutt/TFF19YPVRgQGpubpbL5WJasmuoqqoqqz8+AAAAAAAAAAAA9DKEhAAMSD6fTzk5OZo+fXrYw/XNmzdr8uTJ2r59O9OMAb2E3+9XXV0dgSGCQgAAAAAAAAAAALhGhIQADDjNzc1yOByy2+2aOnVqxAfrly5dsnqYAFoRCATk9XpVUVFheRCnt1dVVRVhRwAAAAAAAAAAAEgiJARggAkEAjp48KCysrKUkZGhyZMnKzU1VW+99ZaSk5N18OBBq4cIoAMIDLVfFRUVVn9MAAAAAAAAAAAA6AUICQEYMAKBgFJSUjR16lRNnz5dM2fO1Lhx4/TKK68oISFBq1atktvttnqYADqhoaFBVVVVZrcw6styuVxWfzQAAAAAAAAAAACwGCEhAP3e6dOndfLkyYidRqZNm6bc3Fw5nU6rhwmgixEYCi2v12v1RwIAAAAAAAAAAAALERIC0K9lZmYqKSlJ06ZNU1xcXNhD8xdeeEGFhYUKBAJWDxVANwoGhqwO6lhdzc3NVn8UAAAAAAAAAAAAsAghIQD9Vk1NjQ4ePKjm5mZlZWVp6tSp2r59e8gD89mzZ9NdAxhAAoGAvF5vxM5iA6EcDof8fr/VHwMAAAAAAAAAAAAsQEgIQL+1efNmHTt2TEVFRbLb7Xr11Ve1devWkIfl77//Pl2EgAEqGBgqLS21PLzTk1VRUWH1qQcAAAAAAAAAAIAFCAkB6LfOnj2rPXv2mA/G58+fr127dpl/NzQ0WD1EAL2E3+9XXV2dGSrs7+Xz+aw+5QAAAAAAAAAAAOhhhIQA9FsNDQ0hD8X37dunxYsXKzc3l04aAFrV3NysqqoqORwOy8M83VVOp9Pq0wwAAAAAAAAAAIAeRkgIQL8UCARafcD/xhtv6LXXXrN6iAD6AK/Xq4qKCstDPd1RXq/X6tMLAAAAAAAAAACAHkRICEC/VFZW1uqD8U8++URnz561eogA+hC/3y+Px9OvpiNzOBxWn1YAAAAAAAAAAAD0IEJCAPodn8/X6kNxj8dj9fAA9HENDQ0qLS21POTTFdXQ0GD16QQAAAAAAAAAAEAPISQEoN9xOp0RH4aXlpZaPTQA/Yjf75fL5Wp1asO+UBUVFVafRgAAAAAAAAAAAPQQQkIA+hWv19vqtDp+v9/q4QHohwKBgOrq6vrsVGSBQMDqUwgAAAAAAAAAAIAeQEgIQL8RCARafUjPNGMAeoLX6+1zYSGv12v1aQMAAAAAAAAAAEAPICQEoN/weDytdhGiUwaAnuTz+VRaWmp5ACiaYsoxAAAAAAAAAACAgYGQEIB+IRAIyOFwRHwAXldXZ/XwAAxQPp+v13cWKioqsvo0AQAAAAAAAAAAoAcQEgLQL7TWRYiH3wB6A6/X22qQsTcUAAAAAAAAAAAA+j9CQgD6hdY6dTQ0NFg9NACQ9GXHs9YCjVaX3++3+vQAAAAAAAAAAACgmxESAtDneb3eiA+9S0tLrR4aAIRpbm6W0+m0PBjUsnw+n9WnBQAAAAAAAAAAAN2MkBCAPq+srCziQ2+v12v10ACgVb2pq1BdXZ3VpwMAAAAAAAAAAADdjJAQgD7N7/dHfODtcDisHhoAtKuhoUEOh8PykJDH47H6VAAAAAAAAAAAAKCbERIC0Ke5XK6ID7xdLpfVQwOAqPSGjkINDQ1WnwYAAAAAAAAAAAB0M0JCAPqsQCDQagcOv99v9fAAoF1er9fygJDdbpfP57P6VAAAAAAAAAAAAKCbERIC0Gc1NDREfNhdUVFh9dAAoF1VVVWWh4MICQEAAAAAAAAAAAwchIQA9FmtPWBn2hwAvV1vCggREgIAAAAAAAAAABgYCAkB6LOKiorCHnQ7HA6rhwUArQoEAiorK7M8FHR1BQIBq08NAAAAAAAAAAAAuhkhIQB9UnNzM1ONAehT/H6/nE6n5YGgq8vpdFp9agAAAAAAAAAAANADCAkB6JPq6uoiPuz2er1WDw0AwjQ3N8vhcFgeCIpUVVVVVp8eAAAAAAAAAAAA9ABCQgD6pNLS0ogPu/1+v9VDA4AQXq+31waECFcCAAAAAAAAAAAMHISEAPQ5gUCAKXMA9AmtdT3rTUW4EgAAAAAAAAAAYGAgJASgz2loaIj4oNvlclk9NAAwVVVVWR4Aaq9KS0utPk0AAAAAAAAAAADoIYSEAPQ5Ho8n4sNun89n9dAAQIFAQGVlZZYHgKIpphoDAAAAAAAAAAAYOAgJAehzKioqIj7sDgQCVg8NwAAXCATkdDotD/9EUw6Hw+rTBQAAAAAAAAAAgB5ESAhAn1NUVBT2sLuoqMjqYQFAqyHG3lgej8fq0wUAAAAAAAAAAIAeREgIQJ8T6WF3RUWF1cMCMMC1NhVibyyHw0H3NQAAAAAAAAAAgAGGkBCAPsXn89ERA0Cv09zcbHnwpyNVV1dn9SkDAAAAAAAAAABADyMkBKBPaS0k5PV6rR4agAHM6XRaHvyJtpieEQAAAAAAAAAAYGAiJAQMUDExMRo2bJgMw9DQoUMVExOjmJgYDR06VA899JAWLlyohoaGbh1DYWGhYmJiZBiGnnrqqai2aW06H5/P161j7aysrCyNHDlSr776qtVDAdDF+loXod7+fQkAAAAAAAAAAIDuQUgIGMAOHDggwzCUlpZmLvv888+Vm5urYcOG6f7779eZM2e6fRzjx4/vdEjI7/d38yivTWNjo1566SU9/PDDMgyDkBDQD1VVVVke/Im2mJoRAAAAAAAAAABg4CIkBAxgkUJCQYsXL5ZhGNq+fXu3j6MjIaHS0tKID757q+eee06bN2/W+++/T0gI6KccDofl4Z9oqrS01OpTBQAAAAAAAAAAAAsREgIGsLZCQnv27OmxUEtnQ0IOh6N7B9gJjY2NkqS6ujpCQkA/5Pf7LQ//RFMOh0OBQMDq00nGY2IAACAASURBVAUAAAAAAAAAAAALERICBrBoQkLr1q0Le+3TTz/Va6+9pvvvv1/33HOPHnnkESUnJ+vSpUsh6124cEHr1q3T2LFj9cADD+ihhx5SXFyc3n333ZD1giGhU6dOafr06RoxYoQeffRRZWdnh7233W7Xiy++qAcffFB33323Ro0apWeffVbvv/9+yHrbtm1TTEyMDMPQ3LlzVVhYqCeffFIxMTF68MEHtWnTJl2+fPmaj62jCAkB/ZPP57M8ABRNNTc3W32qeg2Px6OCggKzWuru5QcPHpTL5erCowEAAAAAAAAAAIgeISFgAGtvurEhQ4bob3/7W8jys2fP6qGHHtKUKVPMLjmVlZW677779NJLL+nKlSvmukuWLNGjjz6qjz/+WJLU1NSkmTNnhnUNGj9+vB577DFNmTJFubm5Ki4u1sSJE2UYhiorK0PWXbZsme68805t2rRJdrtdmZmZeuGFFxQTE6Pa2tqw4xg1apRGjx6tSZMmye1266OPPtKGDRtkGIaWL19+zcfWUYSE0BPONjfrmNutg2VlSsvL05aMDKqba01qqlZs2tSra92OHd1y7Gl5eTpYVqbDx4/rbB8IIV25ckXnz59XbW2tcnNzzfL5fGZ19/J9+/Zp69ateuedd6Ie94oVK2Sz2VReXh7V+s8++6x++MMf6oc//OE1nikAAAAAAAAAANBfERICBrBIIaFz584pNzdX48aNi/gQc+nSpTIMQx988EHI8rS0NBmGEdIl6IEHHlBiYmLIeh6PR3Pnzg1ZNn78+LBAUG1trQzD0OrVq0PWffPNNzV//vyQDhlOp1N33HFHWOhH+jIkNGzYMDP0EzR9+nQZhhESLOrIsXUUISF0p2Nut9bu3Kn41aspyrJau3OnDpaVyX/xotW3RJiPP/5Y9fX1IYEdq6qysjIsANuWX/3qV/rqV7+qiRMnRr1NQkICISEAAAAAAAAAABCGkBAwgAVDQkOHDlVMTIyGDRsmwzB01113KSsrK2z9K1euaNSoURozZkzYa5WVlWHdeZ588kmNHDlSdru9zem6xo8fr1GjRoUsu3z5sgzDUEJCQsjySNPoVFVV6dFHH9W0adPC9j1q1CiNHz8+bHlwOrXt27df07F1FCEhdIdjbrdWpqRYHg6hqJaVmJysw8ePW317hCgoKNC+ffssDwgF68yZM1GNu6KiQn/84x81ZMgQffe739XFKANYhIQAAAAAAAAAAEAkhISAAezqTkKXL19WRUWF7rnnHhmGodLS0pD1m5qaZBiGDMNQTExMWA0dOlSzZs0y16+urtaYMWNkGIbuvvtuLViwQEePHg0bx/jx4/X444+HLY+JidErr7wSsiw7O1uvvPKKxowZoxEjRmjYsGEaPny4DMPQs88+G7aPUaNGhYwp6NChQzIMQ8uWLbumY+soQkLoSv6LF5XhcEQMaLy+a5c25udrh9Op9JISiuq22uF0amN+vl7ftSvitbh2585e01WooKAgbOovqysakyZN0saNG7V161bZbDalpqaGrXPhwgVNmDBB119/vX7+85/r6aefVmxsbFhIaMeOHfrDH/4gwzB0++23KyYmRu+99575emJiomw2m2w2m3JycnT77bfrm9/8pv7whz+ovr5ee/fu1Y9//GN95zvf0fjx43X58uVOfSYAAAAAAAAAAKDnERICBrBI041JUm5urgzDCJvaJBikeeKJJ6J+jy+++ELFxcWKj49XTEyMDMPQokWLQtYZP368nnrqqbBtI4WEJkyYIMMwtHjxYmVmZsput8vj8eixxx7rkpBQR46tIwgJoav4L14Mm1osYf16bT94UHnV1dp/4gRFWVLbDx5U4qZNIdfmypQUfXTVdI9dIRAIqKamRg0NDWpoaGizW50klZSUqLi42PJgULCKi4t15MiRNsd88eJF/ehHP9L58+fl9/v1ne98R8OGDQtbb+rUqbrhhhtUU1MjSSorK9ONN94YFhJ68MEHQ0JGr7/+un784x/L7/ebyyorK2Wz2XTnnXfq/fff16lTp/Szn/1Mt912myZPnqwzZ85o//79+upXv6pdu3a19zEBAAAAAAAAAIBehpAQMIC1FhK6fPmy/vKXv8gwDFVWVprLg1NyXT01WNDf/vY3ffjhhyH7aenMmTOaMmWKDMOQ2+02l0cbEjp37pwMw9DYsWNDphtrLyQ0YcKEsOWtTTcW7bF1FCEhdAX/xYth04uty8oiHET1qnrrwIGw6ce6Oih05coVpaWlhVV+fr4cDodKSkpUWVmp0tJSHThwoFdNNebz+ZSbm6uCgoI2j3HHjh0hXfaefvppffWrX9UHH3xgLjt//ryuu+46zZw5M2TbsWPHhoWEvF5vyO/y2bNnZbPZdPjwYXNZMCTU8v8Fs2bN0le/+lWdPXvWXDZo0KCw9wQAAAAAAAAAAL0fISFgAGstJCRJ+/fvl2EYmjt3bsjy5cuXyzAMHTt2LGT5559/rrvuukvFxcXmsuHDh+v8+fMh62VlZckwjJBpx6INCTU2NmrIkCF66KGHQkJCLpdLd955Z6shoWHDhqnxqgfU06dPl2EYqquru6Zj6yhCQugKV3cQ2n7woOWBEIqKVDucTiWsX9+tU49VV1dHDAq1VlYHgzoaEoqJidGhQ4fMv999913ZbLaQ38Vjx47JZrMpOTk5ZNu4uLiwkFB1dbXGjh2rW265RYMHD9att94qm82mPXv2mOsEQ0Itf6MTExN1ww03hOzrj3/8o8aNGxftRwUAAAAAAAAAAHoJQkLAANZWSOjy5ct67LHHZBiG6uvrzeVNTU16+OGH9dRTT+nUqVOSvuwQNGfOHE2bNi2kS8HQoUO1ZMkSMyh05swZPffccxozZowuXLhgrhdtSMjn82n8+PEyDEPz589XVlaW9uzZo9mzZ8swjFZDQk888YSmT5+umpoaffTRR9qwYYMMw9Dy5ctD1u3IsXUUISF0Vl5xcUhAKL2kxPIgCEW1VfvKy0OCQlsyMrr0nvjss8+iCgdlZWXJ5XKptrbW8nBQsIJjaY3X69W//Mu/aPDgwSH1jW98Qz/5yU/M9VoLCc2bNy8kJHT+/Hl9//vf1yOPPGL+/vr9ftlsNqWnp5vrBUNCLbsIJiYm6gc/+EHI/v/4xz/q6aefvpaPDQAAAAAAAAAAWIiQEDBAxcTEaNiwYTIMQ0OHDlVMTEzIlCOSZLfbzdfvvPNOc/mZM2e0bNkyPfjgg7r//vv1yCOPaN26dTp37lzI9gUFBZo1a5bGjBmjBx54QGPGjFFiYqI+/vhjSVJ5ebliYmJkGIYMw1BMTIyqq6uVn59vLh8yZIhiYmLMB6v79u3T9OnTzQ5BDzzwgNauXatHH300ZB9Bo0aN0ty5c3Xs2DFNmDBBMTExevDBB7Vp06aIoZ9ojy1a6enpiomJ0fDhw0PO9dixY69pfxiYPmpspIMQ1Sdr+8GDIddurdfbZffFuXPnlJ6e3mZAyOl0Svry9yg3N9fycFDLasuCBQu0ePHisOWLFi2SzWZTYWGhpH9MN/bCCy+ErHf1dGNlZWWy2WzKzMw0lwWnGyMkBAAAAAAAAADAwEFICECf4fP5QqYZC5bH42l1m2BICOjLtmRkmCGL13ftsjz4QVEdqXVZWeb1uzIlpVP3wqVLl3Ty5Enl5+crLS1NO3bsaDUg1DL46nQ6lZ6ebnkwKFhnz55t8zh/8YtfmIHalj7++GP98z//sx555BFz2bRp03TDDTeopqZG0peBoG9/+9shISGfz6dvfetbeuqpp8yA7NKlSwkJAQAAAAAAAAAwwBASAtBnEBLCQHR1F6HsykrLQx8U1ZHKq64OmXbsmMvV4fvg1KlTOnToUFgQaN++fe0GhCTJ4/HowIEDamhosDwgVFpaqvz8/Igd6j799FP9+te/1je/+U39/ve/D3t98ODB+uY3v6nrrrvOfP3ChQt65plndP311+vmm2/W6NGjNWPGDH3961/X4MGDVVtbK0nKycnRoEGD9JOf/ERDhgxRQkKCbDabbrrpJr355pvau3evBg0aJJvNpkGDBslutysuLk7/8R//Ye7rs88+07Bhw/Sv//qvuuGGG+iKBwAAAAAAAABAH0NICECfQUgIA1FecbEZrli9d6/lgQ9q4NSBEzXaX+PSfvdVVePS/hp3h/a1MT/fvI4zHI6orv2GhgaVlJSETSmWnp6uw4cP69SpU5IUFhS6OiDU0oULF9TU1KTi4mLl5uYqNzdXtbW1ZoCnu5fn5uZq69at5jRoAAAAAAAAAAAAPYmQEIA+oyMhoZSUFA0dOlSGYcgwDA0dOlTvvfeeBaMGOmftzp1muGKH02l5cIQaAFVTowORwkFX1YEal/bX1ES1z33l5eZ1nJic3Or1fubMGZWXlyszMzOsO9ChQ4d08uTJsG1OnTplruOIMoB05MgRFRQUqKCgQD6fr8eWu1wuffDBB1GNEQAAAAAAAAAAoKsREgLQZ1xLJ6HuMH369HYL6Apnm5tDphqzPDxC9f+qqYnQOcitAydO6MCJE192EIrwejT7Tty0ybyWa71e8zo/d+6campqlJ+fHxYMysvLU01NjS5dutTqffLFF1+Y67a1HgAAAAAAAAAAwEBHSAhAn9FbQkJAT6n1es1QxYrUVOsDJFT/rkgBoWhCQu7oOgqtSE01r2dPfb1OnjypQ4cOhQWDMjMzVVVVpXPnzkV9r5SXl+uLL77oxrsRAAAAAAAAAACg7yMkBKDPICSEgaYrQ0LrMjLM6feurrtGjWpz23tHjw7b5p777rMkyJJ1/LjGPv647rnvPqUcONCl+96cnx92nLMXL+7xfVhVeX+t1IMPP2yOO6v8aAdCQq52978xP9+8nldt2hQSDEpPT1d5ebnOnDlj9W0HAAAAAAAAAADQbxESAtBrXbp0SY2NjTp9+rTcbreOHTumnJycsHr33XfldrtVX1+vxsZGNTU1WT10oEscPn7cDFWsy8rqVABk97vvKj4pSS/Ex4cEfeKTkrRozZo2t01cv17xSUm6d/RojRg5UvFJSVq8bp0lQZak1FRz/C8uWNCl+95TWqoFq1ZpwapVGjFy5DUFfLpiH5ZUTY3ili0LCTd1KCTkdmn/iba7CUUKCR0+fFinTp2y+lYDAAAAAAAAAAAYEAgJAegVmpqa5PF4VF5ersLCQmVkZHS6srOzVVJSIrfbrcbGRqsPEeiwt8vKzFDFxvz8LgmD2F0u3TVqlAzD0JChQ7WntDSq7TIrKjRs2DBNnTvX0jDLntJS3XPffRo2fLjW79vXbe9zz333dTrg0xX76KnacahIw4YP71RI6ECNu833aBkS2ltQoEuXLll9iwEAAAAAAAAAAAwohIQAWOb06dMqLy9XdnZ2l4SCoqmSkhLV19fzcBp9QneEhPafOKGZ8+ebQZAFq1ZFtU3i+vUyDEMbOtnRqCvK7nIpp6qqW99joIWEnnj2WQ0bPlxPTZr0j5DQsQoFuwOZIaETJ/6+rEXV1Pw9JNT2lGMtQ0Jvl5VZfXsBAAAAAAAAAAAMOISEgH7A7/errq5OBw8e1MGDB+V2u3X27FmrhxXRpUuX5Ha7owoGZWdnq7i4WMXFxXK5XO3W0aNHVVxcLLvdHlVgqLy8XOfPn7f6lACt6q6Q0Oa8PDMI8tBjj0W1zV/GjdO9Dzyggpq2p5TqLzWQQkLLU1JkGIZeXrpEM+LizGsj+9gxMxzUVu0/UdNiyrHW34eQEAAAAAAAAAAAgLUICQF93Ntvv634+PiItWXLFvn9fquHKKn9cJDdbldJSYk8Hk+XTQ3W1NSk+vp6VVZWtjmFWW8LC/l8PhUUFJjl8/nM144cOdLtyysrK+m01Et0V0ho/4kTeuDPfzbDINsPHmxz3V1OZ58Iu3RlDZSQUGZFhe4aNUqjHxqjvKrKAR0Savk7UF9fb4ZU6+vrzeVNTU0qLi6W2+0OWQ4AAAAAAAAAANAXEBIC/m7btm365S9/KZvNpsrKSquH066zZ89q7dq1rQaEgpWYmCiXy9Wl73369OkOrd/U1BQxpGO321VZWammpqYuHV9rzp8/L4/HE3Es2dnZ3fLAt6Pnyu/3q7a2Vrm5uWbV1tbK5/PJ5/OpuLi425dv3bpV2dnZvTIo9Oyzz+qHP/yhfvjDH4YsX7dunW688UY1Nzd3y/uWl5frlVde6ZZ9t6U7Q0IvL11qhkHmJCa2uW7c8uUyDEPbCgtDltvdbq3evVvTYmP1p7FjFTNihIYOG6Z77r9fE55/Xmv27Im4v7z33jPfO1hPTZqk/SdO6K2CAj0zfbruvvde87W7Ro1qc5ur61rH1VbAZ+nmzXrkySc1YuRIxYwYobFPPKHXkpPb7KwUbUgo4+hRzV682BxrzB13aPSYMXr+5ZfDznlX1/Mvv/zlNHIZGdrvdoWEhLIqjmp/jUv7a2r+EQiqqfn7shYVDAj18HRjX3zxRYe/Y6/W2Nho/ia0/K1sLSTU2vpNTU1yu90dDpx25rsr0rZWfVcBAAAAAAAAAIC+gZAQ0EJlZWWfCQlt3rw5JAy0Zs0avf3223r77beVlpYWFhTqyunH0tLSlJmZqZMnT7a7bn19fVj3oKsfulqhqalJR48ejdhVqCtFe658Pp8++OADM6xjZdXW1qq0tLRLz0NXSkhICAsJHTlyRDNnztQXX3zRLe+ZnJys6667rlv23ZbuDAntKC42wyD3jh7dZtjlTw8/rDERpiV7ccECcx8Tnn9eC1ev1qI1azQtNlbDhg+XYRh6IT4+Ykjo/j/9Sff/6U+KueMOM/CzevduDRs+XMNjYnTP/feHhITsbrfik5IUn5SkBx9+uM2Q0LWOq7WAz7TYWMWMGKHx06ZpWmysxj7xhLn/8VOnKr+6+ppDQuv37dOIkSNlGIaeef55Ja5fr8T16zVp5kwNGTJEQ4YM0cLVq7slILQxJ0eGYWjySy8p2A0oJCRUfvTv4R93i5CQ+x+hoKurxt2jIaFLly516Peo5XZB9fX1KiwslMvl6lRg1ePxmL8jHQnmdua7K9K2Vn1XAQAAAAAAAACAvoGQENBCXwkJHT58OCQEdPjw4bB1PvroI61ZsyZk6rGukpaWZlZbD2fPnz8fEhDKzs7udNeHrhapy1FXBpiiPVfHjx/X1q1bLQ8ItazeKlJIqLv1x5DQ/hMnQsIuydnZEddJ2b9fhmFowapVYa/NeOUVGYah15KTw17bfvCgYkaMkGEYWrZlS6tjGPfcczIMQ2OfeEL33H+/Fq9bp7z33tP+EyeUevCgRowcqbtGjYq4TWshoa4YVzDgM/qhh/TnRx/VntLSkNeXbtpknruXFi68ppDQtsJCM7QUaayr0tLM93hj584u/ezzq6v1p7Fjdedddynj6NEvl3c2JNReKKmbQkLRfMcGVVZWqri4uNPv3dp4PB5Pj3XHi4SQEAAAAAAAAAAAaAshIQwob7/9tm6//XYZhqHbb79dd911V8jDwmBIKCcnR//93/+tb37zm/rlL3+po0ePhuxnx44d+sMf/mDuJyYmRu+99575+tKlS/Xzn/9cNptNKSkpuuWWW3TjjTfq5ptvVkZGRsi+rly5ooSEBP3yl7/U//zP/+h3v/udkpKSdOXKlVaPY+XKlWb45+233251vY8++igkTFRbW9vRUxZRy4eybT2cLS4uNoM3hYWFvXL6qqCWXYWys7M7PGVMa6I9V30tJHThwgVNmDBB119/vW666SaNHj1aM2bM0Ne//nUNHjxYtbW1SkxMlM1mk81mU25urgzD0HXXXWcG8dq7j65+n5///Od6+umnFRsbGxISSklJ0aBBg8ICfu3dWy3H19Y9v3TpUv3nf/6nvvKVr2jw4MEaPHiw3nzzTUntf6d0VneHhBatWWMGQqbFxkZc58UFCzRkyJCwkEwwjPPAn//c6v5jX3tNhmHooQhdiK4O/BiGobgVK8LfIy7umkJCnR1XMOBjGIa2ORwR15n84osyDENDhg7VLqezwyGhR558UoZh6C/jxrV7fkaPGdNmt6eO1isrV8owDL26YcM/lte4rz0k1E4XoZ4ICbUXFgp+z/dUELipqanN7nSRvrui/V6KtG1b31UAAAAAAAAAAAASISEMIJcuXdK//du/yW63m8smT56sWbNmmX8HQ0J33HGHampq9Mknn+i2227T4MGDQ/b14IMPKjU11fz79ddf149//GP5/X5zmd1ul81m04gRI/T5559LkhYtWqSvfe1rqq6uNtd78cUX9dOf/lSffvqppC+DPTfeeKOWLl0a8Tj8fn/INGLtycjIMNc/dOiQGhoaOl2RHsoGa+/evTp+/LgaGhpCuvNY2VkhWna73Ryv2+3u0XNVUVGh3Nxcy4NBwaqsrNSRI0daPVdTp07VDTfcoJqaGklSWVmZvv3tb4d1+AneU//7v/+rY8eOyefzadCgQaqsrIzqPor0PjfeeGOr79Py4X8091Zwu5iYmDbv+UjdOaL5Tums7g4JZRw9qiFDh8owDI0YOVJ5V02bZXe7dc999+nxZ5+NuH328ePKOnas1f2/sXOnGTjJPn68zRDM0GHDIu6roKZGdrc74jathYS6YlzBgE+kadaCtS4jw9zPvGXLOhQSSjlwwNw2cf36Vt/j1Q0bzPU25eZ2yee+8513NDwmRo88+WRY8OiaQkI17XcRujoklP3222poaAi53lt+d0az/MMPP2z3O7ZlWOj06dM9OtVlfX19u93pIn13Rfu9FGlbOgkBAAAAAAAAAIC2EBLCgNHQ0CCbzabXX389ZFkwfCD944Fby+DCmjVr9PWvfz2ks4/X69Xly5fNv8+ePSubzRYy7VcwJFRUVGQuCwQC+t73vqcnn3xSkvTZZ5/pG9/4RljYZ+rUqbrxxhsjHkdtba0Z+tm8eXO7x91yarKkpKQ2H6h2Ze3cudMM3HTX1C5dzePxmGPevXt3j52r1NRUpaWl6dNPP7U8HBSsw4cPq6CgIOJ5On/+vK677jrNnDkzZPnYsWNbDe+kpKSYyz7++GNdvHix3fvoWt4n+LA82nsruN327dvNZatXrw675yM9eI/mO6WzujsktP/ECT01ebIZCnk9NTXktbV798owDC3dvLnd/djdbmUcOaKd77yjHcXF2lFcrOUpKea+dxQXtxkS+vOjj0Y95vZCQl0xrmDAZ+qcOa3uO+v4cXM/kYJUbYWEFqxaZW67cts2c2xXV8tpzSJN+XZNn/mkSRoydKi2FRaGvRacqi0kJBQMAtVE6iAUXUDo6pDQqk2blJaWFnK9t/xe7Ojytiqaaci6i91uV0lJSauvtxUSau97iZAQAAAAAAAAAADoKEJCGFBmzZqlf/qnf9JPfvITzZw5U3/9619DXg8+cGs5pceuXbtks9l07tw5c1l1dbXGjh2rW265RYMHD9att94qm82mPXv2mOsEQ0IffvhhyHsMHjxYv/3tbyV9GeCx2Wz66U9/ak4NMnjwYP3iF7/Qv//7v+uzzz4LO4a+EhLatWtXyFRjfYHL5TLHvGvXrh47V2lpadqxY0efCQkdO3ZMNptNycnJIcvj4uJaDe9E6krU3n10Le8TfFge7b0VaXyR7vnWHry3953SWT0RElqxdasZChk/bVrIa1NmzdLwmJhWu+3sP3FCq3fv1pMTJyrmjjvM/USqSIGUloGfJ1rpVnStIaHOjisY8Jm1aFGbY4kZMcKcDqwjIaHp8+a1Oa5I9UJ8fKc/75V//7xbO66WIaHsiqORpxZzu3SgJropxnpDSOjw4cM6d+6cJVNe2u32sClLW2orJNTe9xIhIQAAAAAAAAAA0FGEhDDgnDp1SkuWLNF//dd/6Stf+UrEqYdaPnBLT0+XzWYzQwXnz5/X97//fT3yyCO6cOGCpC+nALPZbEpPTze360hIaP369R06hmDoJz4+PmRqpkhaTjd27NixDr1Pa9p6GOtwOMwpYfrSdGOXLl0KmW7s9OnTXbLfaM/VuXPndPLkScvDQcHyer3y+XwRj6m18M68efOimgZMiu4+6sz7RHtvRXPPS20/eG/rO6WzeiIklFNVZQZdhg0bpsyKipDlE2fObHXb2YsXm4GSsY8/rvikJK3YulVJqalKSk3VvGXLog4JRdMVKNptumJcbQV8WtbIu++WYRi6+957O7SPyS+9FNIhKDi2tuqtgoJOfdbZx4/r7nvv1ci779bWAwcidi5qOa6UAwe049Ah7ThUpPR3nTpQ4/4yGHTVFGXXEhJ6u6ys0/fHpUuXogoHSV9+52RnZ6u8vLzT7xutysrKdn9P2goJtfe9REgIAAAAAAAAAAB0FCEhDBhnzpyR3W4PWfbII4/oxz/+sfl3NA/mysrKZLPZlJmZaa4TnCYpUkjo6unGvvvd74ZNN/b888+HjMvj8WjSpEmtHsuaNWvM4E9eXl6r67XsOhQfH6+PPvqo1XU7or3AS1BJSYkZusnOzu61QaFLly6psLDQHKvdbu+yjhPRnqvjx49r69atloeDWlZrgtOAvfDCCyHLo5kGLCia+6gz7xPtvRXtw/iNGzeaD96vXLmi8+fPR/Wd0lk9ERK6OrCSuH699p84oRV/n5Jr9e7dkQMfOTnmNpNefDHiOhuysno8JNRV4woGfF5auLDNsVxrJ6EZcXHmGDZ342fbsrYVFna4e1Gw/jR2bKffv6dCQi3DQS0FQzsul6vT7x2N+vr6sO++SGPqypBQpO8qAAAAAAAAAACAIEJCGDCqq6v1ox/9SGfPnjWXPfTQQ7rzzjvNv6N5MOfz+fStb31LTz31lC5fvixJWrp0aashoQcffFCff/65JGnRokX62te+purqanO92bNn63vf+55qamokffnQ8/7771dCQkKrx+JyuULCP/n5+WEdhVwulxITE811rp6mpTPaC7wEXd2dJyMjQ26325IpX1pzF/93WQAAIABJREFU+vRpZWdnh4yxsbGxy/Yf7bnqSyEhSZo2bZpuuOEG87otKyvTD37wg6hDQtHeR5He59vf/nZU7xPNvRXtw/jc3FzZbDadP39ehw8f1q9+9auovlM6q6dCQmv27DHDII89/bT2nzihp6dM0V2jRsnuckXc5qWFC0M6zvSWkFBXjSsY8Jk6Z06r48g6dszcz5MTJ3YoJLTgjTfMbZO2b++RkFDW8ePtdit6ctIkc1zLtmwxl6/bu7fXh4RaCwe1VF9fH/Id35W/R01NTXK73R3apqtDQpG+qwAAAAAAAAAAAIIICWHAaGpq0sSJE3XLLbfIMAz97ne/05gxY8zuOnv37tWgQYNks9k0aNAg2e12JScn66abbpLNZtNvfvMbHTlyRJKUk5OjQYMG6Sc/+YmGDBmihIQE2Ww23XTTTXrzzTcl/SMklJOTo9///ve68cYbdfPNN2vv3r0h47py5YpeffVV/eIXv9Btt92m2267TQsXLtSVK1faPJ6W04jFx8crMTFRW7ZsUUZGhtauXRv2WnvTknVEe4GXlpqamsJCONnZ2ZaHherr68MCTBkZGaqvr+/S94n2XH388cey2+1qaGiwPBxUWVmpzMzMNh+2X7hwQc8884yuv/56/exnP9MTTzyhOXPm6P/9v/9nrnP1PTVx4sSQfURzH7V8n5tvvlmjR4/WjBkz9PWvf12DBw9WbW2tUlJSQt4nJSVFUvv3Vkfu+UuXLmnEiBH69a9/rVtvvVU5OTntfqd0hZ4KCdndbt01apQZDtmSn68hQ4dq5vz5rW4zZdYsc/2Mo0cjrvPmrl09HhLqqnEFAz5jHnus1XGs3bvX3M+85cs7FBLaeuCAuW173YqenjJFw4YP18acnG4PEs145RVzXFnHjnXpvrsrJBRNOKg1hYWFys7OVklJSYe67ly9brAbXXZ2dtT7ifTdFe33Umvfe5G+qwAAAAAAAAAAAIIICQHdJBgS+uSTT7pl/36/X2lpaSFhoEi1cuXKLg0tSOrww9hLly6puLg4LJCTkZGhkpIS1dfX90hg6PTp0yovLw8LLXXndGjXcq6am5tVXFys3Nxc5ebmqra21gzwdPfygoICbd26VU6ns81xnjlzRhcuXAhZNmHCBA0dOrTD5wit66mQ0P4TJ/RCfLwZDrn/T38yw0KtrT8nMdFcf0NmZuR1Xn21x0NCXTWuYMDHMAxtczgirjNx5kwZhqEhQ4dq97vvdigktP/ECf1l3DgZhqF77r9fee+9F3GdXU6nhgwdqntHj5bd7SYk1MKVK1c6/dtx+vRpHT16NGyayeDvRGFhYUjop+VvWcuORPX19T32WwYAAAAAAAAAAHCtCAkB3aS7Q0JBV08r1rLy8vK6tINQZ7XWvSdYhYWFKi8vD5sO5lo0NTXp9OnTcrvdrQaUguEgl8vV6x7sHjlyRAUFBSooKAiZ+qu7l7tcLn3wwQftji82NlZxcXHm3/X19fre977XpdPaoWdDQlvsdjMcYhiGHhgzps31U/bvN9cd+/jjYYGSzfn5Gh4T0+Mhoa4aVzDgM2z4cP350Ue1p7Q05PXXNm409zFr0aI299FaSGj722+bY5k6Z05YCCjr2DE9/PjjMgxDK1JSuj0g1NdCQt3J5XLJ5XKppKQkZHl9fb1cLpc8Hk+v+90AAAAAAAAAAABoDyEhoBssXbpUP//5z2Wz2fTrX/9adru929/T7/ertrZWx44d6/LOQV2tvr7enJolmiosLFRxcbFZ5eXlcrvdqqqqClneVhjo6rLb7b0yHNRXFBQU6I9//KP+53/+R4Zh6Le//a02bNhg9bD6nZ4MCe0/cUIPjBljBkReXras3fVjlywx1x95992aOmeO5iQmavy0aRoydKgZcAlOqbVg1SqlHTqk/SdOKHH9ei1YtUp/evhhGYah0Q89pAWrVmnBqlVKzs4Oey+7222+HmmbgpqaTo9rT2mpub8RI0fKMAy9EB+vsU88oZg77tD4qVM1dc4cPfx//2duP+6555RfXW2+d6R9/N+ECVqwapWWbtoUdlzJ2dkaeffdMgxDf370UcUtX67E9ev1YkKC7rrnni+nMovis+hMJW3fbo75saefNo8tbvlyc/mekpIBFRICAAAAAAAAAADojwgJAbDM+fPn5fF4OhQY6kzZ7XZVVlZ2y7RiQHfo6ZDQy8uWmQGRne+8E9U2q3fv1lOTJunOu+7SkKFDNfLuu/XkpElatWOHNmRlhXQnMgxDSamp2n8idDqvqytS5528995rdX3DMGR3uTo9rs35+RHHklddrbjlyzXmsccUM2KEYkaM0MOPP65XN2wICSftP3Ei4j6C9aexYyOew8yKCsW+9poeeuwx3TFihIYNG6Z7R4/W5Bdf1OYe+NyfePbZNs+tYRjamJNDSAgAAAAAAAAAAKCPIyQEoNdobGyUy+VSfn6+MjMzOxUICnYfcrlcOn36NB2D0Cf1dEiIorqzWoaEUjMzdebMGatvMQAAAAAAAAAAgAGFkBCAXsXr9cput4dUXl6e8vLy9OGHH6qxsVH19fVyuVzyeDxqbGwMKcJA6E+OuVxmqGL13r2WhzwoqjPVMiS0atMmpaWlKT8/XzU1NTp37pzVtxsAAAAAAAAAAEC/R0gIQK8RCATkcDjCQkJ2u10ul8vq4QE9rtbrNUMVK/4+TRdF9dVal5VlXs/J27crLS0tpA4dOqSTJ08S9gQAAAAAAAAAAOgmhIQA9BoulytiQMjhcCgQCFg9PKDHERKi+lOtSE01r+dar1dnzpxReXm50tPTwwJDJSUl8nq9Ud8rTqeT3wkAAAAAAAAAAIB2EBIC0Cs0NzdHDAjZ7fYOPSgG+hP/xYtmqCJ+9WrlVVdbHvSgqGuthPXrzWv5o8bGkGv91KlTOnz4cFhYKD09XeXl5Tpz5kzr94nfb05dRhciAAAAAAAAAACA1hESAtArlJWVRQwIOZ1Oq4cG/H/27j04qvL+4/g6vxltpzN2xnGcDu2MtVbbjjNMba1MHWvr9ACJIkq5CoJWrUUuyv0O4R7CPRKQKBAuJuRiyD3ZzQY2EkLEBAgkYkBXQzRFY9yQSLqQhXx+f9isWbKJyeZyQni/Zr7j5Nmz53z32bP4x/nM85jqrYQEb7AioaDA9KAHZX4NDgrqcC0PDze157STJ7338Zbo6Fbv94aGBn322Wc6cuRIi8BQenq6PvzwQ126dMnnPZ9++qn3mPYEhZxOp3JycrzVXHePHz58mO0zAQAAAAAAAACAaQgJATBdZWVlq6sIuVwus9sDTPVeUZE3XLE1MdH0gAplfiXk53e40ouLTe05MiXFex+nOhztuvcvXbqkc+fOyWaztQgMZWdn69y5c2poaFB6enqL1/wFhRobG1VfX6/y8nJZrVZvuVwub3X3eFpammJiYnT06NEu/peia0yZMkV333237r77bp/xHTt2qF+/fqqrq+uW6548eVIrVqzolnMDAAAAAAAAAIDvERICYCqPxyOHw+E3IFRaWmp2e4DpLtbV+Ww5lvTBB6aHVCiqI5VZUuJzD5cHsIVkTU2NTp482SIQ1FpdHxT66quvVFFR4RPYMatKSkr00UcfdeU/E10qNDS0RUjo+PHjmjdvnq5evdot14yKitJtt93WLecGAAAAAAAAAADfIyQEwFRlZWV+A0IOh0Mej8fs9oBeIdXh8AYs3oiLMz30QVEdqa2Jid77d29qaqd/D1VVVTp27JiSkpKUkJDQZlCoSU5OjtLS0kwPCDVVTU1Np+ehu/gLCXU3QkIAAAAAAAAAAPQMQkIATON2u1vdZuz8+fNmtwf0GtevJhSZkmJ68IOi2lPvHDrU6VWE2vJDKwodOXJE0nchoeu3/jK72nL58mVNmjRJd9xxh+6//36NGjVKc+bM0a233qoBAwaovLxc69atk8VikcVikdVqlWEYuu2222SxWFRSUqKEhAT95S9/kWEYeuyxxxQcHKwzZ860ep3f/e53+ve//62QkBCfkFB0dLT69+/vPW+TxsZGhYaG6sEHH9Tjjz+uRx55RBEREWpsbJQkn/6ysrL0t7/9TT/+8Y/14IMP6sSJE97zbNq0Sb/61a90yy23aMCAARowYIC2b98uSXrvvff02GOPeT/D0KFDlZ+f36l7BgAAAAAAAACAmxkhIQCmKSoq8hsQKigoMLs1oNd5r6jIJ2wRe/iw6QEQimqrYg8f9rlnUx2OLv1N1NTUtGvrseTkZB08eFD5+fmmB4OaKj8/X8ePH2/1s82YMUN33XWXzp07J+m7/1/efvvtLVb4KSkpkcVi0d///nedOnVKLpdL/fv3V0lJiUaPHq24uDjvsVu3btU999wjt9vd5nX69evX6nWah4Tmz5+v++67T998840k6csvv1S/fv20adOmFu8LDg7WuXPn9PXXX+vRRx/VgAEDfM7vbyWhhoYG/fSnP5XdbveOvf7661q4cGGr8wYAAAAAAAAAANpGSAiAKaqqqlpdReiHVlgAblbNtx1bGRmpnZmZpgdBKMpfXR8Qeishoct/DwUFBe0KCTWV2cGg5mW1WpWTk+P3c9XX1+u2227TvHnzfMbHjx/fangnOjraO/bVV1/pypUrqqys1LVr17zjFy9elMVi0bFjxwK+TlNI6Ntvv9WPfvQjrVu3zue4GTNmqF+/fi3eFxsb6x2LjIzUrbfe6l1xSPIfEqqqqpLFYtHWrVt9xpoCTQAAAAAAAAAAoOMICQHocR6PR3l5eX4DQqWlpWa3B/Ra7itX9FZCgk/4YmtiojJLSkwPhVDUwY8/VmZJibYmJrYICLmvXOnS30JjY2OLEJDD4ZDD4VBpaalKS0v1xRdf6NNPP9Xx48flcDhMDwa1NyR06tQpWSwWRUVF+YwvX7681fCOv1WJPvroI40fP14PPfSQBgwYoIcfflgWi0XJyckBX6cpJHTs2DFZLBbdd9993i3CBgwYoAceeEC/+MUv9O2337baX2JioiwWiy5duuQd8xcSkqSFCxfq//7v/3Tvvfdq3rx5+vDDD/3OGQAAAAAAAAAAaB9CQgB6nNPp9BsQcjgc8ng8ZrcH9GruK1cUb7X6hDBWRkYqMiVFaSdPmh4SoW7Oyiwp0Z7sbIXu3NntASFJunbtmmpqalRTU9Ou410ul8rLy00PBzVVUy/+tBbeWbZsWbu2AZO+WyXoZz/7mSZMmKDLly9LktxutywWi5KSkjp9naaQ0M6dO9ucd3/9JSUlyWKxeINEUushIUn64osvtHHjRv3+97/XLbfc4rOdGQAAAAAAAAAA6BhCQgB6lNvtbnWbsfPnz5vdHnDDeK+oqEVQaGVkpNbt3q3IlBTtyc7WnuxsJRUWUlSXV9P9tTMzU+t27/Z7L6Y6HGb/TLxycnJktVpNDwc1r9Y0bQM2d+5cn/H2bAPWpKioSBaLRenp6d6xpu3GmkJCnblO03Zjs2bN8jnO6XTqtddea7M/fyGh3bt3e0NCjY2Nqq+vV01Njex2u8/5J0yYoHvuuUcAAAAAAAAAACAwhIQA9KiioiK/AaG8vDyzWwNuOOWVldqbmuo3oEFRZtXe1FSVV1aa/fPwUVBQoKSkJNODQU118eLFNvudOXOm7rrrLp07d07Sd//v/PnPf97ukJDL5dJPfvITvfLKK7p27ZokadOmTT4hodauc/vtt7frOosWLdKdd97pfW9DQ4NGjBih0NDQNt/nLyRktVplsVhUX1+vY8eO6Q9/+IM++ugj/fKXv/SZq3HjxmnIkCFtzh0AAAAAAAAAAGgdISEAPaaqqqrVVYTaWlUBQNvKKyuV6nBoXVSU6QER6uasdVFRirdadaqszOyfg19Op1MOh0NVVVWmB4QKCwuVnZ2tS5cutdrv5cuXNXnyZN1xxx367W9/q5dfflmLFy/Wr3/9a+8xKSkp6t+/vywWi/r376+pU6f6nCMrK0v9+/fXvffeq4EDByo0NFQWi0X333+/tm/f3uI6v/nNbzRq1CjNmTNHt956qwYMGKDy8nJFR0f7XCc6OlrSdyv+rF+/Xg888IAeffRRPfroo1qzZo0aGxv99me32xUVFaX7779fFotFf/rTn3T8+HFJ3wWMnnzySf3xj3/Uww8/rKysLNXW1mrq1Kl66KGHZBiGHnnkEY0dO1Zffvlll94bAAAAAAAAAADcTAgJAegRHo9HeXl5fgNCxcXFZrcH9BnllZU6dvq03isq0ntFRdqbmkp1sHYdOKDwPXt6Rb25f7/p8+Gvmu6vY6dP97pVg9py+fJl1dbWKj8/X1arVVarVeXl5d4AT3ePW61WxcTEqKCgoM0+a2pqdPnyZZ+xSZMmadCgQd05PQAAAAAAAAAAoI8jJASgRzidTr8BIYfDIbfbbXZ7AODldrtbXfXMjOLfyK53/Phx5eTkKCcnx2clu+4edzqd+vzzz3+wv5CQEC1fvtz7d0VFhe68807Fx8cH/JkBAAAAAAAAAAAICQHodm09cHc6nWa3BwAttLbymRlVVFRk9nSgh+Xk5Oivf/2rHn/8cRmGoT//+c/atWuX2W0BAAAAAAAAAIAbHCEhAN2uqKjI74PvvLw8s1sDAL9KS0tNDwc1r+ar0QAAAAAAAAAAAACBICQEoFu5XC4eegO44VRWVpoeDCJUCQAAAAAAAAAAgK5ESAhAt2pty57i4mKzWwOANvWmLcfsdrvOnz9v9pQAAAAAAAAAAADgBkZICEC3cTqdfh90OxwOud1us9sDgDb1ttWEHA6HPB6P2dMCAAAAAAAAAACAGxQhIQDdwu12y+Fw+H3Q7XQ6zW4PANqlt60mxL+fAAAAAAAAAAAACBQhIQDdori42O8D7ry8PLNbA4B2667VhA4cOCCr1RrQe1mJDQAAAAAAAAAAAIEgJASgy1RUVOjatWtyuVytPtx2uVxmtwkAHVJYWNhl4aC4uDilp6crPj5eERERAZ2juLjY7CkBAAAAAAAAAADADYiQEIAu0djYqJkzZ2rFihVKTEz0+2C7sLDQ7DYBoMPaCj52tJKTkxUaGqrly5dr8uTJSktLC+g8BC4BAAAAAAAAAADQUYSEAHSZuLg4bd26VZMnT9aqVauUlpamPXv2aP/+/WyRA+CGVlpa2umAUEZGhjZs2KCJEydq5cqVevfddxUeHh7QuQoKCsyeEgAAAAAAAAAAANxgCAkB6DJffvml1qxZo9TUVK1cuVKTJ0/WvHnzZLPZlJOTo4aGBrNbBICAuN1uORyOgAI9NptN27dv19SpU7VkyRLFxsYqNDRUdrtd2dnZAYeOKisrzZ4WAAAAAAAAAAAA3EAICQHoMsXFxVq/fr13u7GwsDDNnDlTc+bM0d69e81uDwA6xel0djjIExcXp1mzZmn27Nl65513vOORkZGKjo7u1MpEeXl58ng8Zk8LAAAAAAAAAAAAbhCEhAB0SmNjoyTJ5XLJbrcrNTVVoaGhSk5O1vr162Wz2bRu3Tp98803JncKAJ3j8Xg6vJpQcnKyQkJCtHLlyha1aNEi72pCNpstoKCQ0+k0e1oAAAAAAAAAAABwgyAkBCBgp06d0vz58/XFF1+ooKDA+9B63bp1WrZsmTIyMlRQUKDDhw+b3SoAdInKyspOrf7TVE3BoPj4eM2fP19btmwJ6DwOh0Nut9vsaQEAAAAAAAAAAMANgJAQgIBcunRJ+/bt03//+199+umnstlsSkpKktVqVVpamvbt2ye73c7DawB9TvNQZGcrLS1NqampmjZtmtLS0gI6R2lpqdlTAgAAAAAAAAAAgBsAISEAAXn//fd17tw5eTwepaWlad68eXr99dc1depU7dy5k21wAPRZTdsrBlI2m027d+/W9u3btW/fPmVkZMhut2vbtm0KCwsL+Lx1dXVmTwsAAAAAAAAAAAB6OUJCAAJSWFiogwcPqrS0VOvXr1dmZqbsdruioqI0ZcoUpaeny+PxmN0mAHSL4uLigMI8K1as0LRp07Rhwwa98cYbWr16tVauXKnw8HBNnjxZiYmJAZ23qKjI7CkBAAAAAAAAAABAL0dICEBALl++rAULFigqKkpr1671eVj95ptvymazmd0iAHQbt9vd4SBPRkaGZs6c6Q1VNq+EhARFRER4t2oMpKqqqsyeFgAAAAAAAAAAAPRihIQABCw9PV1Tp07VxIkTtXv3bu+D6qioKFVWVprdHgB0q7Kysg5vNRYaGhpwCOiHKi8vz+wpAQAAAAAAAAAAQC9GSAhAQM6fPy+73a60tDStXLlSr7zyiubPn6+VK1cqNjbW7PYAoNt5PB45HI4OBXkiIiK0d+9epaamymaz+byWlZWlffv2KSoqSmlpaQEFhZxOp9nTAgAAAAAAAAAAgF6KkBCADvN4PIqIiPB5MJ2WlqY9e/bo8OHDZrcHAD2mKTDZ3srOzlZYWJgWLVqk9PR02e12Wa1Wbd68WZMmTdLs2bMVFhamJUuW6N133+1wSMjhcMjj8Zg9LQAAAAAAAAAAAOiFCAkB6LDS0lItWLBASUlJPJwGcNPLy8sLeIuw1NRUzZ49W/PmzVN0dHSXbE1WVlZm9pQAAAAAAAAAAACgFyIkBKBDXC6X7Ha7wsPDFRkZ6fNA+/PPPze7PQDocVVVVQGHhObPn69NmzYpOzvbZzw+Pl7Lli0L+Lxut9vsaQEAAAAAAAAAAEAvQ0gIQIcUFBTIbrcrOjpaixcvVkREhJYsWaIZM2boiy++MLs9ADBFYWFhh4M8ycnJCgkJaTEeHR2tqVOnat++fQGHhIqKisyeEgAAAAAAAAAAAPQyhIQAtNuZM2e0bds2LV26VNOnT9fEiRMVERGh+Ph41dbWmt0eAJimrq6uw0GezMxMrVmzxvv3gQMHtGrVKk2cOFFvvfVWwAGhpnK5XGZPCwAAAAAAAAAAAHoRQkIA2sXj8Sg2NlZbtmxRbGysbDabFi5cqAMHDqisrMzs9gDAdKWlpR0O8kRGRmrRokWaO3euJk6cqOXLlysxMdH7utVq1c6dOwMKCeXl5Zk9JQAAAAAAAAAAAOhFCAkBaNP58+clSWVlZS0eQIeHh+vtt9+Wx+MxuUsAMJ/H45HD4ehwmCctLU1xcXHKzMz0+/qqVauUlpYWUFCosrLS7GkBAAAAAAAAAABAL0FICECrPvzwQ02ePFnFxcV+Hz7HxMQoPDzc7DYBoNdwOp2d3iasqZKTk7VixQpNnjxZ69evD+gcDoeDICcAAAAAAAAAAAAkERIC0IqrV69q2bJl+uSTT7R48WKlp6e3ePh87Ngx1dfXm90qAPQaHo9HeXl5nQoHZWZmauPGjZo0aZLCwsKUnp6ubdu2KSMjI6DzOZ1Os6cFAAAAAAAAAAAAvQAhIQB+Wa1WJSQkqLKyUrGxsVq6dGmLB891dXVmtwkAvU5lZWVAYR6bzabIyEhNnTpVS5YsUWJiYpetSuR2u82eFgAAAAAAAAAAAJiMkBCAFmpqarRw4ULV1dXJ4XDIbrdry5Yt2rp1q/eBc2lpqdltAkCvVVhY2KEQT3Z2tubOnatZs2Zp3759XRYOaqri4mKzpwQAAAAAAAAAAAAmIyQEoIWLFy9q9+7dysnJ8XmAHRISori4ODkcDnk8HrPbBIBey+VydTjIEx0drZUrV2rXrl2tHpOamhpwUMjlcpk9LQAAAAAAAAAAADARISEAftXV1bV4wJyWlqYFCxbo3LlzZrcHAL1eaWlpQGGetLS0Vl+bNWuW0tPTAzpvUVGR2VMCAAAAAAAAAAAAExESAuBXUVGR34fMiYmJys/PN7s9AOj13G53l24ZlpKSonnz5nXqHJWVlWZPCwAAAAAAAAAAAExCSAhAC5WVlXrjjTfYrgYAOsnpdAYc6MnMzNSKFSv09ttvKyUlRZGRkdq8eXOnQkJ5eXlsFwkAAAAAAAAAAHCTIiQEwIfH41FeXp4WLFigpKQkn4fLpaWlZrcHADcUj8cjh8MRUKDHZrMpOjpaGzdu1Ny5czVp0iStWLFC0dHRslqtAQeFnE6n2dMCAAAAAAAAAAAAExASAuCjadWL8PBwRUZGeh8qHzx4UFeuXDG7PQC44VRWVnZ6q7Hs7GxNnz5dO3bs0OrVqzVjxgy9+eabAZ3L4XDI7XabPS0AAAAAAAAAAADoYYSEAHi53W7vQ+To6GgtXrxYERERWrJkiWbPnq0vvvjC7BYB4IZUUFDQqZBQbGysli1b1mI7skDPx8pwAAAAAAAAAAAANx9CQgC8cnNztW3bNi1dulTTp0/XxIkTFRERofT0dDU2NprdHgDcsFwuV6dCQps3b/ZZ3a0rqq6uzuxpAQAAAAAAAAAAQA8iJARAklRVVaXo6Ght2bJFsbGxstlsWrhwoQ4cOCCXy2V2ewBwwyssLAw40LNr1y6lpqZ6/05KStKGDRu0du1aJSYmBnTOoqIis6cEAAAAAAAAAAAAPYiQEHCTO3/+vDwej/Ly8lo8QA4PD9f+/fvNbhEA+oTmWzp2duuxSZMmacWKFdq5c6dWr16thISEgM5VVVVl9rQAAAAAAAAAAACghxASAm5iH374oSZPnqzc3Fy/D4/j4uL05ptvmt0mAPQZZWVlnQ4JLVu2TG+//bb3b5vNptDQ0IDOlZeXZ/aUAAAAAAAAAAAAoIcQEgJuUlevXtWyZct05swZzZ8/X+np6S0eHn/88ceqr683u1UA6DM8Ho8cDkeHwzxRUVHasmWL7Ha7Vq5cKZvN5n3t3XffVUhISMCho/Pnz5s9LQAAAAAAAAAAAOgBhISAm5TValVCQoKKiooUGxurpUuXsroEAPSA8+fPdzjIs3nzZkVHR3u3G9uyZYtSU1MVGRmpKVOmaM+ePQGHhBwOhzwej9nTAgAAAAAAAAAAgG5GSAi4CdXU1GjhwoWqqKjwPiTesmWLtm7d6v3b5XKZ3SYA9Fl5eXkdCvKkpKRo7dr9oS7OAAAgAElEQVS13r937dqliRMnauLEidq+fXuntzArKysze0oAAAAAAAAAAADQzQgJATehixcvavfu3Xr33Xe9D4izs7MVEhKiuLg4FRcXm90iAPRpVVVVHQ7y7Nu3TyEhIZo7d64mT56s1atX68CBA8rKytKWLVu0bt06JSYmBhwUcrvdZk8LAAAAAAAAAAAAuhEhIeAm5XQ6WzwgTktL08KFC1VTU2N2ewDQ5xUWFgYU5snMzFR2drb374ULF2ru3LmKiIhQSEhIwEGhoqIis6cEAAAAAAAAAAAA3YiQEHATSk1NlcPh8PuQ+NChQ8rPzze7RQDo8+rq6gJe9cdmsyk2NlaZmZmaM2eObDab7Ha7rFarwsLCAj4vW00CAAAAAAAAAAD0XYSEgJvQ0qVLlZSU1OLhcF5entmtAcBNpbS0NKCA0Jw5czR79myFhIRo1apVPq8vX75cGRkZAYWECgoKzJ4SAAAAAAAAAAAAdBNCQsBNxuVyKTw8XJGRkT4PnG02GytIAEAPc7vdra7s1lrFx8crJCTEu+VYWFiYsrKyZLfblZiYqDlz5ig1NTXg1YQqKyvNnhYAAAAAAAAAAAB0A0JCwE0mLy9P0dHRWrx4sSIiIrRkyRJNmzZNBw8eNLs1ALgpOZ3ODoV4MjIytHbtWr+vWa1W79ZjgZbD4ZDH4zF7WgAAAAAAAAAAANDFCAkBN4lvvvlGcXFxWrp0qaZPn66JEycqIiJC8fHxys7OltvtNrtFALgpeTwe5eXldSjIExERocjISMXExLR6jNVq1c6dOwMKCjmdTrOnBQAAAAAAAAAAAF2MkBBwkzh9+rS2bt2q2NhY2Ww2LVy4UAcOHOBhMAD0ApWVlR0K8WRnZ2vDhg2KiIho87hVq1YpLS0toKAQ4VEAAAAAAAAAAIC+hZAQcJMoLi72efgbHh6u7du3Ky8vj21lAKAXKCws7NQ2Yc0rOTlZK1as0OTJk7V+/fqAzlFaWmr2lAAAAAAAAAAAAKALERIC+qgrV65o27ZtmjJliiIiIpSZmenz8DcmJkYrVqxQVVWV2a0CACS5XK5Oh4MyMzO1ceNGTZo0SWFhYUpPT9e2bduUkZER0PlcLpfZ0wIAAAAAAAAAAIAuQkgI6KMSExP1+eef6+LFi1q6dGmLlSRsNpuOHDlidpsAgGauX/WtvWWz2RQZGampU6dqyZIlSkxM7JIViYqKisyeEgAAAAAAAAAAAHQRQkJAH3TlyhW99dZbkiSn06mUlBQtWbKkxcNft9ttcqcAgObcbneHgzzZ2dmaO3euZs2apX379nXZlmVNVVlZafa0AAAAAAAAAAAAoAsQEgL6oLq6Oq1Zs0Yul0sOh0MZGRlatmyZsrOzvQ99nU6n2W0CAPxwOp0dDvJER0dr5cqV2rVrl894VlaWtmzZonXr1gW8ulBeXp48Ho/Z0wIAAAAAAAAAAIBOIiQE9FFXr15VSUmJd5WJ7du3a/v27UpJSVFOTg4PfAGgl/J4PHI4HAEFetLS0nz+XrhwoebOnauIiAiFhIQEHBQiWAoAAAAAAAAAAHDjIyQE9FEul8vvg95FixYpLi7O7PYAAG2orKwMeHswm82m2NhYZWZmas6cObLZbLLb7bJarQoLCwvonA6Hg3ApAAAAAAAAAADADY6QENBHFRQU+H3QW1BQoKtXr5rdHgDgB+Tl5QUUEJozZ45mz56tkJAQrVq1yuf15cuXKyMjI6CgUGlpqdlTAgAAAAAAAAAAgE4gJAT0QefPn2/1Ia/b7Ta7PQBAO7S2IlxbFR8fr5CQEGVnZ8tutyssLExZWVmy2+1KTEzUnDlzlJqaGvAqRXV1dWZPCwAAAAAAAAAAAAJESAjoYzwejxwOh9+Hu06n0+z2AAAdUFhY2KEQT0ZGhtauXev3NavV6t16LNAqKioye0oAAAAAAAAAAAAQIEJCQB9TWlrq98Guw+GQx+Mxuz0AQAe43e4OB3kiIiIUGRmpmJiYTgWCWiuXy2X2tAAAAAAAAAAAACAAhISAPqStrWkqKyvNbg8AEICysrIOhXiys7O1YcMGRUREdEtIKC8vz+wpAQAAAAAAAAAAQAAICaHP+frrrxUcHKzBgwfLMAyNGDFCV65cafM977//vgzDkGEYCg4O1t69e7utv+a9DRo0SMHBwQoKClJQUJD++c9/KjY2VlevXg3o3AUFBX4f6BYWFnqP2b9/v4KDg2UYhpYsWdJVHwsA0E3a2kbSrDp//rzZ0wIAAAAAAAAAAIAOIiSEPuvQoUPe4E9qamqbx06bNk2GYej111/v0d7i4+O9Y998843Cw8NlGIZWrlzZ4XOeP3++1Ye5dXV1LY4fNmwYISEAuEE4nU7Tg0HNy+FwmD0lAAAAAAAAAAAA6CBCQuizDh06pAkTJmjw4MEaP368rl275ve4M2fO6MUXXzQ9JCRJ165d8/Zy9uzZdp+vrVUmysrK/L6HkBAA3Fjy8vJMDwc1L7axBAAAAAAAAAAAuLEQEkKfdejQIc2YMUNr1qyRYRjKzc31e1xISIisVmuvCAlJ0rp162QYhpKSktp9vrKyslZXevB4PH7fQ0gIAG4sVVVVpgeDmldeXp7ZUwIAAAAAAAAAAIAOICSEPqspJOR0OmUYhiZNmtTimM8//1xjx47V5cuX/YaEvvrqK7355pt68cUXNXLkSI0ZM0aLFi3Sp59+6nPc9OnTNWjQIBmGocGDB8tqterSpUsKDg72jkVFRfn09kMhoeTkZEmSy+XSxo0bNWbMGI0YMULPPfecdu3aJbfbLUmqq6vzPrBNTk7WzJkzNWzYMA0dOlTPPvusz7HNERICgBtPYWGh6eGg5uVvO0sAAAAAAAAAAAD0ToSE0Gc1hYQkad68eTIMQydPnvQ5ZuPGjYqPj9fVq1f9hoSsVqueeeYZffTRR5Kk+vp6rVu3TsHBwSovL/c5trCwUIZhaNWqVd6xjz/+WOPHj9elS5da9PZD242dO3dOFy9e1Lhx4zRlyhR9/fXXkiSn06nRo0dr2rRpunr1qoqKimS325WSkqLhw4dr/PjxOnDggAoLC1sc2xwhIQC48bhcLtODQc3r/PnzZk8JAAAAAAAAAAAA2omQEPqs5iGhEydOyDAMzZs3z/v6N998oxEjRqi+vr7VkND777+vhIQEn7GGhgY98cQTCg8Pb3HNjRs3yjAMORwOXblyRS+99JKKior89nZ9SOjrr7/W5s2bZRiGVq9eLUnatGmTDMPQmTNnfN6fmpoqwzC0e/du74PamTNnyjAM7dmzx2d1h6Zjr9++jJAQANyYSktLTQ8HNVVpaanZ0wEAAAAAAAAAAIB2IiSEPqt5SEiSXn31VRmGIafTKUnasWOH3n77bUlqNSTUmueff14zZ85sMX7p0iWNHTtWzzzzjFavXq2NGze22pthGBo0aJCCg4MVHBysJ554Qi+//LLi4+N17do1NTY2atiwYRo2bFiL91dXV8swDP3zn/+U3W5Xdna2hgwZoiFDhshut6usrKzFsdOmTfM5ByEhADe7C19Vq7jkrN7LP35D1cH3jmlPdKKi9iWYXvsT0kyfjxulikvOqrziP2bf9gAAAAAAAAAA4CZGSAh91vUhIYfD4V2lp76+XiNGjFB1dbWk1kNCly9fVmxsrF555RU9/fTT3kCPYRiaMmWK3+sWFRXJMAw9/fTTqq+vb7U3f9uNNVdbWyvDMPTyyy+3eO3atWsaOHCgnn76adntdu9qQWPGjJHD4ZDH42lx7KhRo3zOQUgIwM2ovOI/SsnMVVj4bi1f+xZF9XiFhe9WSmauys59ZvbPAQAAAAAAAAAA3GQICaHPuj4kdO3aNY0bN06DBg1SRESE1q1b532ttZDQ0qVLZRiGUlNTfQI/L7zwQqshoYsXL2ro0KEyDEPvvfdeq721NyT00ksv+b1GayGh8+fP+xxLSAgAvls1aM/+NNMDIhTVvPbsT2N1IQAAAAAAAAAA0GMICaHPuj4kJElJSUkyDEOGYfiEafyFhC5duiTDMDR58uQW524rJLR8+XK98847eu655zR8+HDV1NT47e2HQkJtbTfW9P7rtxt76qmnWhzbtN3Y9OnTfcYJCQG4WdgOHvUb0AgL36ttUanatd9OUd1e26JSFRa+1++9mJKZa/bPBAAAAAAAAAAA3AQICaHP8hcScrvdGjVqlEJCQnzG/YWErly5okGDBunVV1/1ObahoUFDhgzxGxLKzc3V9OnT1djYqFOnTskwDC1btsxvbz8UEpKkTZs2yTAMlZSUeMcqKyu1du1aGYahNWvWyG63y263a+bMmS2OleRdZSg5OdlnvLWQUG5ursrKyjo9DgBmc1++orgDthaBjG1RqUq2n5L9qJOieryS7ae0a7/d76pC7stXzP7ZAAAAAAAAAACAPoyQEPosfyGh1rS23VhISIgMw1BCQoL++9//qqamRmFhYTIMo0VIqKamRuPGjdN//vP9tiFbt26VYRg6dOhQi97aExK6ePGixo0bp0mTJqmqqkoej0dxcXEaNmyYXnjhBVmtVm9I6P333/c5VpI+/fRTjRkzRtOmTZPH4/E5t7+Q0JkzZ2QYhoYOHarGxsaAxwHAbO7LVxS5O9EnhLFlxwGlHyo1PSRCUfajTqUfKtWWHQd87tHI3YkEhQAAAAAAAAAAQLchJIQ+KTg4WIMHD5ZhGAoODlZqamqrxy5fvlzBwcHebciCg4OVmJgoSfr222/1xhtvaMyYMQoKCtLzzz+vAwcO6Pnnn/ce+9FHH2nz5s0aPHiwBg4c6N0ezGq1KigoSIZhaODAgRoxYkSL3gYNGqTg4GDt37+/1f5cLpc2btyo0aNHa9iwYRo+fLgWLVqkjIwMb0DI4XDI4/H4HDtixAg999xz2rlzp9xut/d8+/fv937egQMHej+D9N3WZGPGjNHChQt9eujoOACYLSUz1yd88dY7WaaHQijKX+1NcLRYUQgAAAAAAAAAAKA7EBICbhBut9sbCrq+zp8/b3Z7ANBr5B4p8gldxCQfMT0IQlFtVUzyEZ971nrwqNk/IwAAAAAAAAAA0AcREgJuEEVFRX4DQgUFBWa3BgC9Rs3FOp+wxbaoVNMDIBTVntq13+5z7174qtrsnxMAAAAAAAAAAOhjCAkBN4CqqqpWVxFyuVxmtwcAvUZyxvdbN22OjDc9+EFRHaktOw6w7RgAAAAAAAAAAOg2hISAXs7j8SgvL89vQKi0tNTs9gCg17jwVbXPSiyJ1uOmhz4oqiOVfqjU5x4ur/iP2T8rAAAAAAAAAADQhxASAno5p9PpNyDkcDjk8XjMbg8Aeo3cI0VsM0aZU/mfKCf/Y9mPnPOpnPyPZc//pEPn2haV6r2PrQePmv2zAgAAAAAAAAAAfQghIaAXc7vdrW4zdv78ebPbA4BeJXJ3ojdcEZ/2vvnBEermqPxzLcJBLSr/XLvPl2g97r2Pw7fHmP2zAgAAAAAAAAAAfQghIaAXKyoq8hsQysvLM7s1AOhVai7W+WzTlJV31vzwCNW3K/8T5VwfEMr/WPajn3xXflYWau+qQqs27PTeyxe+qjb75wUAAAAAAAAAAPoIQkKASaqrq33K6XTq7NmzOnv2rKqrq/XJJ5/IZrPJZrMpOzvbJyTkcrnMbh8AepXyiv94QxWbI+PND5BQfb5aBIT+FxLKOepUzlGn35BQTjtXFNocGe+9n8sr/mP2zwsAAAAAAAAAAPQRhISAblZdXa2zZ8/qgw8+UG5urlJTUztVNptNpaWlunDhgurr683+eADQKxASonq0Wtti7AdCQu3demxbVKr3fi4uOWv2zwsAAAAAAAAAAPQRhISALlZfXy+n09klgaD2lN1uV2lpqWpra83+6ABgmvcLT3tDFW+9k2V+iITqu5X/if/wT3tDQu3YdmzXfrv3fs49UmT2zwsAAAAAAAAAAPQRhISALlJRUdGhYFB+fr5PlZSUqKysTGVlZfrggw98XsvMzGx3YOjs2bNqaGgwezoAoEflHinyhip27bebHyTpA/Xq1FkaPDhIhmFo1bo3Te+n15Sf8M+KNVs0OOi7uXp1yqx2hIQ+bvMahIQAAAAAAAAAAEB3ICQEdFJFRYXsdnurwZ3c3FyVlJSooqJC1dXVnbpWbW2tLly4oLKysjbDQ5mZmb0uLORyuZSTk+Mtl8vlfe348ePdOl5WVqZPP/20mz8hADPlHinS4lURMgxDk1+fa36QpIcq7WCJDMPQ3EWru+X80QcOExK6vvKbbRuW/7FPDXnq6e9DQkc/afG6z3vbuAYhIQAAAAAAAAAA0B0ICQEBamhoUH5+vt+QzgcffKCKiooeCelcuHBBJ06c8BsYyszM7HQwyZ9Lly516PiGhgZ98cUXslqt3iovL5fL5ZLL5VJ+fn63jlutVsXExOjo0aNdPhddYcqUKbr77rt19913+4zv2LFD/fr1U11dXbdc9+TJk1qxYkW3nBvoaYSECAn1WPnZWqypmoeE/JXP6kJtXIOQEAAAAAAAAAAA6A6EhIAA1NbWtlg9KDMzU2VlZaau3lNRUeE3uFRRUdGl14mPj5fD4VBVVVWbx7lcLl28eNEb1jGzSkpKdPjw4V61ulJzoaGhLUJCx48f17x583T16tVuuWZUVJRuu+22bjk30NMICRES6rEiJAQAAAAAAAAAAG5QhISADmpoaGgREDI7HHS96urqFj1euHChy84fHx/vrbbCQqdPn1ZMTIzpAaHm1Vv5Cwl1N0JC6EtWr1mvQYMGyTAMDRw4UIODgjQ4KEiz5i9X+PZYGYYhwzA09rkXlJBxTP+a+LqCn3hShmFoxpwQLV0VrsFBQS0CNzPmLtXgwd+Nr3tjt3f8+nPGpR3VS69MUXDwExo5eqzWb9njN/yRnH1SM+ct07B/jNTQp4dpxMhnNem12YrY8a73mMTMQs1fvEajnx2vp5/5h4b9Y6T+PXmGog8c9jnXirCt3p4HDhrk85mbjkmyndCMuUs19OlhGjJkqEaOelZLVmxU1uEyP4Gg9/TSK1MUFBSsoU8/o9nzV2hPfE5AIaFOzc/cpd75GT5yjBYv36iM3DOtntvf99ni+qlH9cKLExUUFKxnxz2vt/ely37UqY0R+/SP4aP05JCnNOm12UqxF/v04/+7mK7oRAfbjQEAAAAAAAAAgBsOISGgg06cOOGzelBtba3ZLfl1/XZomZmZXRZkah4Saiss1BtDQh6Pp9XPdfnyZU2aNEl33HGH7r//fo0aNUpz5szRrbfeqgEDBqi8vFzr1q2TxWKRxWKR1WqVYRi67bbbZLFYVFJSooSEBP3lL3+RYRh67LHHFBwcrDNnzrR6nd/97nf697//rZCQEJ+QUHR0tPr37+89b5PGxkaFhobqwQcf1OOPP65HHnlEERERamxslCSf/rKysvS3v/1NP/7xj/Xggw/qxIkT3vNs2rRJv/rVr3TLLbdowIABGjBggLZv3y5Jeu+99/TYY495P8PQoUOVn58f8P0C9IS2VhJKsRcrar9No0aP06gxz2nCC69o7eZd2r47WWOf+6dmzAmR/Wjrq/LsibO3CAn5nHP0OL3w4kRtiNinbTsTNeGfr8gwDO3ab2vRx/ARo/XchJeUmFUo+1GnEjKO6bkJLyn4iSe9x22I2KchQ4ZqT3yO7EedSj9Uqumzl2jw4CDtT87zOWdbKwk1Xe+FlybqgPX4/8InNg19+hm9MmmasvM/8R4bn1agJ4c8peEjx2hnTJYOWIu0dvMuPf+/z9LRkFBn5mf8C//SAWuRN7j0zLAReuHFibLlnWv393n99V/812RtfjNGW96O14iRzyo4+AltiNinSVNn682oJK1Ys1UDBw3SazMW+PTk/7tY/N13ceC971cF+l/5hISarxp0feV/TEgIAAAAAAAAAAD0OEJCQAc1X52nurra7HbadP2qR121mpC/kJC/sJDT6ZTNZjM9GNRUTqdTp06davVzzZgxQ3fddZfOnTsnSSoqKtLtt9/eYoWfkpISWSwW/f3vf9epU6fkcrnUv39/lZSUaPTo0YqLi/Meu3XrVt1zzz1yu91tXqdfv36tXqd5SGj+/Pm677779M0330iSvvzyS/Xr10+bNm1q8b7g4GCdO3dOX3/9tR599FENGDDA5/z+VhJqaGjQT3/6U9ntdu/Y66+/roULF7Y6b0Bv0J7txsZNeFGGYeitvanesbf2pmnNph0dDgldf86oZoGXpi26FoSE+Rw7c94yGYahdxJzW5y/eUhoe1SyVq3b7nNM1uEyBQUFa/b8Fe0OCTVdLy71qM/4qnVvyjAMbY9K9o69NmOBDMPQzpgsn2PnLlrVqe3GApmfPXF2n/G1m3fJMAyt2fh2h77P5sc0hXzsR53avH2/DMPQyNFjZTvyfVjn35Oma3BQkE94qs3vYt7yToSEPmlz3ggJAQAAAAAAAACA7kBICOiA2tpab+AmNzfX7HbapayszNtzYmJimwGfrq6EhAR98803poeDmurYsWOKiYnxO0/19fW67bbbNG/ePJ/x8ePHtxreiY6O9o599dVXunLliiorK3Xt2jXv+MWLF2WxWHTs2LGAr9MUEvr222/1ox/9SOvWrfM5bsaMGerXr1+L98XGxnrHIiMjdeutt3pXHJL8h4SqqqpksVi0detWn7GmQBPQW7U3JPTkkKdaDWYEGhIa8tTTPmO2Ix/LMAy9NmOhdyw7/xMNeeppPf3MP1qcw3bkY+/2V23VyNFj9eK/Jrer56br/WP4KD8BFJsMw/AGjrLzP9ETTw5p8TnsR52K3JPS6ZBQR+bHXw9J1uMyDEMvvDixQ99n0zFPDX3GZ+ydRIcMw9Cchat8xheErJVhGErOLm7znN7v4uVJgYWEfmCrMUJCAAAAAAAAAACguxASAjqgurr6hgsJOZ1Ob88HDhzo0ZBQfHz8DRMSOnXqlCwWi6KionzGly9f3mp45/jx4y3O89FHH2n8+PF66KGHNGDAAD388MOyWCxKTk4O+DpNIaFjx47JYrHovvvu824RNmDAAD3wwAP6xS9+oW+//bbV/hITE2WxWHTp0iXvmL+QkCQtXLhQ//d//6d7771X8+bN04cffuh3zoDepL0hoTFjx3d5SMjfOQcHBWnKtO/7SM05JcMwNG78iz8YEMl87yOtCNumsc+9oCeHPKXBQUEaHBQkwzA0/oV/tavnpusZhuF9f/MaOGiQ/j1puuxHv9u+yzAMjRk7oUUv7yTmdjok1JH58deD7cjHGjhwoJ4eNrxD32drx+xPOSLDMLQs9A2f8ZBVm2UYhhIyjrXzu3i5wyGhnHYEhAgJAQAAAAAAAACA7kJICOig5tuN1dbWmt3OD8rNzfX2++GHH6qqqqrT1VYoKCUlRadPn1ZVVZUqKir02WefmR4Oar7dWHFxsd95ai28s2zZsnZtAyZ9t0rQz372M02YMEGXL1+WJLndblksFiUlJXX6Ok0hoZ07d7b5nfvrLykpSRaLxRskkloPCUnSF198oY0bN+r3v/+9brnlFp/tzIDeqL0hobHPvdDhkFBUrK3NkJC/c3YkBHN9TZo6W4ZhaO3mXUo/VOodHzV6XIdDQu253vchoZaBm64ICXVsflr20FZIqK3vs7VjmkJCK8K2/mBI6Ae/i3x/IaGZ3wWE8ju+ghAhIQAAAAAAAAAA0J0ICQEdlJ+f7w3d2O121dfXm91Sq06ePOntNTMzs8t69RcOSk9P12effeZz3OnTpxUTE2N6OKh5eTwev5+paRuwuXPn+oy3ZxuwJkVFRbJYLEpPT/eONW031hQS6sx1mrYbmzVrls9xTqdTr732Wpv9+QsJ7d692xsSamxsVH19vWpqamS3233OP2HCBN1zzz0CerOuCAllOD702YarqbbufLfTIaG2ttPKzv9EiVmFyjpcprRD34V+xj//covjOhISaut6TeGfhPT3vcc+8eQQDRkytMVxXbHdWGfnp2m7sX++9GqPhoTa/V00WzHIGxJqscXYxx2aN0JCAAAAAAAAAACgOxASAjqovr5emZmZPuGbCxcumN2Wj9raWp8VhFJTU1VRUdFl5/+hcFCT3hgSamxsbPVzzZw5U3fddZfOnTsn6bvQz89//vN2h4RcLpd+8pOf6JVXXtG1a9ckSZs2bfIJCbV2ndtvv71d11m0aJHuvPNO73sbGho0YsQIhYaGtvk+fyEhq9Uqi8Wi+vp6HTt2TH/4wx/00Ucf6Ze//KUuXrzoPW7cuHEaMmRIq/MG9Aa5R4q0dM2bMgxDr06ZLftRp5KzizVvcaiyDpe1O1TyxJNDvNtwNdX8xWs6HRKyH3Vq5rxlMgxDe+LsPuM73slQUFCw0g6VKOu9Mg0cNEjjJvhuS5Z1uEzBTzzZIiSUdbjMJ9jU/DPPnr9ChmFoZ0yWz3syHB/qiSeHaNvORO/YazMW+D127sJVPRISaj4/u/bbfMbXbt4lwzC0ZtOOHg0JdfS7sB/9pNlKQv9bOeh/4aA33orT3oSDLfprbTxk1RuavXANISEAAAAAAAAAANClCAkBAaiurvYJCjWtKtSVQZxA1NbW+qwe1FQnTpzo0uv8UDioyVdffaWkpCRVVlaaHg4qLy/X4cOHdenSpVb7vXz5siZPnqw77rhDv/3tb/Xyyy9r8eLF+vWvf+09JiUlRf3795fFYlH//v01depUn3NkZWWpf//+uvfeezVw4ECFhobKYrHo/vvv1/bt21tc5ze/+Y1GjRqlOXPm6NZbb9WAAQNUXl6u6Ohon+tER0dL+m7Fn/Xr1+uBBx7Qo48+qkcffVRr1qzxhp+u789utysqKkr333+/LBaL/vSnP+n48eOSvgsYPfnkk/rjH/+ohx9+WFlZWaqtrdXUqVP10EMPyTAMPfLIIxo7dqy+/PLLDt8nQE/KPVKk5Wvf0pNDnta48S8qO9RdGvoAACAASURBVP8Trd+yRyNHPduhUMlrMxZo8OAg7XgnQ1mHy/RmVJJeeHFil4SEUuzFGj5itMa/8C8dsBbJftSpuLSjGv3seC1evtF73KtTZ/0vmLNdGY4PlZxdrGmzFn23qk2LYIpTw0eO0Yv/mtziM6fmnNLwkWM09rkXFJd21Bsimjhlpl781yTZjny/uk18WoGeHPKUho8co50xWTpgLdLa8CgNHzmmx0JCTfPz3ISXlJhVKPtRp2KSDmvYP0bqhRcnypp3tkdDQoF8F9+FhGb5jO2Js8swDD3x5BBl53/S7vHBQcFaFhZJSAgAAAAAAAAAAHQZQkJAgPyt1tMUFiotLVVtbW2P9FFfXy+n0+m3l8zMzG4JLnVk5aSGhgb997//VU1NjfLz82W1WmW1WlVeXu4N8PTEeExMjDIzM9XQ0NBqrzU1Nbp8+bLP2KRJkzRo0KCA5wpAz2gKCU2bs1zDho/SU0Of0ZixE7QzJks73snQ4KAgGYbxv/BFUKtbkqXmnNZrMxboqaHPaMhTT2v2gpXaGZMlwzA0cOAgPTNshOxHnX7PuSc+R5u2veMdHzhwoAYHBSk5+6T3/MnZJzVz7lI9M2yEhj49TKNGj9Oqddt9AjtpB0s0e8FKDfvHSA0eHKSRo8cqdMPbGjl6rM+1mo5/a2+qRo0e5/OZv79esWbNX+693shRz2rRsvVKO1TS4rNHH3hPL/5rsgYPDtKQIUP12owF2vFOhvezDw4Kanc4qKvmZ/jIMVq0fIMycs+0ee7rv8/Wrr8gZK0GDw7yfqaRo8fKftSpfwwfpYGDBn137OAgzVsc2qHvYkXY1hafq+k7OmA9rmH/GNlihaq2xp8aOkyjxoxnJSEAAAAAAAAAANClCAkBndDQ0KCysrIWqwo1Dwx98MEHOnv2rKqrq7vkmrW1taqoqNDJkyf9BoOarx5UX1/fJdfsKsePH1dOTo5ycnLkcrl6bPz06dMqKytrMyAkSSEhIVq+fLn374qKCt15552Kj4/v1OcG0P2aQkLL176lXfvt7Q6zUFRvrF377d77mZAQAAAAAAAAAADoKoSEgC7wQ2Gh6ys/P1/5+fk6e/bsD9YHH3yg/Px82e32dp27N4aDbhQ5OTn661//qscff1yGYejPf/6zdu3aZXZbANqBkBDVl4qQEAAAAAAAAAAA6A6EhIAuduHCBZ04caLdgaGuqA8++EAVFRU/uFIOAPRVhISovlSEhAAAAAAAAAAAQHcgJAR0o6atwU6cONHm1mAdqaYtzMrKyrpsCzMAuNGVV/zHG6rYHBlvesiDojpTb72T5b2f3y88bfbPCwAAAAAAAAAA9BGEhIAe1tDQoOrqalVXV3u3KGutCgoKVFFRoerqarYQA4A2EBLquXrplSk/WGb3eKPX5sh47/1cXvEfs39eAAAAAAAAAACgjyAkBJjMbre3Wk6n0+z2AOCGUHOxzhuqWLVhl+khD4rqTK0J3+u9ny98xaqBAAAAAAAAAACgaxASAkxGSAgAukb49hhvsCI+7X3Tgx4UFUgl20957+OwzVFm/6wAAAAAAAAAAEAfQkgIMBkhIQDoGtaDR73him1RqaaHPSgqkHrrnSzvfZyc4TD7ZwUAAAAAAAAAAPoQQkKAyQgJAUDXuPBVtTdcsXztW0o/VGp64IOiOlLph0q1asMu7z1cdu4zs39WAAAAAAAAAACgDyEkBJiMkBAAdJ09+9O8AYstOw6YHvqgqI7UtqhU7/27Z3+a2T8nAAAAAAAAAADQxxASAkx2fTDonXfekd1uV0pKCiEhAOig61cT2pvgMD34QVHtqZjkIz73bnnFf8z+OQEAAAAAAAAAgD6GkBBgsutDQqGhobLb7QoLCyMkBAABsB486hO2iE973/QACEW1Vcn2Uz73bHKGw+yfEQAAAAAAAAAA6IMICQEmmj59uqZMmeJTEydO9P6XkBAABCYy6l2f0EVM8hHTgyAU5a9iko9o1YZd3ns1MupduS9fMfsnBAAAAAAAAAAA+iBCQoCJ0tLStHjxYsXHxysxMVGJiYlasWKFEhMTtXLlSkJCABAg9+UrCt8e4xMUenN3mrLyzpoeCqEo+1GnsvLOKioux+ceDdscRUAIAAAAAAAAAAB0G0JCgMni4+O1bNkyxcTE+Gw3Fh0dTUgIADrBfflKixWFVm3Ypai4HMJClGmVlXe2xepBTSsI1VysM/tnAwAAAAAAAAAA+jBCQoDJ7Ha7rFarNm3apPXr12v16tWy2+2y2+2EhACgk9yXryg5w+ETxmiq9VtjFBWXo73v5iox6zhFdVvtfTdXUXE52hwZ7/dejD1gYwUhAAAAAAAAAADQ7QgJASZrCgTZ7XbFxcVp8+bNhIQAoIuVnfusxfZjFGV2hW+PUXHJWbN/HgAAAAAAAAAA4CZBSAgwWVMgyGq1KjY2VtHR0crIyCAkBADdoLjkrPbsTzM9HELd3BUZ9a7eLzxt9s8BAAAAAAAAAADcZAgJASbaunWrYmNjlZycrBkzZuj111/XtGnTNHXqVO3fv5+QEAB0E/flKyouOavcI0WyHjyqPfvTKKrbynrwqHKPFKm45CzbigEAAAAAAAAAANMQEgJMtG/fPtntdoWFhSkmJsa7qlBycrKWL19OSAgAAAAAAAAAAAAAAHQJQkKAieLi4mS327Vx40ZvQKip1q1bR0gIAAAAAAAAAAAAAAB0CUJCgIni/p+9e4+tu74P/+9qUrtpUidVVTWxSV3XtdtUCX27dUWrum7VDoFwK1npReXS0bFASEjACeQCGU1sEmhuQKAkNISQxMZJSBycxLdPW4emrsmlOMFucRhusamTzjWGGIxTn5HX74/9chTHdq7H+eTyeEhvIX98/Pm8zuHkv6fe7zVroqysLJYuXRpLly6NTZs2xebNm2PFihUxa9YskRAAAAAAAAAAkBciIUjRwYMH48EHH4xJkybF2LFjc2vatGlRXl4uEgIAAAAAAAAA8kIkBClLkiSqqqpi3bp18eyzz8bzzz+fO3JMJAQAAAAAAAAA5INICFJ2OAgaaomEAAAAAAAAAIB8EAlBylauXBlr1qwZEAeVlpZGaWmpSAgAAAAAAAAAyAuREKRs3bp1UVhYGGVlZZEkSaxevTomT54cGzZsEAkBAAAAAAAAAHkhEoKUJUkSzz33XBQWFsbixYtj8uTJUV5e7rgxAAAAAAAAACBvREKQssNHjD3xxBMxduzYWLZsWe6aSAgAAAAAAAAAyAeREKQsSZJYsWJFTJkyJXfU2OrVq0VCAAAAAAAAAEDeiIQgZStWrIi77747KioqIkmSKC8vz4VCIiEAAAAAAAAAIB9EQpCyDRs2xKZNm3JHjCVJEhs3boyNGzeKhAAAAAAAAACAvBAJQcqOjIOOXiIhAAAAAAAAACAfREKQsqPDoNWrV0eSJPH888+LhAAAAAAAAACAvBAJQcqOjoTmzp0bSZLEQw89JBICAAAAAAAAAPJCJAQpuuuuu2LChAkD1m233Zb7r0gIAAAAAAAAAMgHkRCkaNOmTTFz5sxYu3ZtrF+/PtavXx9FRUWxfv36KC4uFgkBAAAAAAAAAHkhEoKUrV27NmbNmhWlpaUDjhsrKSkRCQEAAAAAAAAAeSESgpQlSRLV1dWxaNGimD9/fsyZMyeSJIkkSURCAAAAAAAAAEBeiIQgZYeDoCRJYs2aNfHwww+LhAAAAAAAAACAvBIJQcqOjISOXiIhAAAAAAAAACAfREKQsuECoZKSEpEQAAAAAAAAAJAXIiFI0cGDB6OqqmrI9eCDD4qEAAAAAAAAAIC8EAlBim6//fYYO3bssEskBAAAAAAAAADkg0gIUrR58+YoKSmxkxAAAAAAAAAAMKJEQpCibDYbTzzxRCRJMmiVlJSIhAAAAAAAAACAvBAJQcqGCoQOL5EQAAAAAAAAAJAPIiFImUgIAAAAAAAAABhpIiFI2cqVK2PNmjUD4qDS0tIoLS0VCQEAAAAAAAAAeSESgpStW7cuCgsLo6ysLJIkidWrV8fkyZNjw4YNIiEAAAAAAAAAIC9EQpCyJEniueeei8LCwli8eHFMnjw5ysvLHTcGAAAAAAAAAOSNSAhSdviIsSeeeCLGjh0by5Yty10TCQEAAAAAAAAA+SASgpQlSRIrVqyIKVOm5I4aW716tUgIAAAAAAAAAMgbkRCkbMWKFXH33XdHRUVFJEkS5eXluVBIJAQAAAAAAAAA5INICFK2YcOG2LRpU+6IsSRJYuPGjbFx40aREAAAAAAAAACQFyIhSNmRcdDRSyQEAAAAAAAAAOSDSAhSdnQYtHr16kiSJJ5//nmREAAAAAAAAACQFyIhSNnRkdDcuXMjSZJ46KGHREIAAAAAAAAAQF6IhCBFd911V0yYMGHAuu2223L/FQkBAAAAAAAAAPkgEoIUbdq0KWbOnBlr166N9evXx/r166OoqCjWr18fxcXFIiEAAAAAAAAAIC9EQpCytWvXxqxZs6K0tHTAcWMlJSUiIQAAAAAAAAAgL0RCkLIkSaK6ujoWLVoU8+fPjzlz5kSSJJEkiUgIAAAAAAAAAMgLkRCk7HAQlCRJrFmzJh5++GGREAAAAAAAAACQVyIhSNmRkdDRSyQEAAAAAAAAAOSDSAhSNlwgVFJSIhICAAAAAAAAAPJCJAQpOnjwYFRVVQ25HnzwQZEQAAAAAAAAAJAXIiFI0e233x5jx44ddomEAAAAAAAAAIB8EAlBijZv3hwlJSV2EgIAAAAAAAAARpRICFKUzWbjiSeeiCRJBq2SkhKREAAAAAAAAACQFyIhSNlQgdDhJRICAAAAAAAAAPJBJARDGD16dFx22WWRyWRi1KhRMXr06Bg9enSMGjUqrr/++njwwQejs7PzlO//7LPPxujRoyOTycS4cePOaCS0ZcuWuPrqq2P+/Pl5vzcAAAAAAAAAcHYSCcEwfvzjH0cmk4m1a9fmrr333ntRXV0dl112WVx33XXx1ltvndYzxowZEzfffHOsWbNmQBxUWloapaWleY2Eurq6YsaMGXHDDTdEJpMRCQEAAAAAAADABUQkBMMYKhI67Hvf+15kMpkoKys7rWeMGTMmbrnlligsLIyysrJIkiRWr14dkydPjg0bNuQ1Errrrrti5cqV8atf/UokBAAAAAAAAAAXGJEQDONYkdDGjRvzEtqMGTMmxo0bF88991wUFhbG4sWLY/LkyVFeXp7348a6uroiIqKtrU0kBAAAAAAAAAAXGJEQDONEIqFly5YN+t2bb74ZCxYsiOuuuy6uvfbauOmmm+Lpp5+O/v7+Qa89HAklSRJPPPFEfO1rX4tRo0ZFJpOJqVOn5iKhBQsWxOWXXx6ZTCa2bNlyWu9LJAQAAAAAAAAAFx6REAzjeMeNXXrppfHaa68NuP7222/H9ddfH3feeWdu556mpqb46le/GjNmzIhDhw4NeP3hSGjFihUxZcqUWL16dUyaNGlQJBQR8ctf/lIkBAAAAAAAAACcEpEQDGOoSOjdd9+N6urquO222+JnP/vZoL9ZtGhRZDKZeOONNwZcX7t2bWQymXjxxRcHXB8zZkzcfPPNcffdd0dFRUUkSRJlZWWRyWTijjvuEAkBAAAAAAAAAHkhEoJhHI6ERo0aFaNHj47LLrssMplMXHPNNUOGOocOHYoxY8bEt771rUG/a2pqikwmE4888siA62PGjIn//M//jE2bNkWSJJEkSWzatCkymUxMnjxZJAQAAAAAAAAA5IVICIZx9E5C77//fuzevTuuvfbayGQysXPnzgGvP3DgQGQymchkMjF69OhBa9SoUXHvvfcO+JvDx40dDoSOjIQcNwYAAAAAAAAA5ItICIYx1HFjERHV1dW548COdDgSuuWWW074GWPGjInvfOc7sWrVqqipqTlmJNTc3CwSAgAAAAAAAABOiUgIhjFcJPT+++/HzTffHJlMJpqamnLXDx83NmbMmCHv99prr8W+ffsGXLvyyivj3/7t36KwsDBmzpwZtbW1sWXLlshkMnH33XcPiIR++tOfioQAAAAAAAAAgFMiEoJhDBcJRUT86Ec/ikwmE//1X/814PojjzwSmUwm9uzZM+D6e++9F9dcc03U19cPuD569OjccWMLFy6MkpKSSJIkrrjiirj55psHREJPPPGESAgAAAAAAAAAOCUiIRjGsSKh999/P/793/89MplMtLe3564fOHAgbrjhhhg7dmz85je/iYiIt956K2bOnBmTJ0+O999/f8B9rrzyylwkVFlZGUVFRbF48eK45ZZb4tJLL40tW7ZEf39/NDQ0xJ133ikSAgAAAAAAAABOiUgIhjB69Oi47LLLIpPJxKhRo2L06NGxffv2Aa9JkiT3+6uuuip3/a233oqHH344vvGNb8R1110XN910Uyxbtizefffd3GueffbZGD16dGQymchkMnHZZZfFM888E0mSRJIkUVFRERMnToxrr702xowZE48++mjs2bMn97xvfOMbJ/2eysvLY/To0XH55ZcPeF833njjqX9QAAAAAAAAAMA5QSQEKers7Iw1a9bk4qCj15HHjQEAAAAAAAAAnCqREKRsuEBIJAQAAAAAAAAA5ItICFImEgIAAAAAAAAARppICFImEgIAAAAAAAAARppICFJ2OpHQ3XfffdwFAAAAAAAAACASgpTZSQgAAAAAAAAAGGkiIUhRb29v1NTUDLt++ctfpj0iAAAAAAAAAHAeEAnBCOvt7Y39+/fH3r17o76+Purr66OysjIqKipOam3dujXq6+ujubk52tvb48CBA2m/NQAAAAAAAADgHCESghGwf//+aGxsjCRJTjoGOtm1Y8eOaG9vj/7+/rTfNgAAAAAAAABwlhIJQZ709vZGY2PjSe0SlCRJbnehodbWrVtPKRgCAAAAAAAAADiSSAhOU1dXV+zYseOY8U59fX20tLTE/v37o6ur65R2/enq6oqurq5oaWmJHTt2HHOXoiRJzrpY6N13342mpqbcevfdd3O/a21tHdHrb7zxRnR3d4/wOwQAAAAAAACAs5dICE5DY2PjsJFOU1NTHDhwYESf39vbG+3t7cNGSlu3bo3e3t68P/dkI6dsNhttbW1RWlqaW6+//nr09PRET09P1NTUnJHrDQ0Nef8s8mHChAnx8Y9/PD7+8Y8PuL5s2bK46KKLoqenZ0Se29jYGEVFRSNybwAAAAAAAADOLiIhOAW9vb1DHgX20ksvjXgYNJz+/v5oaWkZdNxZZWVl7N+/P6/PWrt2bezYsWPAbj3DzfTee+9Fd3d3qquzszMaGxujtrb2uDOnZe7cuYMioZ///Ocxbdq0+N///d8ReebTTz8dH/rQh0bk3gAAAAAAAACcXURCcAqODoR27NgxIjv2nKrW1tZBsVA+46W1a9fm1rFioZdffjnWrl2beiR05DpbDRUJjTSREAAAAAAAAMCFQyQEJ6mlpWVAfJPvXXry5ejdjrZu3XrSx4QN58hI6Fix0MsvvxylpaWph0FHrmw2O+z7OnjwYNx+++3xkY98JD796U/H17/+9bjnnnvigx/8YFxyySXx+uuvx7x586KgoCAKCgqiuro6MplMfOhDH4qCgoJoamqKdevWxT/90z9FJpOJL33pSzF69Oj45S9/Oexz/vZv/zZuvfXWuP/++wdEQiUlJXHxxRfn7nvYoUOHYu7cufHZz342vvzlL8cXvvCFeOyxx+LQoUMREQPmq6qqin/5l3+JP/qjP4rPfvaz8dJLL+Xus2jRovjLv/zL+MAHPhCXXHJJXHLJJbFkyZKIiHjhhRfiS1/6Uu49XHPNNVFfX3/K3xcAAAAAAAAA0icSgpN0ZCDU3t6e9jjH1N/fP2BHoXwFTUNFQkPFQmdbJNTR0RH79u0b9n0VFhbGxz72sXj11VcjImLXrl3x4Q9/eNAOP01NTVFQUBD/+q//Gnv27Inu7u64+OKLo6mpKb7xjW/EmjVrcq99/PHH4xOf+ET09fUd8zkXXXTRsM85MhKaPn16fOpTn4o333wzIiJ++9vfxkUXXRSLFi0a9HejR4+OV199NX73u9/FF7/4xbjkkksG3H+onYT6+/vjT/7kTyJJkty1SZMmxb333jvs5wYAAAAAAADA2U8kBCfhwIEDueDmyIjibNbU1JSbef369ccMfEZivfnmm6nHQYfX9u3bo7S0dMjPqbe3Nz70oQ/FtGnTBly/8cYbh413SkpKctf+53/+J37/+99HR0dHvP/++7nrb7/9dhQUFMT27dtP+TmHI6F33nkn/vAP/zDmzZs34HWFhYVx0UUXDfq7srKy3LWlS5fGBz/4wdyOQxFDR0KdnZ1RUFAQjz/++IBrh4MmAAAAAAAAAM5NIiE4CV1dXbng5lw5fqm9vT0384YNG85oILRmzZpzJhLas2dPFBQUxNNPPz3g+uzZs4eNd37+858Pus8rr7wSN954Y3zuc5+LSy65JD7/+c9HQUFBbNy48ZSfczgS2r59exQUFMSnPvWp3BFhl1xySXzmM5+JP//zP4933nln2PnWr18fBQUFA46EGyoSioi499574w/+4A/ik5/8ZEybNi1+8YtfDPmZAQAAAAAAAHDuEAnBSejv7x9w3Fh/f3/aIx1XfX19bt5f/OIX0dnZedrrWGHQhg0bYvv27bFv377o7OyMAwcOpB4HHV5NTU3D7gA1XLwza9asEzoGLOL/dgn60z/907jpppvi4MGDERHR19cXBQUFUV5eftrPORwJPfXUU8f8fz7UfOXl5VFQUJALiSKGj4QiIn7zm9/EwoUL4//9v/8XH/jABwYcZwYAAAAAAADAuUckBCfpyOhm69atZ3Uo1NLSMiBq6u3tzct9h4qDysvLo7m5ecDn8fLLL0dpaWnqcdCRK5vNDvmeDh8DNnXq1AHXT+QYsMN27doVBQUFsXnz5ty1w8eNHY6ETuc5h48bmzJlyoDXtba2xsSJE48531CR0IoVK3KR0KFDh6K3tzfeeuutQSHVTTfdFJ/4xCcCAAAAAAAAgHOXSAhO0oEDBwaEN0mSRFdXV9pjDdDf3x87duwYMGdLS0ve7n+8OOiwszESOnTo0LDva/LkyfGxj30sXn311Yj4v+jnz/7sz044Euru7o4//uM/jrFjx8b7778fERGLFi0aEAkN95wPf/jDJ/Sc++67Lz760Y/m/ra/vz+uu+66mDt37jH/bqhIqLq6OgoKCqK3tze2b98ef/d3fxevvPJK/MVf/EW8/fbbudddf/31cdVVVw37uQEAAAAAAABw9hMJwSlob28fEOBUVFREY2NjHDhwINW5+vv7Y+/evVFZWTlgtvr6+rw+53hx0GGtra2xdu3a6OjoSD0Oev3112PXrl3HnPfgwYMxfvz4+MhHPhJ/8zd/E7fcckvMnDkz/uqv/ir3mueffz4uvvjiKCgoiIsvvjjuuOOOAfeoqqqKiy++OD75yU/GpZdeGnPnzo2CgoL49Kc/HUuWLBn0nL/+67+Or3/963HPPffEBz/4wbjkkkvi9ddfj5KSkgHPKSkpiYj/2/Fn/vz58ZnPfCa++MUvxhe/+MV48MEHc/HT0fMlSRJPP/10fPrTn46CgoL4h3/4h/j5z38eEf/3fbnyyivj7//+7+Pzn/98VFVVxYEDB+KOO+6Iz33uc5HJZOILX/hCfOtb34rf/va3p/ZlAQAAAAAAAOCsIBKCU9TV1TUoxjl8BFlra2vejvY6Efv374/GxsYh58nnDkKH/frXvx722K6jvfvuu/HOO+9Ed3d3NDU1xc6dO2Pnzp0DwqGRvr59+/YoLy+PdevWHTMSeuutt+LgwYMDrt1+++0xatSo0/q8AAAAAAAAACBtIiE4Db29vfHSSy8NCnOODIb27t0b+/fvP2accrK6urqitbU1duzYMWQYdPjZ+/fvz9szT9ehQ4ciSZIoLS2N0tLS2LdvX2Sz2chmsyN+/Wc/+1k0NDREd3f3MWe8//77Y/bs2bmf29vb46Mf/WisXbt2pD8eAAAAAAAAABhRIiHIg+PFQodXZWVl1NfXx44dO2Lv3r251dXVNWi1trbmft/Y2Bj19fWxdevW4z6jvr4+urq60v5Izkk//OEP45//+Z/jy1/+cmQymfjHf/zHWL58edpjAQAAAAAAAMBpEwlBHvX390d7e3vs2LHjuDFPPleSJNHU1BQHDhxI+yMAAAAAAAAAAM5CIiEYIf39/bF///5oaWmJ+vr6vEZBmzZtis2bN0d1dXW8+OKLab9VAAAAAAAAAOAsJxKCM6i3tze6urqivb09Wlpacqu+vn7QampqipaWlqitrY2qqqqoqamJ2traSJJk0GppaUn7rQEAAAAAAAAAZzGREJzluru7hwyDjl4dHR1pjwoAAAAAAAAAnKVEQnAOaG1tPW4kVFdXFz09PWmPCgAAAAAAAACchURCcI7YvXv3cUOhbdu2RTabTXtUAAAAAAAAAOAsIxKCc0Q2m42GhobjhkK7du1Ke1QAAAAAAAAA4CwjEoJzSE9PT9TV1R03FGppaUl7VAAAAAAAAADgLCISgnNMZ2fnMQOhTZs2xdKlS6OjoyPtUQEAAAAAAACAs4RICM5Bra2tg+KgmpqaePLJJ6O2tjZmzpwZa9asiZ6enrRHBQAAAAAAAADOAiIhOEft3r17UCj06KOPxvTp02PKlCnxwAMPRE1NTWSz2bRHBQAAAAAAAABSJhKCc1Q2m41t27blAqH169dHYWFhTJw4MdatWxeVlZWxefPm2LVrV9qjAgAAAAAAAAApEwnBOaynpyfq6upixYoVMX78+Fi8eHFUVVVFcXFxVFVV5QKi1tbWtEcFAAAAAAAAAFIkEoJz2KFDh2L16tUxYcKEWLVqVSRJErW1tVFaWhrFxcUDjiLr7OxMe1wAAAAAAAAAICUiITiHvf7663HrrbfGCkMAxwAAIABJREFU/fffH0VFRVFUVBTFxcUxb968WLJkSVRVVcWDDz4YEyZMiPvuu8/RYwAAAAAAAABwgRIJwTnu4MGDERGxc+fOATsHJUkSc+bMiWnTpkV5eXkkSRKLFy+ON954I+WJAQAAAAAAAIAzTSQE54lsNhvbtm0bEAlNnDgxtmzZkvt51apVsXz58rRHBQAAAAAAAADOMJEQnEd6enqiqqoqysrKIkmSmD17di4QqqqqihkzZsRTTz0Vra2taY8KAAAAAAAAAJxBIiE4zyxevDhWrFgRSZJEaWlpzJ8/P5YuXRpTpkyJqVOnRk1NTSRJEp2dnWmPCgAAAAAAAACcISIhOM+0tbXF008/ndtBqKysLMaPHx9Tp06NioqK3LXKysro6elJe1wAAAAAAAAA4AwQCcF5aNeuXfHggw/G/fffH5MmTYqHH344qqurc+FQUVFRlJWVRUNDQ2Sz2bTHBQAAAAAAAABGmEgIzlMHDx6MmpqaqK2tzcVBh9eMGTNyuwrt3r077VEBAAAAAAAAgBEmEoLzWE9PT9TV1UV5eXmUlZXF888/HzU1NVFYWDggHmptbU17VAAAAAAAAABgBImE4DzX0dERq1atiuLi4pgxY0YUFhbGrbfeGtOnT4+ioqJYsGBBPPfcc9HZ2Zn2qAAAAAAAAADACBEJwQWgpaUlt2vQxo0bY9q0aVFRURFlZWWxfPnyKC8vj7q6uujp6Ul7VAAAAAAAAABgBIiE4AKxc+fOSJIkysrKoqioKBcNHbkaGhoim82mPSoAAAAAAAAAkGciIbhAZLPZ2LZtWyxfvjwWLFgwZCS0adOmKCkpSXtUAAAAAAAAACDPREJwAenp6YkNGzZEWVnZgDiopqYmnnzyyaitrY2ZM2fGCy+8kPaoAAAAAAAAAEAeiYTgAtPR0THkLkKPPvpoTJ8+PaZMmRIPPPBAtLa2pj0qAAAAAAAAAJAnIiG4ADU3Nw8IhNavXx+FhYUxceLEWLduXVRWVkZ1dXX09fWlPSoAAAAAAAAAkAciIbhANTQ0RJIksWLFihg/fnwsXrw4qqqqori4OKqqqiJJkmhoaIhsNpv2qAAAAAAAAADAaRIJwQWqv78/Hn300ZgwYUKsWrUqkiSJ2traKC0tjeLi4twuQ7t27Up7VAAAAAAAAADgNImE4AL1+uuvx6233hrTpk2LoqKiKCoqiuLi4pg3b14sWbIkamtrI0mSWLx4cdTX16c9LgAAAAAAAABwGkRCcAE7ePBgdHR05HYNGmotXbo0Jk6cGL/+9a/THhcAAAAAAAAAOEUiISCam5sHxUHV1dUxd+7cmDhxYqxcuTIeeuih6OvrS3tUAAAAAAAAAOAUiISAiIhoaGjIBUIVFRUxffr0mD59elRUVESSJFFTUxMNDQ2RzWbTHhUAAAAAAAAAOEkiISAiIrLZbNTV1UVZWVlMnDgx5s6dG9XV1YN2GGpubk57VAAAAAAAAADgJImEgJza2tq4/fbbY+nSpYPioMOrrKwsfvGLX6Q9KgAAAAAAAABwEkRCQE5DQ0N873vfi8WLF0dlZeWQkVBRUVGUlZVFd3d32uMCAAAAAAAAACdIJAQMUl9fP+xOQjNmzIiKioqoq6uLvr6+tEcFAAAAAAAAAE6ASAgYUkNDQyRJEuXl5VFWVhbPP/981NTURGFhYdTW1kaSJNHQ0BDZbDbtUQEAAAAAAACA4xAJAUPKZrNRV1cXq1atiuLi4pgxY0YUFhbGrbfeGtOnT4+ioqJYsGBBvPDCC2mPCgAAAAAAAAAch0gIGFZPT8+Ao8Y2btwY06ZNi4qKiigrK4vly5dHeXl5tLW1pT0qAAAAAAAAAHAMIiHgmDo6OnKRUFlZWRQVFQ0Ihw6v7u7utEcFAAAAAAAAAIYhEgKOq7m5OZIkieXLl8eCBQsGBUKbNm2KH/zgB9HX15f2qAAAAAAAAADAEERCwAlpaGiIdevWRVlZWS4OqqmpiSeffDJqa2tj5syZsXHjxshms2mPCgAAAAAAAAAcRSQEnJC+vr6oq6sbtIvQo48+GtOnT48pU6bEAw88ENu3b097VAAAAAAAAADgKCIh4IR1d3cPCITWr18fhYWFMXHixFi3bl1UVlbG5s2bo6OjI+1RAQAAAAAAAIAjiISAk9LW1hZJksSKFSti/PjxsXjx4qiqqori4uKoqqrKBUQ9PT1pjwoAAAAAAAAA/P9EQsBJOXToUCxbtiwmTJgQq1atiiRJora2NkpLS6O4uDgXCdXU1EQ2m017XAAAAAAAAAAgRELASXr99dfj1ltvjXvvvTeKioqiqKgoiouLY968ebFkyZKora2NJEli8eLFsXHjxrTHBQAAAAAAAABCJAScgoMHD0ZfX1/U1dXldg46ei1dujQmTpwYL774YtrjAgAAAAAAAMAFTyQEnLLu7u5BcVB1dXXMnTs3Jk6cGCtXroy5c+dGR0dH2qMCAAAAAAAAwAVNJASclra2tlwgVFFREdOnT4/p06dHRUVFJEkSNTU1kSRJ9PT0pD0qAAAAAAAAAFywRELAaWtubo6ysrKYOHFizJ07N6qrqwftMFRXVxfZbPa497r//vvj8ssvj0wmE2vXrs37649ly5YtcfXVV8f8+fNP6z4AAAAAAAAAcLYRCQGnra6uLm6//fZYunTpoDjo8CorK4sf/ehHJ3S/X/3qVycV/Zzs64/W1dUVM2bMiBtuuCEymYxICAAAAAAAAIDzjkgIOG0NDQ2xaNGiePzxx6OysnLISKioqCjKysqiubn5uPc705HQXXfdFStXrszdRyQEAAAAAAAAwPlGJATkzWuvvTbsTkIzZsyIioqKSJIkOjo6jnmfNHYSiohoa2sTCQEAAAAAAABwXhIJAXn10ksvxfTp0+NrX/taXH311XHttdfGrbfeGuPGjYva2tpcNNTT0xMREa2trXH33XfHFVdcEV/96lfjkUceiVdeeWXY6OdkX38yREIAAAAAAAAAnK9EQkBeVVdXx9VXXx0LFy6M4uLiuOeee+JrX/taZDKZuPPOO6OoqCgWLFgQ5eXl0dbWFl/5ylfihhtuiD179sTvfve7qKioiIkTJw4Z/XR0dJzU60+WSAgAAAAAAACA85VICMirF198MdasWRMNDQ25XYPWr18fl156adx1111RVlYWy5cvj/Ly8igsLIxMJhN79uwZcI/HHntsyOhnzpw5J/X6kyUSAgAAAAAAAOB8JRICRkRfX1/U1dVFkiRRVlYWV199dXznO9/JhUO1tbVxxRVXxDXXXDPob3fs2DEo+jl06FBcc801MWbMmBN6/akQCQEAAAAAAABwvhIJAXl18ODBKCsri7Fjx8Y111wTl112WYwaNSoymUzceOONuUjo+eefj0wmE9/85jejo6NjwD1ee+21QdHP22+/HZlMJm655ZZBzxzq9adCJAQAAAAAAADA+UokBOTVd7/73chkMlFRURG9vb3R2toa69ati69+9avDRkJlZWXxq1/9KnePY0VC//Ef/zHomSIhAAAAAAAAADg2kRCQN++++25kMpkYP378gOu7d++Or3/96wMiocPHjV111VVRXFwcTzzxRGSz2Yg49nFj11577aDnOm4MAAAAAAAAAI5NJATkze9///sYNWpUjBs3bsD19957L6644oq4/vrr47777ovx48fHd7/73bjlllsik8nEU089FUmSxK5duyIi4rHHHhsy+pkzZ05kMpnYs2fPgOvDvf5kiYQAAAAAAAAAOF+JhIC8uv/++yOTycS6devivffei7feeiseeuihyGQyMWbMmJgzZ05s2bIlKioqYt68eXHllVfGV7/61Xjqqadiw4YNsWzZsrjhhhuGjH46OjriK1/5Stxwww2xZ8+e+N3vfhebNm0a9vUnSyQEAAAAAAAAwPlKJATk1TvvvBOPPvpofPOb34zLL788vv3tb8eGDRvi29/+dmQymbjsssvimWeeyR07VlJSEt/5znfisssui6uuuiomTpwYSZJEJpOJUaNGxejRowfcv7W1NaZMmRKjR4+Oa6+9NubMmRONjY3Dvv5ElJeXx+jRo+Pyyy8fcJ8bb7wxXx8LAAAAAAAAAKRKJAScMfX19VFdXR1JkkRtbW0uFDp61dXVRU9PT9rjAgAAAAAAAMB5QyQEnFGbN2+OqVOnxooVK4aNhJIkiW3btkU2m017XAAAAAAAAAA4L4iEgDPunXfeiYaGhmNGQkmSxK5du9IeFQAAAAAAAADOCyIhIBU9PT1RV1d33FCopaUl7VEBAAAAAAAA4JwnEgJS09nZedxIKEmS6OjoOOl733333cddAAAAAAAAAHChEAkBqWptbT1uJFRXVxc9PT1pjwoAAAAAAAAA5yyREJC63bt3HzcU+slPfhJdXV3HXP39/Wm/FQAAAAAAAAA4K4mEgNRls9loaGiI2traqK6ujsrKyti8eXNs3rw5KioqTnolSRL19fXR2NgYra2tceDAgbTfIgAAAAAAAACkSiQEpGr//v3R2NgYW7ZsOaUg6GRWfX19tLa2Rm9vb9pvGwAAAAAAAADOKJEQcMZ1dXVFY2NjVFZWnnDgs3Xr1qivrz/mOplgaOvWrdHe3p72RwEAAAAAAAAAZ4RICDhjurq6jhnzVFZWRn19fbS0tERXV1d0dXWd0nMOHDgQXV1d0draGjt27IgkSY55NJlYCAAAAAAAAIDznUgIGHH9/f3R2Ng4bKTT1NQUBw4cGPEZ2tvbY8eOHcPuLOQYMgAAAAAAAADOVyIhYET19vbG1q1bB0U5L7300oiHQcPp7++PlpaWQcedVVZWxv79+1OZCQAAAAAAAABGkkgIGDH9/f2DAqGXXnrprNqxp7W1dVAslFa8BAAAAAAAAAAjRSQEjJimpqZzYpeeo3c72rp1a/T396c9FgAAAAAAAADkjUgIGDFH7s7T3t6e9jjH1NvbO2BHoa6urrRHAgAAAAAAAIC8EQkBI+LAgQO54CZJkrTHOSFH7nzU0tKS9jgAAAAAAAAAkDciIWBEdHV15YKb+vr6tMc5IS0tLbmZm5qa0h4HAAAAAAAAAPJGJASMiP7+/gHHjfX396c90nHV19efM8ejAQAAAAAAAMDJEAkBI2br1q256Gbr1q1ndSjU2Ng4IGrq7e1NeyQAAAAAAAAAyBuREDBiDhw4MCC8SZIkurq60h5rgP7+/tixY8eAOVtbW9MeCwAAAAAAAADySiQEjKj29vYBAU5FRUU0NjamHgv19/fH3r17o7KycsBsmzdvjiRJoqGhIdra2qKvry/VOQEAAAAAAAAgH0RCwIjr6uoaFOMcPoKstbX1jB7ttX///kFHix1elZWVkSTJoCUYAgAAAAAAAOBcJxIC8i6bzca+ffti9+7dsWvXrujp6Yne3t546aWXhoxzDgdDe/fujf379+c1Gurq6oq9e/cOOlLsyPXjH/84ampqhgyEBEMAAAAAAAAAnA9EQkDeHA6Djg5rdu/enXvN8WKhI3f1qa+vj/r6+ti7d29utba2RldXV27t379/wO8bGxujvr4+kiQ57jPq6+ujq6srmpubTygQEgwBAAAAAAAAcK4SCQGnpbOzM5qbm6Ourm7YmKa1tXXQ3/X390d7e/sxd/gZiTXUEWdDhU2CIQAAAAAAAADOJyIh4KSdSBhUV1cXzc3N0d3dfdz79ff3x/79+6OlpSXq6+vzHgU1NTVFe3v7sMeYdXR0nHYkJBgCAAAAAAAA4GwmEgJOyMmEQZ2dnaf9vP7+/txxYi0tLbnV1NSUO4asvr4+duzYMeD37e3t0dXVNWwQNJyWlpa8hkJHB0PZbPa0PxMAAAAAAAAAOFUiIWBYZzoMSltfX1+0tLTEtm3bRiQY2r17d+zbt08wBAAAAAAAAMAZJxICBrjQwqDh9PT0CIYAAAAAAAAAOG+IhABh0HGciWDoQvxcAQAAAAAAADhzREJwgRIGnZqRDIZ83gAAAAAAAACMFJEQXECEQfk10sHQ3r17o6enJ+23CQAAAAAAAMB5QCQE57menp7Yu3fvMUMWYdDpG8lgaNu2bdHW1hZ9fX1pv00AAAAAAAAAzlEiITgPCYPSNZLB0O7du2Pfvn2RzWbTfpsAAAAAAAAAnENEQnCe6OvrO24YdDgy6ejoEJmcISMVDNXV1cXOnTuju7s77bcIAAAAAAAAwDlAJATnsL6+vmhra4uGhgZh0Dmgu7s7mpubo66uLi+h0OLFi+P++++PlStXxmuvveb/LwAAAAAAAADDEgnBOSabzQqDzgOdnZ2nFQxt2LAhKioqYty4cbF8+fJYuXJl7v+7I+QAAAAAAAAAOJpICM4B2Ww29u3bF7t37z5mONLQ0CAMOgcdDoZOJhJaunRpTJ06NaZMmRKbN2/OXa+pqYnFixfHnDlzYsWKFYIhAAAAAAAAACJCJARntc7OzhMKg9ra2qKvry/tcTlN2Ww2Ojo6YufOnScUChUWFsb3v//9WLBgQTz00EOxevXqWLBgQcyYMSOqqqqisrIyZs6cGY2NjdHd3Z322wMAAAAAAAAgRSIhOMv09PQc9xiqbdu2RUtLizDoPNbX1xdtbW2xbdu2Ib8DJSUlMWnSpKitrY3a2tpYuHBhPPzwwzF+/PgoKyvLvW7OnDmxfPnyXFC2b9++tN8aAAAAAAAAACkQCcFZoK+vL/bu3TtsEHJkGNTT05P2uJxhPT090dLSMiAce+CBB2LhwoXx/PPPx6xZs2LlypVRU1MTt912W9TW1kaSJFFbWxuFhYXx1FNP5f5uw4YNUVpaGq2trSIzAAAAAAAAgAuISAhScninmIaGhmHDoLq6umhubo7Ozs60x+Us0dnZGTt27Ihx48bFY489FrNmzYqKiorcd2bevHnxgx/8IGpra2Px4sUxduzY2LhxY+73GzdujKlTp+Z+bm5uFgsBAAAAAAAAXABEQnCG7du3L3bv3j1sGJQkSezevTs6OjrSHpWzVENDQ4wbNy5Wr14dP/nJT3Lfm02bNkWSJLFixYpYuHBhTJ8+Pe67775B36/77rsv1q1bF0mSRGVlZTz55JOxZ88esRAAAAAAAADAeUwkBGdAd3d3NDc3Dzgu6ujV0NAQHR0dkc1m0x6Xs9yhQ4fizTffzP3c3d0d1dXVMWfOnNz3qaKiIu64445Yu3btoO/aU089FbNmzYri4uIoLCyMhQsXRmVlZSRJEqtWrYqf/vSnKb47AAAAAAAAAEaCSAhGSF9fX7S2tsa2bduGDYO2bdsWra2tdnDhtPX29sbTTz8dzz77bDz99NMxbdq0ePrppwd83zZs2BALFy6MwsLCuO222+KZZ56J2traAa+pra2NKVOmRFFRUTQ1NaX9tgAAAAAAAADIE5EQ5FE2m419+/bFrl27hg2D6urqorm5OXp6etIel/NQd3d3/Pd///egY+2eeeaZmDZtWixZsiS2bNkSc+bMGRQRzZ8/P773ve/FxIkTo7KyMsrLy6O5uVnEBgAAAAAAAHAeEAlBHpzIcWK7d++Ozs7OtEflAtPX1xctLS2DvpvPPvts3H///YO+p1OmTInp06fHk08+GTU1Nbnrzc3NjsIDAAAAAAAAOIeJhGAIBw8ejLa2tmO+5kSOE2toaIi2tjZxBanLZrPR0dEx4Ps6derUqKyszP28YsWKuPPOO6O6ujpWrVoVxcXFsXLlytzvH3/8cUeQAQAAAAAAAJyjREIwhGeffTamTZsWhw4dGvS7zs7OAcc4DXWcWEtLi+PEOGt1dnbGzp07o7a2Nve9ra2tjXvuuSeWLl0aSZLE8uXL47vf/W6sXbs295rNmzfHpEmTYsmSJXbFAgAAAAAAADjHiIRgCE8++WTce++98fLLL0fE/+0atHfvXseJcV7p7u6OnTt35qKgu+66K9auXRuzZ8+OJUuWDIiIkiSJJUuWxOTJk6OsrCyeeeaZ2L17t12yAAAAAAAAAM4RIiEuWO+++25s3749XnnllQHXDx06FMuWLYstW7bE/Pnzo6GhYdgwaNu2bY4T45z35ptvxtSpU6OwsDDmz58fW7ZsGfRd37x5c0yYMCFWrVo1aOcscRwAAAAAAADA2U8kxAVp+/btUVZWFj/72c/iqaeeGvC7119/PVasWBFVVVUxbty4qKioGBRFNDc3O06M88ahQ4fipZdeipaWltzOQkevhx56KGbNmnXMnbTEcgAAAAAAAABnL5EQF5yenp74/ve/P+j6vn37YteuXbFs2bJ45plnIkmSmD17dsyePTseeOCBeOGFF6Kjo0MIwXnvyGPIkiSJdevWxbhx46K8vHzIQGjOnDmxYcOGqKurE88BAAAAAAAAnKVEQlxwXn755Vi1alVERLS0tMSzzz4b69atywUPCxYsiJKSkli4cGHMnj07Jk2aFO+++27KU8OZ19HREdu2bYsZM2bEokWLht1FaN68ebmwLkmSaGtrS3t0AAAAAAAAAI4iEuKC88orr8Ts2bNj+fLlsWzZsli1alXceeed8eSTT0aSJLFo0aJ44okn4pVXXolDhw7FvffeG6WlpfHTn/407dHhjKuvr4/x48fH8uXLY82aNUNGQkuWLInHHntswLXm5ma7bgEAAAAAAACcRURCXDCy2Wy0tbXFj370o7jtttuiuLg4FzQ888wzMXHixGhubh5wXNIPf/jDWLduXbS3t6c4OaTnzTffjO3bt8fOnTtj69atA0KgmpqaWL9+fTzyyCMxbdq0ePDBB+Pee++Nu+66KzZu3BgNDQ1CIQAAAAAAAICzhEiI815fX180NzdHXV1dLm4oLi6OadOmRZIk0dDQEG+88UZMmDAhDh48mPa4cFbr7OyMurq6mDdvXhQWFsbMmTNjzpw5ceedd8aqVauivLw8amtrc//WNm7cGO+8807aYwMAAAAAAABc8ERCnLc6Oztj165dQx6PVF5eHuPHj48XX3wxIiLefvvtWLBgQcoTw7khm83G7t27c/+eamtr48477xzwb6y6ujq2bNkSFRUVMXv27Oju7k57bAAAAAAAAIALmkiI886+ffti27ZtQ8ZBdXV10draGn19ffHqq6/GAw88EE899VSUlZXF22+/nfbocE5pa2vL/du6++67o7KyMvdzRUVFFBcXx7x582LSpEkxb968+P3v/z/27j046vre//jWM0fr9JyejqfjdOyZ01p/te10hjm9yZweq+2cL4SAqCiiVVFbVERBkSBXMRIit0C4CNEgIQQMhEsIuZDbAgvGNEJCCGQru0nXEmRBt2mEhXQhC3n9/tD9niy7WTaQZAN5PmbeM813v7v7ybLpPz7n8zkf6yUDAAAAAAAAAAAAQL9FJITrgt/vl8vl6jQOqq6ultvtjvUygeuO1+tVRUWFkpOTlZuba/7NlZWVKSkpSS+88ILy8vK0detW7dmzR36/P9ZLBgAAAAAAAAAAAIB+iUgI1zSfzyen0ymbzRY2DrLb7fJ6vbFeJnBd8/v9qqqqCjpq7M0339SUKVO0fv16paSkmI/V1dXFerkAAAAAAAAAAAAA0C8RCeGa5PP5ZLfbOz1SzOFwyOfzxXqZQL9it9tVXFysmTNn6vXXXzePH8vOztaSJUvMv1GPxxPrpQIAAAAAAAAAAABAv0MkhGvK5eIgl8vFcUZAjHi9Xs2YMUNTpkzRmjVrtHz5ciUnJ2vOnDmaO3euSkpKzL9V/k4BAAAAAAAAAAAAoHcRCeGa4Pf75XK5wh4rVlFRIbfbHeslAv3e+fPnlZ2drVWrVmnFihVat26dysrKOj0KEAAAAAAAAAAAAADQe4iE0KcRBwHXppUrV+qFF15QSkqKioqKwoZCHAkIAAAAAAAAAAAAAL2HSAh9EnEQcG0rKSnR+vXrlZiYqPHjx2vFihUqLS1lNyEAAAAAAAAAAAAAiBEiIfQpxEHA9eEvf/mL7Ha7rFarsrOzNXXqVE2cOFEZGRnKzc3Vu+++K5vNFutlAgAAAAAAAAAAAEC/QSSEPqOzOMhms8nlcsV6eQCuQEVFhaxWq8rLy7V69WpNnDhRkyZNUnFxsaxWqzweT6yXCAAAAAAAAAAAAAD9ApEQYs7j8ZghQbg4yO/3x3qJAK6Qy+UK+rtev369Vq1aZf7scDhivUQAAAAAAAAAAAAA6BeIhBAzPp9PNTU1xEHAdeTUqVOqrq42f/b5fEF/32vXrlV5ebn5c8d7AQAAAAAAAAAAAAA9h0gIvc7v94fsLhIY4iDg2tba2qrXX3896FpVVVXYv/fAAAAAAAAAAAAAAAB6HpEQelVnR4tVV1fL5/PFenkAukFKSopOnDhh/lxdXU0kBAAAAAAAAAAAAAAxRiSEXtHZ0WIVFRXyeDyxXh6AblRaWqrs7Gxt375dycnJmjFjhkpLS4mEAAAAAAAAAAAAACCGiITQozo7Wsxms8nlcsV6eQC6yZkzZ/TRRx9p1apVmjp1qhISEvThhx/qiy++YCchAAAAAAAAAAAAAOgDiITQY06cOBH2aLG6ujqOFgOuM7t371Zubq4cDocuXLigWbNm6fz585I4bgwAAAAAAAAAAAAA+gIiIXS7SEeLtbS0xHp5AHrB+vXrdfjwYUmRI6GKiooYrxQAAAAAAAAAAAAA+gciIXSrpqYm2Ww2jhYD+rmDBw9qw4YN8vl8EXcRqq6ujvVSAQAAAAAAAAAAAKBfIBJCt/D7/WF3D+JoMeD6dfbsWa1evVpJSUnauXNn0GN+v18+n09NTU0RIyECQgAAAAAAAAAAAADoHURCuGoejyfs7kEejyfWSwPQg95//301Njbq8OHDmjp1qmpra0PuqaqqihgJcQQhAAAAAAAAAAAAAPQOIiFcMb/fr7q6urC7B/n9/lgvD0APam5uVn5+vvnzwYMHlZubG3SP1+uNGAhZrdbeXjYAAAAAAAAAAAAA9FtEQrgi7B4E9G8ul0svmwLaAAAgAElEQVQLFy7UhQsXJElHjx4NioYkyeFwRAyE7HZ7LJYOAAAAAAAAAAAAAP0SkRC6xO/3y+l0hvzH/urqanYPAvqZjkeFnTt3Ttu3b9eBAwd0/PhxtbS0hISEHDUGAAAAAAAAAAAAALFDJISotbS0qKKiImT3oKamplgvDUAfMnv2bL3//vsRA6GKiopYLxMAAAAAAAAAAAAA+hUiIUSls92DfD5frJcGoI/59NNPVV5eHjESIi4EAAAAAAAAAAAAgN5FJISI/H6/qqqq+A/8AKLi9/sve8wYuwgBAAAAAAAAAAAAQO8jEkKnWlpaQv5jf1VVlbxeb6yXBqCPcjgcEQMhq9Uqt9sd62UCAAAAAAAAAAAAQL9DJISwmpqaQv7DvsPhiPWyAPRhLS0tlw2EqqqqYr1MAAAAAAAAAAAAAOiXiIQQxO/3y263B/1HfZvNxs4fACLy+XyXPWbMarWqpaUl1ksFAAAAAAAAAAAAgH6JSAgmr9erqqoqjhcD0CV+vz/k/zvCDbuRAQAAAAAAAAAAAEDsEAlBkuTxeEJ2Aamrq5Pf74/10gD0cXV1dRwzBgAAAAAAAAAAAAB9HJEQ5HQ6Q/6DvsvlivWyAFwDLj2esLNhRzIAAAAAAAAAAAAAiC0ioX7M7/erpqYm6D/k22w2tbS0xHppAK4BDocjqkDI7XbHeqkAAAAAAAAAAAAA0O8RCfVTXq9XFRUVIccB+Xy+WC8NwDXA7XZHFQjZ7fZYLxUAAAAAAAAAAAAAICKhfsntdstms4X8h3y/3x/rpQG4BkQbCFVVVcV6qQAAAAAAAAAAAACArxAJ9TMul4ujgIAI9u7dq+nTp+vhhx9WXFycHn74YU2ePFnZ2dk6fvx4rJcXorW1Vfn5+ZowYYJGjBihBx54QGPGjFFOTk5I+BcfH6+4uDgZhqHBgwcrPj5e8fHxeuSRRzR9+nQVFRWpra0t4vtFEwilpKRo6NChSklJ6clfHQAAAAAAAAAAAADQBURC/YTf75fdbg/6D/k2m01erzfWSwP6hHPnzumNN97QQw89pNLSUnm9XrW1ten48eNavXq1Gdfs27cv1ksNkpiYqCFDhmjPnj26ePGiLly4oNLSUg0ePFivv/56yP27d++WYRjavHmzJOnixYs6ceKENm/erBEjRuipp57SJ598Eva9LhcIbdu2Tc8//7xGjhwpwzC0aNGiHv3dAQAAAAAAAAAAAADRIxLqB/x+v6qqqkKOAfL5fLFeGtBnzJs3T3FxcfrLX/4S9vGCggIZhqG9e/f28soie+ONN5SWlhZyff78+TIMQ7W1tUHXL42EOjp+/LhGjhypkSNHyuPxBD3mdDovu4PQH/7wB82ePVv19fVEQgAAAAAAAAAAAADQxxAJXee8Xq9sNlvQf8ivq6sLOYYI6M8CUcvixYs7vefixYsaOXJkn4uEdu3aJZfLFXI9EDVt3Lgx6HqkSEiSdu7cKcMwNG/ePPPapbuQdTYFBQXyer1qamoiEgIAAAAAAAAAAACAPuaKIqGmEyeYa2Bq6+uVX1ysbYWF5ny4b1/M1xXtAL1l4cKFMgxDH330UcT7Ghoa1NLSEnStpaVFqampeuyxxzRy5Eg9+eSTWrNmTdBOXYEwxzAMPf/88zp+/Lhee+01DRs2TE8//bSKi4vNe30+n+Lj48374+PjdejQIUlSaWmp+Vh8fLz+9re/dbrW3NxcGYahHTt2BF2/XCTk9/v1wAMPaPDgwfrHP/4RdSDU8fhCIiEAAAAAAAAAAAAA6HsuGwn5zp/XIadTBTabUjIzlZyezjC9NimZmSqw2XTI6ZTv/Pne+JtAP/T000/LMAx99tlnXXreqVOn9MQTT2j8+PFmsONyufToo49q4sSJunDhgnlffX29nnnmGT3zzDOaOHGiSktLVVlZqQkTJsgwDNXX1we99vjx4zVixAi1tbUFXXc6nXryySfV3t4ecW2B49Oam5uDrl8uEpKkhIQEGYahrVu3RhUIWa1Wud1u8/lEQgAAAAAAAAAAAADQ93QaCfnOn9cHNTWEQUyfmZTMTH1QU9Obfx/oJ+677z4ZhqGzZ8926XlLliyRYRj6+OOPg64HjvrKy8sLuj5u3LiQIOiTTz6RYRhKT08PurewsFCGYYQcb7Zs2TKtW7cu4rqam5t13333hbymFF0kNGfOHBmGoWXLlkW1g9CluysRCQEAAAAAAAAAAABA3xM2EnL89a+dxkHzMjK0fNMmhunx6SwWejs7W0c77FoCXK3hw4d3ORJqb2/XiBEjNGLEiJDHmpubZRiGJk6cGHR93LhxIfdfvHhRhmFo3rx5QdfPnj2roUOHasaMGea1trY2jRgxIuKOR+3t7XrjjTc0btw4nQ+z+9blIiGv16tXXnlFhmFo6dKlUR8x1hGREAAAAAAAAAAAAAD0PSGR0L7Dh0N3cMnK0vu7d6vw4EHtamxkmF6bwoMH9f7u3UrJygr5Xh5yOGLxN4Pr0JUcN3b69GkZhqFnn3025LGLFy9q0KBBGjVqVND1cePGacyYMSH3x8fHa86cOSHX586dq8GDB5tHhu3evVuvvfZaxHVlZGTo8ccf19///vewj0eKhFpaWmSz2fSHP/xBhmEoIyOjy4GQRCQEAAAAAAAAAAAAAH1RUCRUYLOFxEE5H3wQ81CEYXY1Nirngw80LyMj6DtaYLPF6E8H15OFCxfKMAx99NFHUT8nEAmFi34iRULPP/98yP2dRUK1tbUyDEMbN26UJE2dOlW7du3qdE25ubl65JFHdPz48U7v6SwScrvdslqtKikp0dChQzV48GDt2LGjy4GQRCQEAAAAAAAAAAAAAH2RGQntrakJii+Wb9qksiNHYh6GMEzHKTtyRKnvv8+OQuhWdrtdhmEoNTW103uam5v1xz/+UQUFBZKiO27s1VdfDbre1Uiovb1dTzzxhJ555hl9/vnnGjFiRNgjxCSpqKhIDz30kD755BPzmtfrlfuSo/nCRUJOp9MMgFJTU82j0sIFQlVVVfL5fJ1+ThKREAAAAAAAAAAAAAD0RRZJOuRwBEUX6fn5MY9BGKazKTtyROn5+UHf2aOXhBBAV6WkpGjIkCFBkU1HqampGjp0qFpaWsxrS5YskWEYqq+vD7q3oKBAhmFo+/btQde7GglJUlZWlgzD0IwZM7R06dKw9+zcuVMPPvignE5n0PXdu3frjTfeCLkWiIT8fr/sdrsZAG3cuFH33XefHnjgAeXl5YUNhPx+f9g1dEQkBAAAAAAAAAAAAAB9j8V3/rxSMjODdhCKdQTCMNFMxx2FUjIz5etkhxUgGm1tbXrzzTc1cuRIlZWVyev1qq2tTZ988okWLFig+Ph4VVdXBz3n1KlTeuKJJ/Tiiy/K4/FIkj755BM99thjmjhxYkhQcyWR0MmTJ2UYhgzDkCPMrlkVFRUaPHiwpk+frqysrKB58803O42EcnJyVFVVpbKyMm3ZskXJyckaNmyYHnnkEW3YsCEkELLb7VEFQhKREAAAAAAAAAAAAAD0RZYCm+3/QousLI4YY66ZKTtyRClZWeb3d29NTaz/nnAd2Lt3r6ZMmaIRI0Zo6NChevrpp7V48WJ9+umnYe9vaWlRamqqHn30UY0cOVJPPvmkMjIygo7kOnjwoOLj483YJz4+XkeOHFF5ebl5fdCgQYqPjw/aqShg8uTJGjNmTNj3Hz9+vPm64aZjJBQfH6+4uDjz/eLi4hQXF6f7779fzz33nFJSUlRSUhISCIWLk8LJy8tTfHy8hgwZIsMwNHjwYMXHx2v06NFRPR8AAAAAAAAAAAAA0HMsHY9sytu/P+bhB8N0ZXI++KBP7Sbkcrm0c+dOczrqjevRxhzov9xut2w2W0gI1Nm4OcoPAAAAAAAAAAAAAK4LFo4ZY2I3Ddrd4DRnV4NTuxoauvw6HY8d23f4cLf8YVy8eFFffPFF1Pe3t7frzJkzcjgcKi0tNaelpcWc3ri+YcMGVVVVRb3u5cuXy2Kx6ODBg1HdP378eH3ve9/T9773vajfA32Hy+WKOg6y2WxhdzUCAAAAAAAAAAAAAFybzEhoS1VVH4hGmH4xDU7tcjoizu7G6GOhjrsJbS4t7ZY/jLa2Nm3evFk2m00ejyfivZ9++qmampqCgp1YTX19vVwuV9S/589//nPdcMMNmjBhQtTPmTdvHpHQNcbv98tut0cdCFVUVMjr9cZ62QAAAAAAAAAAAACAbmRGQmVHjsQ+HmGu/2m4JAhqcHy1g5Az/GNRvGZxfb06HpvXHUeOBSKhwESKhXbu3Bmyq08s5/Tp01H9jnV1dbr33ns1aNAg/fu//7vOR/m5EQldW/x+v6qqqqIOhKqqquT3+2O9bAAAAAAAAAAAAABAN7Nw1BjTW7P70gjI+WUgtLuxUbsbG8PvMBRlKNTxyLGjbvdV/2FcGglFioX6WiQU7RFRL7/8stauXasNGzbIYrFo06ZNIfecO3dOL774om655Rb95Cc/0dixY5WYmBgSCW3ZskW/+c1vZBiG7rnnHsXHx+vjjz82H09JSZHFYpHFYlFJSYnuuece3XzzzfrNb36jY8eOKT8/X7fffru+9a1vady4cbp48WLX/9EQwuv1ymazRR0I2e32kEDotddeu+wAAAAAAAAAAAAAAPo+S3J6ulbm5sY8IGGu8+nsaLHLRUJf3XO511++aVO3RkKnTp0KGwkFpry8XI2NjfJ4PKqoqFBlZWXMw6DAVFZW6sCBAxF/v/Pnz+v73/++Wltb5fP59K1vfUtxcXEh902aNEm33nqrGhoaJEk1NTW67bbbQiKhRx99NCgyWrlypW6//Xb5fD7zWn19vSwWi+677z598sknOn78uH784x/r7rvv1iuvvKIvvvhCu3bt0g033KDc3Nyr+NeDJHk8ni4FQl05pg4AAAAAAAAAAAAAcO2xJKena215+RXHH6sLCmQYRti5f8SIiM99aNSokOc8+PDDMYlYdhw+rNFjxujBhx9W9u7d3fra68rLQ37P1xcu7PXX6I0pqK1ValaWXp4+XY89+aTihw3T4Lg43T9ihJ596SWlvPeeyuz1XYuEnJffTSg9P9+MhFavXx8x8OmJiXUY1HFKS0u1c+fOiH/4W7Zs0ZgxY8yfx44dqxtuuEGffvqpea21tVU33XSTpk2bFvTc0aNHh0RCbrc7aPefU6dOyWKxaN++fea1QCS0efNm89rMmTN1ww036NSpU+a1AQMGhLwnuqYrOwjZbDa5uyGsAwAAAAAAAAAAAAD0bVcdCW376CMlr1ihqcnJQaFP8ooVWrBqVcTnpmRkKHnFCj00apSGDR+u5BUrtHD16pjELSs2bTLXP33u3G597e3V1Zqblqa5aWkaNnz4FQU+3fEaPT3vbN2qQYMHyzAMxQ0Zoslvvqn56eman/6uXn19pvnYo08+qW1Vf+paJHSZ3YTWlpebkVBaVlavxUGbNm26JiOh+Ph4ffjhh+bPH330kSwWi+bMmWNeO3TokCwWizIzM4Oem5SUFBIJHTlyRKNHj9Yvf/lLDRw4UHfddZcsFou2b99u3hOIhGpra81rKSkpuvXWW4Ne695779ULL7wQ7f+HXXeam5vlcrnkdDpVWVmpyspKFRcXq6Cg4LJjtVpVWVmpnTt3qqSkRKWlpSovL48YCHm93lj/ygAAAAAAAAAAAACAXnDVkVBgrA6H7h8xQoZhaNDgwdpeXR3V84rq6hQXF6dJb7wR08Ble3W1Hnz4YcUNGaKMwsIee58HH374qgOf7niNnpglWVkyDEP33X+/tlRW/t9jDV+GPuvLyxQXFyfDMPTUc89+eb2hoUMk1PDVtQ4T5W5CHSOh4r175fF4rmoud9zYvn37dPbsWUlSS0uLjh49GvM4KDCBtXTG7XbrX/7lXzRw4MCg+frXv6477rjDvK+zSGj27NlBkVBra6u+853v6KmnntK5c+ckST6fTxaLRXl5eeZ9gUiovr7evJaSkqLvfve7Qa9/7733auzYsV3+P7Nr1enTp2W321VZWRlVCHSlU1RUpJKSEjMaqqqqkt/vj/WvDwAAAAAAAAAAAADoJd0WCe1qbNS0t94yd+OZm5YW1XNSMjJkGIbW7NgR88jF6nCoxG7v0ffoD5HQ/PT04MfMyKdBU5KSzO/Ixt27zUCoszF3F2qIPhLaW1Nz1X8YbW1tl42DAnbu3KnS0tKYx0EdJ5K5c+dq4cKFIdcXLFggi8WiPXv2SPq/48amTp0adN+lx43V1NTIYrGoqKjIvBY4boxIKLzW1lbZ7XZZrdYeDYM6m9LSUjU2NqqtrS3WHwUAAAAAAAAAAAAAoJd0ayS0rqzMDECeeOaZqJ7zhxde0EOPPKKdDQ0xj1x6Y67nSCh92zY99eyz2vzhh8GPdYiEUteuNb8jKzZujDoS2h3jSMhms4XEQQE7d+5UYWFhzMOgwFzu+Kif/vSn+vzzz0Ouf/755/rnf/5nPfXUU+a1hIQE3XrrrWpoaJD0ZRD0zW9+MygSamlp0Te+8Q09//zzunjxoiRpyZIlREJhtLa26uDBg5c9Mqy2tlYOh0MnT55Uc3OzWltbo3795uZmHTt2TA6HQ/v37494VFlxcbGcTmefi4XOnj2rzz//XJ9//nlQ9NbW1tbj1y8X2QEAAAAAAAAAAADAtapbI6FdjY165Pe/NyOQnA8+iHhvblVVn4xdenKu50io0wlEQg0NWr4h2/x+vLN1i3Y1dgiCGhu1q7EheAI7CXXhuLHujIRsNps8Hk/Ee10ul/bt2xfzOKilpUV79uxReXl52Ojj73//u37xi1/o5ptv1v/8z/+EPD5w4EDdfPPNuummm8zHz507p5deekm33HKLfvSjH2nUqFGaMmWKbrzxRg0cOFBHjx6VJJWUlGjAgAG64447NGjQIM2bN08Wi0V33nmn3n33XeXn52vAgAGyWCwaMGCArFarkpKS9J//+Z/ma505c0ZxcXH613/9V916660aPXr0Vf879hVtbW2y2+2dhjq1tbU6efJkj8U6ra2tOnbsmPbv399pMORyubr9fdvb27v8HL/fr9raWm3YsEEbNmxQeXm5fD6ffD6fPv300165vmXLFmIhAAAAAAAAAAAAANedbo+E3lyyxIxAZqWkRLw3admyL4+d2rMn6LrV6VT6tm1KSEzUY6NHK37YMA2Oi9ODI0fqxcmTtWr79rCvV/bxx+Z7B+b5l1/WrsZGvb9zp1567TU98NBD5mP3jxgR8TmXzpWuK1Lgs2TdOj313HMaNny44ocN0+hnn9XizMyIOytFGwkV1Nbq9YULzbXGDx2qUY8/rslvvhnymffk7O4Q+kz/6ki6uLg4FdRUa1eDM/RosXDT4OzVSKi9vb3TnYM6849//EOnT59WaWmpOR0Dnp6+HogeHA7HVf/+6D6nT5/Wnj17QqKcQBjU29ra2nTs2DFVVlaGrGn//v3dGip5PJ6oQruA8+fPq6WlRW63Wy6XSy6XS0ePHjW/4x6Pp8evOxwOFRYWmsfu9TXjx4/X9773vaDdvCRp9erVuu222y67k9iVOnjwoObMmdMjrw0AAAAAAAAAAACgd3R7JLSlstKMbR4aNSpi7PLYk0/q8TDHkk2fO9d8jRcnT9b89HQtWLVKCYmJihsyRIZhaGpycthIaORjj2nkY48pfuhQM/hJ37ZNcUOGaEh8vB4cOTIoErI6nUpesULJK1bo0SefjBgJXem6Ogt8EhITFT9smMYlJCghMVGjn33WfP1xkyap/MiRK46EMgoLNWz4cBmGoZcmT1ZKRoZSMjL08rRpGjRokAYNGqT56em9Ewo1NGiX06HNH+zV0GHDZBiGEhctMuOf6CKhyMfRdXckdDV27txpTm9ed7lc7H7Sx7S1tYUc97V///6ojw/rac3NzSGxUGVlZbe9vsfjCTqyL1IstHPnTu3fvz/mu3EFYqEzZ8502+fQ3ebNmxcSCR04cEDTpk3ThQsXeuQ9MzMzddNNN/XIawMAAAAAAAAAAADoHd0eCe1qbAyKXTKLi8Pek71rlwzD0Ny0tJDHpsyZI8MwtDgzM+SxnA8+UPxXocnS9es7XcMLr74qwzA0+tln9eDIkVq4erXKPv5YuxobtemDDzRs+HDdP2JE2Od0Fgl1x7oCgc+oJ57Q759+Wturq4MeX5KVZX52M+bPv6JIaOOePWa0FG6taZs3dzjya2uPxUHFhw9r2759WldertlLl2jY8OEaEh+vBenpQTsERRUJXea9+lIkBAR0DHCKi4tjsnNQNBwOR1Ao1F27UXWMhC4XC23ZskWVlZUxD4QC01M78nSHcJFQTyMSAgAAAAAAAAAAAK59PRIJLVi1yoxQEhITw94zfe5cDRo0KCSSCcQ4j/z+952+fuLixTIMQ0+E2YXo0uDHMAwlLV8e+h5JSVcUCV3tugKBj2EY2mizhb3nlenTZRiGBg0erNyqqi5HQk8995wMw9AfXnjhsp/PqMcfj7jb09VMIKoKzDNjx2rj7l0hx4hFioR2N1w+ECISQl/U3NwcFN6cPn061kuKyOVyBa23O4SLhDqLhTZs2KB9+/bFPA4KzF//+teIRw6eO3dOL774om655RbdeeedGjVqlKZMmaIbb7xRAwcO1NGjR5WSkiKLxSKLxaLS0lIZhqGbbrpJFotF9fX12rJli37zm9/IMAzdc889io+P18cff9zp+/zkJz/R2LFjlZiYGBQJZWdna8CAAebrBrS3t2vevHn62c9+pt/97nf69a9/rRUrVqi9vV2SgtZXUlKi3/72t7r55pv1s5/9TLW1tebrLFmyRD/4wQ/0ta99TQMHDtTAgQP17rvvSpL27t2re+65x/wd7r///m7djQoAAAAAAAAAAABA9+mRSKigtlaDBg+WYRgaNny4yi45NsvqdOrBhx/WmPHjwz6/+PBh7Th0qNPXf2frVjM8KT58OGIEMzguLuxr7WxokNXp7FIk1B3rCgQ+4Y5ZC8zqggLzdWYvXdqlSCh7927zuSkZGZ2+x6I1a8z7skpLeyQS2vTBB1qVl6e3N2zQjPnzdd8DD3x1/FmCCmqqzUhoV2PDlxNuJ6EoAyYiIfQ1HaObjsFFX2a1Ws0179q1Szab7aqmvLy800goMHl5eSovL1d1dbXcbnfM46DAbNiwQYcPH+70s5o0aZJuvfVWNTQ0SJJqamr0zW9+M2SHn/r6elksFv3v//6vDh06pJaWFg0YMED19fV69NFHtWnTJvPelStX6vbbb5fP54v4Prfddlun79MxEpo+fbp++MMf6u9//7sk6bPPPtNtt92mJUuWhDwvPj5eDQ0N+tvf/qa7775bAwcODHr9cDsJtbW16d/+7d9ktVrNa6+88opmzpzZ6ecGAAAAAAAAAAAAIHZ6JBLa1dio5195xYxQVm7aFPTYe/n5MgxDS9atu+zrWJ1OFRw4oK1/+pO2VFZqS2WllmVnm6+9pbIyYiT0+6efjnrNl4uEumNdgcBn0qxZnb72jsOHzdcJF1JFioTmpqWZz31740ZzbZdOx2PNwh351hNTUFurx595xtzBqKj2QOfHi0W5gxCREPqqjkd4ddfxXT2t4/Foubm5lw18LjdbtmyJ+t4//elPMQ+Doo2EWltbddNNN2natGlB10ePHt1pvJOdnW1e+/zzz3X+/Hm53W5dvHjRvH7q1ClZLBbt27fvit8nEAmdOXNGX//615WSkhJ036RJk3TbbbeFPC8nJ8e8lp6erhtvvNHccUgKHwl5PB5ZLBatXLky6FogaAIAAAAAAAAAAADQt/RYJLR8wwYzQhmXkBD02MSZMzUkPr7T3XZ2NTYqfds2PTdhguKHDg06surS2bhnT8Tg59lOdiu60kjoatcVCHxmLlgQcS3xw4aZMU1XIqHXZs+OuK5wMzU5uVcioV2NjcrZu9d83ylJs8PHQVdw/BmREPqaY8eOmcHN/v37Y72cqBQXF5trrqurk91uv6rZv3//ZeOgsrIyHTx4UJ9++mnMw6COU1ZWJpfLFfZzOnTokCwWizIzM4OuJyUldRrvHDhwIOR1jhw5otGjR+uXv/ylBg4cqLvuuksWi0Xbt2+/4vcJREL79u2TxWLRD3/4Q/OIsIEDB+qnP/2p/uM//kNnzpzpdH25ubmyWCxBx62Fi4QkaebMmfqnf/on3XHHHZo2bZr+/Oc/h/3MAAAAAAAAAAAAAMRej0VCJXa7GbrExcWpqK4u6PqEadM6fe7rCxeaIcnoMWOUvGKFlm/YoBWbNmnFpk2avXRp1JFQNLsCRfuc7lhXpMCn4wz/6miuBx56qEuv8cqMGUE7BAXWFmne37mz1yKhXY2N5m5Cw+67L+TItysdIiH0NadPnzaDm4KCAh07dizWS4ro4MGDQeu1Wq2qqalRU1NT0PFXXeHxeDqNg/bt2xcUoVitVtXX18c8DgqM1+vt9PfqLN6ZPXt2VMeASV/uEvSd73xHTz31lM6dOydJ8vl8slgsysvLu+r3CURCGRkZEf+Nwq0vLy9PFovFDImkziMhSTp+/LhSU1P1X//1X/ra174WdJwZAAAAAAAAAAAAgL6jxyKhS4OVlIwM7Wps1PKvjuRK37YtfOxRUmI+5+Xp08Pes2bHjl6PhLprXYHAZ8b8+RHXcqU7CU1JSjLXsK6H/l2vdiZMm2aucdtHH3XLaxIJoS+qr68PCm+cTmeslxSira1N+/fvD1pnWVmZrFZr0FRUVMjpdMrj8UT92uEioUvjoIDt27drz549MY+DoomEAseATZ06Neh6NMeABdTU1MhisaioqMi8FjhuLBAJXc37BI4bmzx5ctB9LpdLL7/8csT1hYuE1q5da0ZC7e3tam1t1RdffCGr1Rr0+k899ZRuv/12AQAAAAAAAAAAAOh7ejQSWrV9uxmDPDN2rHY1NmrsxIm6f8QIWW5F36YAACAASURBVB2OsM+ZMX+++Zzs3buvOMbp7kiou9YVCHwmzZrV6Tp2HDpkvs5zEyZ0+hrhIqG577xjPndFTk6vxj/vbN2qDZ18Nh2nYzy29U9/uu4joba2NrW1tZk/19fXq7KyUpWVlUG7yxw7dkyVlZWy2+1qbm6OxVLRA/bs2ROyQ09f2FWora1NTqcz6IixgoICFRUVhQRCl47NZlNdXZ1OnDgRcZehjpFQZ3FQwN69e1VYWBjzOKilpUVHjx5VU1NTxM8vISFBt956qxoaGiR9Gf1897vfjToSamlp0Te+8Q09//zzunjxoiRpyZIlQZFQZ+/zzW9+M6r3ef311/Xtb3/bfG5bW5tGjhypefPmRXxeuEiotLRUFotFra2t2rdvn37+85/ryJEj+v73v69Tp06Z9z3xxBO67777In52AAAAAAAAAAAAAGKjRyMhq9Op+0eMMIOQ9eXlGjR4sKa99Vanz5k4c6Z5f0Ftbdh73s3N7fVIqLvWFQh8Hn/mmU7X8V5+vvk6s5ct61IktGH3bvO5l9utaOzEiYobMkRrS0q65d972PDhUX3eTz/3nAzD0OC4OJXY7X0yErpw4YL++te/yu/3X/FrHDt2TFarVQUFBXI4HEHXI0VCl97f3Nwsp9Op1tbWLr3/6tWrddttt0XcEaUrzz148KDmzJnT5dfq79ra2lRbWxsU4gRiIZfL1eV/16t1+vRp2e32kDiooKBAJSUllw2Ewk1VVZVcLlfId83j8Vw2DgoI7N7zxRdfqKWlRX/5y1/M6Rjw9PT1yspKbd68WcXFxUFx36XOnTunl156Sbfccot+/OMf69lnn9WsWbP0//7f/zPvyc/P14ABA2SxWDRgwABNmDAh6DVKSko0YMAA3XHHHRo0aJDmzZsni8WiO++8U++++27I+/zoRz/SqFGjNGXKFN14440aOHCgjh49quzs7KD3yc7OlvTljj+LFi3ST3/6U9199926++67NX/+fLW3t4ddn9VqVWZmpu68805ZLBb96le/0oEDByR9+T0eNmyYfvGLX+iuu+5SSUmJTp8+rQkTJuiXv/ylDMPQr3/9az3++OP67LPPovgmAgAAAAAAAAAAAOhtPRoJ7Wps1NTkZDNaGfnYY2Ys1Nn9s1JSzPvXFBWFv2fRol6PhLprXYHAxzAMbbTZwt4TOI5r0ODBYY/jihQJ7Wps1B9eeEGGYejBkSNV9vHHYe/JrarSoMGD9dCoUbI6nd0WCQ0dNkwFBw50es/migoNGjSo012S+kok1NbWps2bNysvL09//etfu/S8AJfLpf379191COJyucyIoys70Bw4cEDTpk3ThQsXuvye4Z6bmZlpHjeErnO5XGHDnIKCAu3Zs0dOp1PNzc0Rw5Qr0draqpMnT8put5vR2qVTWFgY9oixKxmbzSa73S6Px3NFkV17e7va2tq0YcMGc/7xj3+Y0xvX9+7de9l/hy+++ELnzp0Luvbiiy9q8ODBXf6dAQAAAAAAAAAAAKA39HgktN5qNaMYwzD0yOOPR7w/e9cu897RY8Zox6FDQY+vKy/XkPj4Xo+EumtdgcAnbsgQ/f7pp7W9ujro8cVr15qvMXPBgoiv0VkklLN3r7mWSbNmhURAOw4d0pNjxsgwDC3Pzu62f+thw4fLMAyNGT9eRXV1IY8XHDigJ5555svfPy5O7+/c2ecjocAUFRVFjIXa2tq0f/9+VVZWXvV7d/b6sdh1piMioavX1tYmh8PRaSzUcZehyspKOZ1OOZ1OnTx5Us3NzUHT1tYWcu3YsWNyOp2y2+2qrKy87PuUlZWptLS0W+KgzqampkZNTU0RjyUL5/PPPzenN69HKzExUUlJSebPx44d07e//W1t3rz5il4PAAAAAAAAAAAAAHpaj0dCuxob9cjjj5vhy5tLl172/sTUVPP+4Q88oEmzZmlWSorGJSRo0ODBZuASOFJrblqaNn/4oXY1NiolI0Nz09L02JNPyjAMjXriCc1NS9PctDRlFheHvJfV6TQfD/ecnQ0NV72u7dXV5usFQpqpycka/eyzih86VOMmTdKkWbP05B//aD7/hVdfVfmRI+Z7h3uNP774ouampWlJVlbI75VZXKzhDzwgwzD0+6efVtKyZUrJyND0efN0/4MPfnmUWRT/Fl2ZP774orn+++6/X6/Nnq2577yjlIwMvZaUZK77vgceUPq2bd363j0dCUWKhdra2rRnzx4VFBTI5XJd9XtHI3BkVGc6Hj9UX18vSUpJSZHFYpHFYlFJSYl++9vf6uabb9bPfvYz1dbWRnzukiVL9IMf/EBf+9rXNHDgQA0cONA8DglX5tixY9q/f3/EiKcnpri4WLW1tTp58qR8Pl+PBkKXTkVFhZxOpzweT6w//qu2c+dO3Xvvvfrd734nwzD03//931qzZk2slwUAAAAAAAAAAAAAneqVSOjNpUvNeGTrn/4U1XPSt23T8y+/rPvuv1+DBg/W8Ace0HMvv6y0LVu0ZseOoN2JDMPQik2btKsx+DivSyfczjtlH3/c6f2GYcjqcFz1utaVl4ddS9mRI0patkyPP/OM4ocNU/ywYXpyzBgtWrMmKE7a1dgY9jUC89jo0WE/w6K6OiUuXqwnnnlGQ4cNU1xcnB4aNUqvTJ+udT30b/7+zp16Y/Fi/XHcOD3w0EOKi4tTXFycHnjoIY0ZP15z09JUePBgt79vx0hoa0mJ/vznPwd90e12u/785z9Hff3EiRNhI6HA5OfnB8VCJ0+e7NJRYFcrcARZc3Nzp/fU19cHhT4dr8XHx6uhoUF/+9vfdPfdd2vgwIGXfS47CfWMw4cPq6ysTDt27FBRUVGPREGVlZVyOBxhvy/V1dW9Ggp1nLq6Op04caLLuwwBAAAAAAAAAAAAALquVyIhhunp6RgJpWVlhRz50zHw6er1SHO5Y8h6UnFxcVDEc6lIkVBOTo55LT09XTfeeKPa29sjPpdIqPvZ7faw8UxZWZnKyspUXFys6upqVVZWhkwg/uk4+/fvl8PhkMvlUnNzs06fPn3ZNfj9flVUVMQsFApMVVWVnE6nvF5vL3zyAAAAAAAAAAAAAND/EAkx18WszM39v52ECgtls9mCvug2m82caK5HGwnt27dPZ8+eVVtbW8/+pYZRUFAgh8PR6eORIqEDBw6Y13Jzc2WxWHT27NmIzyUS6l6dBUIdJ9KRct3J5/NFtZ7eGpvNJrvdrhMnTsjv9/fKZwAAAAAAAAAAAAAA1ztLcnq6ln91VBfDXKuzfNMmMxI66nZf9R9GW1tbp2FQXl6eDh48aEY1ra2tKi4u7rWgQ5Jqa2tVUFAQcaeYSJFQx2t5eXmyWCw6c+ZMxPuIhLpPXwqEOvL7/XK73aqrq5PNZot5LBSYmpoaNTU1scsQAAAAAAAAAAAAAFwFS3J6ulKzs2MeeTDM1UzK2rU9Hgnl5eXJbreH3TUoEO1E2tmnO7lcLh07diziPd0dCa1du9aMhNrb29Xa2tpdv06/0lcDoXBaWlrkcDj6xHFkgamoqJDT6ZTH44n1xwMAAAAAAAAAAAAA1xRLIKworq+PeejBMFcyhQcPmoFQSmZmt/xhdIyEIsVBHblcrqBwJtIuP1118uTJLgdI3R0JlZaWymKxqLW1Vfv27dPPf/7zq/iN+qdrKRC6lM/nU1NTk+rq6mIeCnU8lqyurk4nTpyQz+eL9UcEAAAAAAAAAAAAAH2aGQnlfPBBzGMPJrYTN2RIlydp2bKYr/v93bvNSKjAZuuWP4y2trao46DOWK1WFRcXa//+/V16jUvjIqvVqoKCAhUXF0f9OtnZ2RowYIAsFosGDBig7Oxs5efnB12zWq3KzMzUnXfeKYvFol/96lc6cOBA2OdKX34mw4YN0y9+8QvdddddKikpif7DwDUdCF3K7/fL4/HIbrf3qV2Gqqqq5HK5OJYMAAAAAAAAAAAAAMIwI6GUtWtjHnswsZ0tlZVdnqK6upiuuezIkaCjxg5103Ff7e3tunDhwlW9xsmTJ1VbWyur1Rp0vaCgwJyO9uzZY17vGAMdO3ZMJ0+evKq1ILaup0AoHK/Xq6amJlVVVcU8FApMRUWF7HY7x5IBAAAAAAAAAAAAwFcsKZmZYjch5lqdteXl5vf37a92vOnrHA6HOR0dO3ZMDodDJ0+evOLdi9D3XO+B0KX8fr/cbrfsdrtsNlvMY6HABI4l8/v9sf6IAAAAAAAAAAAAACAmLHtraszIYl5GhgoPHox5+MEw0UzhwYOal5HR7bsIAd2lvwVC4bS0tMjhcPSpXYaqqqrU1NTEsWQAAAAAAAAAAAAA+hWLJL2dnW2GFqnZ2So7ciTmAQjDRJqyI0eCAqFVW7bE+m8JCEIgFMrn86mpqUl1dXUxD4U6HkvmdDo5lgwAAAAAAAAAAADAdc8iSZ81N6vjsWOEQkxfnuL6eqV2CNtSMjP1WXNzrP+WABOBUHQ8Ho/sdrsqKipiHgtZrVbZbDbZ7XZ5PB6OJQMAAAAAAAAAAABw3bEE/schh8OMLjh6jOmrc+kRY8np6Trqdsfybwgw+f1+AqEr5PV61dTU1KeOJaurq9OJEyfk8/li/fEAAAAAAAAAAAAAwFWzdPzh0lAoOT1d6fn5Kq6vj3kcwvTvKa6vV3p+ftB3MyUzU4ccjlj97QBB/H5/VIELgdDl+f1+ud1u2e122Wy2mMdCVqtVVVVVampqIhgCAAAAAAAAAAAAcM2yXHrhqNsddPRYYFbm5iqnooJgiOm1KTx4UDkVFVqZmxvyfeSIMfQl0QZCLpcr1ku9JrW0tMjhcPSZY8kqKirkdDrl9Xpj/dEAAAAAAAAAAAAAQNRCIiFJ+qy5WesKCkLCDIbpC7O5tFS+8+d7+28FCCvaQMjNsXjdwufzqampSXV1dTGPhQLBkN1ul8fjifVHAwAAAAAAAAAAAAARhY2EAo663cRCTJ+ZdQUFOkpogT6EQCi2/H6/PB5Prx5LVl5eroULFyotLU35+flBj9lsNoIhAAAAAAAAAAAAAH1WxEgo4JTXq32HD2tzaanezs6OeSzC9I9ZtWWLNpeWat/hwzrFsT7oYwiE+p7eOpaspKRE48aNU2pqqtatWxf2HpvNprq6Op04cUJ+vz/WHw0AAAAAAAAAAAAARBcJAQD+D4FQ3xc4lqy6urpbA6HFixcrOTlZkydPDvv49u3b9d577yk7OzvoOsEQAAAAAAAAAAAAgFgjEgKALiAQuvb4/X653W7V1dV1y7Fkc+bM0RtvvKF58+YpNTVVGzdulNVq1YYNG/TKK68oMzNTa9eu1Zw5c1ReXh7yfIIhAAAAAAAAAAAAALFAJAQAUSIQuj54PB7Z7fYrOpasrKxML730knJzc2W1WrV27VrNmjVLVqtVM2bM0MqVK817FyxYoLVr10Z8PYIhAAAAAAAAAAAAAL2FSAgAokAgdH3yer1yOBxRB0Pr16/XpEmTZLValZ6ervnz56u0tFRWq1UTJkww4yGr1aqkpCSlpaXJarUqIyNDa9asIRgCAAAAAAAAAAAAEDNEQgBwGV6vN6pjqgiErm0+n09NTU0RY7AFCxZo0aJFWrRokVasWBH02Jtvvqns7GxZrVYVFBToxRdfNHcSysvL0+TJk1VWVmben5eXd9lgCAAAAAAAAAAAAAC6C5EQAERAINQ/+Xw+ud1u1dXVmf/G5eXlevnllzV58mRlZWWFfAcKCwu1cOFCpaamKjExUWPHjlVhYaH5+Pz587V69Wpt27ZNycnJmjJlioqKiszHk5OTtXjxYm3atMm8ZrPZZLfb5fF4Yv2RAAAAAAAAAAAAALjGEQkBQCcIhCB9edSc2+1WdXW1lixZEnSkWGBWr14d9POyZcuUnJwcclTZSy+9pKlTpyozM1Pl5eXmY0VFRZo/f75WrVqlWbNmKSEhQampqUERUSAY8nq9sf5IAAAAAAAAAAAAAFyDiIQAIIxoAiGbzUaw0Q95PB7Z7fag78ekSZOUk5Mjq9WqDRs2KCEhQQUFBbJarcrNzdWcOXM0ZcoUvf7661q1alXY71MgGsrLy1NSUpLmz5+vkpISWa1W5eTk6O2339aaNWtUXFysiooKOZ1Ovn8AAAAAAAAAAAAAokYkBACXIBBCtALBUFlZmdLS0rRw4UItXrzYDIRKSko0Y8YMrVmzRuXl5dq+fbsSEhJUVlYW8p3Ky8vT/PnztXDhQuXn55vXs7Oz9dJLLykrK0s5OTmaO3du0M5FVVVVampqkt/vj/XHAQAAAAAAAAAAAKAPIxICgA4IhHClPB6PHA6HKioqIn5/5s+fH3I8WVpammbMmKG8vLyQ+5OTk5Wammr+XFpaqldeeSXouLLA1NXV6cSJE7H+KAAAAAAAAAAAAAD0QURCAPAVj8dDIIRu4fV6Ow2G8vPzzaPJrFar1q9frwkTJmjHjh1hv3NLlizRypUrg66tW7fO/N/hdiWy2Wyy2+18VwEAAAAAAAAAAACYiIQA9Gter1dr1qxRQkKCEhMTOw01CIRwpSIFQ1arVUuXLtX8+fM7/d5t3bpVM2bM0Nq1a0N2D1q9erWWLl0aMWyrqKjgODIAAAAAAAAAAAAAREIA+q+2tjZlZmaqsbFRJSUlmjVrllJSUgiE0GPCBUM5OTmaOXOmGQCtWbNGBQUF5v+eNGmS1q9frzVr1qikpCToe1lcXKxJkyYFXd+8eXPYo8gCx5F5PJ5YfwwAAAAAAAAAAAAAYoBICEC/9cEHH2jbtm1mQLF9+3ZNmzYtJKyoqqoiEEK3CwRDNptN2dnZWrBggebOnaspU6aYR4glJSXpnXfeibhTUGpqqt555x1lZWVp5syZmjlzpoqKioIipNTUVKWlpZnxUUVFhVwul3w+X6w/BgAAAAAAAAAAAAC9hEgIQL9VU1OjRYsWBQUXiYmJslqtys/PV2FhoaqqqjimCT3O4/HIbrfLZrMFfR/fe+89zZs3T+Xl5SorKwsJhsrKyrRixQqNHTtWs2fP1qZNm4IeX79+vcaPH6/169dr+/btmj9/vtLT04PuqampYXchAAAAAAAAAAAAoB8gEgLQ75w9e1affvpp2F1ZkpOTzV2FZs6cqdOnT8d6uehnLg2G1q9fr5SUFM2aNUupqamyWq0qKSlRWlqaEhIStGDBAiUlJem9994L+T6//vrrWrFihflzYWGhpk6dKqvVqh07dig/P998LLC7EFEcAAAAAAAAAAAAcH0iEgLQb5w5c0YZGRmaPn26EhISgo5kCsxbb72l8vJyLV68WO+9954uXLgQ62Wjn/L7/XK73aqrqwv5nu7YsUPLli0zv8Pbtm3TlClTQu577bXXlJOTY/5cWlqqzZs3m/FRUlJS2FjObrerpaUl1h8BAAAAAAAAAAAAgG5EJASgX7h48aLWrFmjmpoalZeXa86cOSHHLgV2ElqwYIGysrLU3t4e62UDkr4MhpqamlRVVRU26rFarUpKStL69euDrq1YsSJoJ6GOU15ersmTJ6ugoMA8uiwrK0vl5eVBuwudOHEi1r8+AAAAAAAAAAAAgG5AJASgX9i/f7+WL19uxg/vvvuuli1bpmXLlmnTpk1BO69s2LCBQAh9ls/nk8vlUkVFRVD0k5+fr8LCwpAQaNWqVVqwYIESExO1ZcuWoMfT0tK0cOFCLV++XJMmTdLcuXO1Y8eOkKDIZrNxFBkAAAAAAAAAAABwjSMSAtAvHDp0SO+8846sVquKioqUmJiojIwMLVmyROPGjVNOTo7q6urkcDhivVQgal6vV3a7XTabLSTsyc3NDfp5/vz5QbsE5eTkKCkpSc8//7yWLl0acvxeeXm5Vq5cqcTERC1atMg8tsxut8vn88X6VwcAAAAAAAAAAADQRURCAK5rfr9fdXV1QfFDWVmZSkpKzJ+XLl2qFStWxHqpwFVxu91B3/XZs2crISFBy5cvV05OjpYtWyar1apt27Zp2rRpmjVrlrKysjR37lxlZGSEREZpaWmaNGmSCgoKVF5ertTUVL399tvm4zU1NWppaYn1rw0AAAAAAAAAAAAgSkRCAK5bfr9fRUVFyszMDAkgOs7WrVtls9livVygW/h8PjU1NamiokIFBQVavny5EhIStH37dlmtVpWUlGjbtm3m93/Lli2aMWNGyN/F5MmTtWbNmqDjzGbOnBlyH7EQAAAAAAAAAAAAcG0gEgJwXfL7/aqqqtLq1au1ZMmSsEcxlZaW6sMPP1RWVpYuXLgQ6yUD3S7ScWQdZ8aMGSHHk02ePFl5eXnmzyUlJSH3EAsBAAAAAAAAAAAA1w4iIQDXnUAgZLVa9d5772n58uUhQcP69ev1yiuvaOPGjTp//nyslwz0KL/fL7fbbf5dXDpFRUUqLy8PupaRkaHFixervLw85LFIQywEAAAAAAAAAAAA9E1EQgCuKz6fT0VFRdqyZYu2bdum5cuXa9myZSopKVFZWZkZMrjdbvn9/lgvF+h1Pp9PDofjsrsLWa1W5eTkaNGiRZo8ebJ27NgRdShELAQAAAAAAAAAAAD0PURCAK4bXq9XNptNb731lhITEzVr1ixNnDhRr776qqZMmaKEhAS99tprcrvdsV4qEHOd7S5UXFysZcuWqbCwUFarVTt27FBKSkqXAqGOY7fb5fP5Yv3rAgAAAAAAAAAAAP0ekRCAa9q5c+fU2tpqBkKXBgrLly/XqlWrgnYQAhDM6/XKbrfLarWqpKREb7/9tiZNmqS5c+dq4cKF2rJlyxVHQoFxOp3s3gUAAAAAAAAAAADEEJEQgGvamjVr9NZbb6m8vDxsmLB06VJlZGQQCAFR8Pv9crlcqqioUFlZmVavXq2FCxdedSAUmIqKCnk8nlj/mgAAAAAAAAAAAEC/RCQE4JqWkZGhKVOmaNasWSotLQ2JElJTU7Vu3TrCBKCL3G63qquruy0Q6jg1NTUcQQYAAAAAAAAAAAD0MiIhANcst9utVatWKTMzUzNnztTs2bNVVlam/Px8MxgqKCjQiRMnYr1U4JrV0tJiHkXWnWOz2djdCwAAAAAAAAAAAOhFREIArklut1tWq1WbN2/W22+/rR07dmjq1KlKSkpScnKySkpKZLPZ5PV6Y71U4Lrg8/l6JBaqq6uT3++P9a8HAAAAAAAAAAAAXPeIhABcc5xOpxkYlJaW6q233pLValVWVpZeeOEFLVq0SEVFRaqvr4/1UoHrjs/nk8vlks1m67ZQqKKiQi0tLbH+1QAAAAAAAAAAAIDrGpEQ/j979x4U5X3of3zbMydppueXdnI6mY49c9KctGk7mXFO2zRMe9LkdM6DSDQXozHWW2yTJsZ4RRM1xlCRgIrBu5F6QY0QARHkDquuiRKCoKiQsECIl0hUQkARArLK5/dHwlPWXWBR4EF9v2a+0+bh2We/i7vLH897vl/ghnDp0iWlpqaquLjYIzBYuHCh3n33XS1evFhJSUmaPn261q1bp+bmZqunDdy0XC5Xj8dCbD8GAAAAAAAAAAAA9B4iIQA3hKNHj2rKlClatGiRR1jw1ltvKTIyUjk5OUpPT9e2bdvYvgjoI22xUE+FQmVlZVa/JAAAAAAAAAAAAOCmRCQEoN9zuVxau3atduzYoRkzZigyMtItKsjMzJTdbldeXp7q6+vV2tpq9ZSBW05TU5NKSkp6JBQqKSmx+uUAAAAAAAAAAAAANx0iIQD9msvlUl5enhITE2W325WUlKSpU6dqzZo1HlEBqwcB1quvr1dBQcF1h0KFhYVWvxQAAAAAAAAAAADgpkIkBKDfaguEro4HEhISNHnyZK1fv152u13FxcVWTxXAVaqrq+VwOFhRCAAAAAAAAAAAAOgniIQA9Ev19fXKyMjQunXrvMYD7733niZNmqRt27YpNjbW6ukC8MLlcsnpdBIKAQAAAAAAAAAAAP0AkRCAfqe+vl4Oh0Pbt29XSEhIh/FAbGys1qxZo5aWFqunDKAT17uqUFVVldUvAQAAAAAAAAAAALjhEQkB6FfaxwQxMTEKCwvzGg0cP35cCQkJunLlitVTBuCDpqYmr9sH+jIcDoeampqsfgkAAAAAAAAAAADADY1ICEC/UVVVpbi4OMXHxysxMVFRUVFavHixcnJyWFUEuElc6/ZjhYWFVk8dAAAAAAAAAAAAuKERCQGwzOXLl1VbWytJOnnypOx2uyIjIxUSEqL58+crKChIU6dO1cyZMzVjxgzNmDFDdXV1Fs8awPW61u3HTp48afXUAQAAAAAAAAAAgBsWkRAAy6SlpWnu3LnKz8/3GgRERUVp1apV5nZD9fX1Vk8ZQA+prq6+pm3HAAAAAAAAAAAAAFwbIiEAlnE4HHrzzTf16quvKj093SMIWL16td555x3l5eURCAE3oaqqqm6HQmw3CAAAAAAAAAAAAFwbIiEAlnC5XNq5c6eioqIUEhKiefPmKSsrS+np6crMzJTdbteKFSu0detWuVwuq6cLoJe0bTXo69i/f7/VUwYAAAAAAAAAAABuSERCAPqcy+VSXl6eUlJStHTpUmVlZen111/XggULFBoaqtTUVNntdu3evVtffvml1dMF0MtKSkq6FQqxshgAAAAAAAAAAADQfURCAPpUfX29HA6HebN/4cKFstvt2r59uyZOnKglS5YoPT1dOTk5Vk8VQB9xuVzdioROnjxp9ZQBAAAAAAAAAACAGw6REIBe1draqh07dqi5udkjEGqLhGJjY7V48WIlJSVp+vTpeuutt3ThwgWrpw6gD3VnNaEjR45YPV0AAAAAAAAAAADghkMkBKBXff755woKCtKSJUuUnZ3tcbN/8eLFioyMVE5OjhITE7VmzRo1NzdbPW0AfaypqcnnSGj//v1WTxcAAAAAAAAAAAC44RAJAehVOTk5Kiws1OzZsxUWFuZxsz8rK8v8/59++qkuX75s9ZQBWKSgoMDnUAgAAAAAAAAAr7ABYwAAIABJREFUAABA9xAJAehVubm5stvtSk1NVVBQkJYtW+Zxs9/hcKi2ttbqqQKwGJEQAAAAAAAAAAAA0HuIhAD0mpKSEreb+klJSZoyZYqioqLcAqH6+nqrpwqgHyASAgAAAAAAAAAAAHoPkRCAHudyuXTgwAGtXr3a48Z+fHy8Jk2apKioKC1dulRff/211dMF0E8QCQEAAAAAAAAAAAC9h0gIQI9yuVzKy8tTSkqKXn/9da8399955x3Nnz9fFy5csHq6APoJl8slh8PhUyBUUFBg9XQBAAAAAAAAAACAGw6REIAeU19fb97kT0xM1Jtvvulxcz8zM1OrV69WU1OT1dMF0I+cPHnS51WEnE6n1dMFAAAAAAAAAAAAbjhEQgB6RG1trRITE7V9+3YlJiZqy5YtWrhwocfN/ZKSEqunCqCfcblc2r9/v8+R0MmTJ62eMgAAAAAAAAAAAHDDIRICcN2qqqpkt9u1evVqhYaGKjg4WLNmzdLkyZM1Y8YMTZ8+XUFBQSotLbV6qgD6IafT6XMgZLfbWYkMAAAAAAAAAAAAuAZEQgC67fLly8rMzNSyZcsUGxurnJwcj5v4mzZtUmRkpPnfn3/+udXTBtAPVVdXdysQOnLkiNVTBgAAAAAAAAAAAG5IREIAuqW1tVXvvvuuTpw4ob1792r69OmKioryuJEfFRWlVatWyeFwqLa21uppA+iH6uvr5XA4uhUJ8X0CAAAAAAAAAAAAXBsiIQDdUlRUpJiYGB05ckR2u13r169XaGiox4381atXa/369aqvr7d6ygD6IZfLpby8vG4FQvv377d62gAAAAAAAAAAAMANi0gIQLc0NjZq48aN5k37DRs26J133vG4mZ+dna1z585ZPV0A/dC1BEJ2u13V1dVWTx0AAAAAAAAAAAC4YREJAfBZfX299u/f73bTPjQ0VDt37nQ7lpeXJ5fLZfV0AfRD1xoIHTlyxOqpAwAAAAAAAAAAADc0IiEAPqmtrZXD4fC4cZ+SkqKVK1ea/11SUmL1VAH0U9caCDkcDsJDAAAAAAAAAAAA4DoRCQHoUlVVVac38LOzszV37lzt37/f6qkC6Kfq6+uvKRBimzEAAAAAAAAAAACgZxAJAehUZWWlTzfxd+7cqYsXL1o9XQD9UH19vdeVyHwZrE4GAAAAAAAAAAAA9AwiIQAdKikp8WkbIFb5ANCRjrYq9GUcOXLE6ukDAAAAAAAAAAAANw0iIQAeXC6XCgsLfQqE6uvrrZ4ugH6qq60KOxt5eXlyuVxWvwQAAAAAAAAAAADgpkEkBMCNy+VSXl6eTzfwm5qarJ4ugH6qrKzsmgOh/fv3EwgBAAAAAAAAAAAAPYxICICpvr7ep22BWOEDQEdcLpdPWxWyQhkAAAAAAAAAAADQt4iEcEv68ssvFRgYqICAABmGoREjRujSpUudPuajjz6SYRgyDEOBgYHaunVrr82v/dwGDRqkwMBADR48WIMHD9Zf/vIXbd++XZcvX+7R56yurjYDoYULF5rP//LLL7vdwC8pKenR5wVw8/B1JTJWKAMAAAAAAAAAAAD6HpEQbml79+41w5+UlJROz50+fboMw9C0adP6dG7x8fHmsa+++korVqyQYRgKDQ3tseeqqqryesN+6NChbpGQ0+nssecEcHOpr6/X/v37rysQYoUyAAAAAAAAAAAAoPcQCeGWtnfvXo0fP14BAQEaN26crly54vW8Tz75RH/9618tj4Qk6cqVK+ZcysrKrvt5ysrKOrxp3z4Sqqqquu7nAnBz8nWrQgIhAAAAAAAAAAAAwDpEQril7d27V0FBQVq0aJEMw9C+ffu8nhccHKysrKx+EQlJUkREhAzDUFJS0jVf3+VyqaSkpNMb90OHDtWkSZNUW1t7PS8FwE3M5XKxglA/0NDQoHPnzpmjvd4+3tLS0oOvBAAAAAAAAAAAAL2FSAi3tLZIqLKyUoZhaNKkSR7nfP755xo9erSam5u9RkLnzp3TO++8o7/+9a965plnNGrUKL3xxhv67LPP3M6bMWOGBg0aJMMwFBAQoKysLDU0NCgwMNA8Fh0d7Ta3riKh5ORkSVJtba0iIyM1atQojRgxQmPHjtWmTZvU1NTk8dja2lotXbpUTz/9tJ544gkNHz5c8+fPV3p6utdI6PXXX7+WXy3Qq05+8QWjn4yCI0e0MzX1msb7H35o+fzbj6ZLl6x+a1+T1tZWlZeXKzY21hxNTU3m6IvjGRkZBKUAAAAAAAAAAAD9HJEQbmltkZAkzZkzR4ZhqKioyO2cyMhIxcfH6/Lly14joaysLD311FMqLS2VJDU2NioiIkKBgYE6ceKE27kFBQUyDENvvfWWeayiokLjxo1TQ0ODx9y62m6svLxc58+f15gxYzR58mR9+eWXkqTKyko9++yzmj59ui5fvmw+9vz58xo9erQmTJignTt3ym63KyYmRk899ZQmTJig7Oxst9U9hg0bpjfffPNafrVAjzhfX6/8Y8f0bkqKIqKjFRoVxWD0yXg3JUUfFBbqbE2N1R+DTl25ckXnz59XdXW1KisrzVFbW2uO3j5eVFSk1NRUJScn+7yq0MqVK2Wz2Tz+5nZk8uTJuueee3TPPfdcx28LAAAAAAAAAADg1kYkhFta+0jo8OHDMgxDc+bMMX/+1VdfacSIEWpsbOwwEvroo4+UkJDgdqylpUWPPfaYVqxY4fGckZGRMgxDDodDly5d0vPPP6/CwkKvc7s6Evryyy+1fPlyGYahsLAwSdKyZctkGIY++eQTt8enpKR4bEm2ZMkSGYahLVu2uK0Y1HZ80aJFstvtOnLkiFwuF5EQLHOiqkrvpqRYHoowGKFRUVoVEyPn8eNWfyw8HDt2TB988IFbsGPVqK6u9tiGrDO/+c1v9N3vfldTpkzx+THh4eFEQgAAAAAAAAAAANeBSAi3tPaRkCS9/PLLMgxDlZWVkqQNGzZo/fr1ktRhJNSR5557TjNnzvQ43tDQoNGjR+upp55SWFiYIiMjO5ybYRgaNGiQAgMDFRgYqMcee0wvvPCC4uPjdeXKFbW2tmrYsGEaNmyYx+NrampkGIamT58uSTp9+rSGDh2qoUOHemwrlpSUJMMwNGHCBJWUlJjXIBJCX2u6dMmnOGhlXByD0eMjfOPGTt9376ak9KuVhXbv3q2srCzLA6H2wxdHjhzRo48+Kn9/f/37v/+7Lvm4zRuREAAAAAAAAAAAwPUhEsIt7epIyOFwmKv0NDY2asSIEar59oZwR5FQc3Oztm/frhdffFFPPvmkGfQYhqHJkyd7fd7CwkIZhqEnn3xSjY2NHc7N23Zj7V24cEGGYeiFF17w+NmVK1fk7++vkSNHqrKy0lxZaNSoUR6RUHZ2tvz9/TV8+HC3axAJoS+dranxuqXYmsREbf/gA2UUF2tPRQWD0esju7RUCXl5itq1yyMcioiO1lGn0+qPi6QbNxKaOnWqNm/erNjYWNlsNsXFxXmc09zcrEmTJumuu+7Sr371K7300ksKDg72iIQSEhL0xz/+UYZh6JFHHlFgYKDbynoRERGy2Wyy2WzKzMzUI488ojvuuEN//OMfderUKe3atUv33nuvfvjDH+rll1/WlStXruvfBAAAAAAAAAAAoD8jEsIt7epI6MqVKxozZowGDRqk1atXKyIiwvxZR5HQ3//+dxmGoZSUFLfgZ8KECR1GQufPn9cTTzwhwzD0/vvvdzg3XyOh559/3uNnbZHQ008/Lbvd3mkktGfPHjMoao9ICH3lqNPpEQhF7dpFGMSwfGSXlmpzTo5HvJZ/7FiPfw6am5vlcDjkcDj08ccf6+OPP1Z1dbWqq6vV0tLidm5LS4ucTqdOnDhheRjUNrKysrR79+5OX+OlS5f005/+VI2NjWpqatIPf/hDBQQEeJwXFBSku+++W+Xl5ZK+iWsHDBjgEQk9++yzbpHRmjVrdO+996qpqck8VlxcLJvNpqFDh+qzzz7T6dOn9ctf/lIPP/ywpk2bprq6Ou3Zs0ff/e53lZiY2N1/NgAAAAAAAAAAgBsGkRBuaVdHQpLMrbcMw9DJkyfN494ioYaGBhmGoVdeecXj2p1FQiEhIdq2bZvGjh2r4cOHq66uzuvcuoqEOttu7OzZszIMQ3/5y19kt9uVk5Pjdbsxh8OhEydOyDAMzZgxw+0aRELoC2dratzii/CNG5VaVGR5HMJgtB+pRUWK3LbN7b3aGysKpaamKj4+vsORlpam5ORkxcXFKSEhwfIwqLuRUEJCglvY+tJLL+m73/2uPv/8c/NYY2Ojbr/9ds2ZM8ftsePGjfOIhKqqqtxW/zl//rxsNpvy8/PNY22RUPu/p/PmzdN3v/tdnT9/3jw2cOBAj+cEAAAAAAAAAAC4mRAJ4ZbmLRJqamrSyJEjFRwc7HbcWyR06dIlDRo0SC+//LLbuS0tLRo6dKjXSGjfvn2aMWOGWltbdfToURmGoQULFnidW1eRkCQtW7ZMhmGouLjY7TWsWLFChmFo0aJFZhA0c+ZMGYahTZs2yW63Ky8vT/X19eYqQ8nJyW7XJhJCbztfX++2glDktm2sHsTotyO7tFQr4+LcQqGz325J2VNOnz7daSTUfuzcudPyMKi7kVBgYKAOHDhg/vdHH30km82mhQsXmseOHj0qm82m6Ohot8eGhIR4REKlpaUaN26cHnzwQfn5+emhhx6SzWZz+3vWFgkdPnzYPBYREaG7777b7VqPPvqoJk6c6Os/FQAAAAAAAAAAwA2HSAi3NG+RUEc62m4sODhYhmEoISFBX3/9terq6rR48WIZhuERCdXV1WnMmDH64osvzGNr1qyRYRjau3evx9x8iYTOnz+vMWPGaNKkSaqurlZ9fb3i4uI0bNgwTZgwQVlZWWYktGvXLg0fPlxjx45VVlaWXC6XPvvsM40aNUrTp0+Xy+VyuzaREHrb+h073FYQyi4ttTwEYTA6G9mlpW4rCkVER6vp0qUe+0xcvny5yzgoISFBZWVlOnTokHJzcy2Pg9qPzlRVVenf/u3f5Ofn5za+973v6b777jPP6ygSWrBggVsk1NjYqB//+McaP368mpubJX0TydpsNiUlJZnntUVC7WPaiIgI/eQnP3G7/qOPPqqXXnqpu/9kAAAAAAAAAAAANwwiIdyyAgMDFRAQIMMwFBgYqJSUlA7PDQkJUWBgoLkNWWBgoBITEyVJFy9e1MqVKzVq1CgNHjxYzz33nHbu3KnnnnvOPLe0tFTLly9XQECA/P39ze3BsrKyNHjwYBmGIX9/f40YMcJjboMGDVJgYKDee++9DudXW1uryMhIPfPMM3ryySc1fPhwvfHGG0pPT3fbWsxutys5OVnz58/Xs88+qxEjRmjs2LHauHGjmpqazOu999575uv19/c3XwPQk446nWwxxrghR3ZpqcI3bjTfv+8XFvbIZ6KhoUHl5eVKTEzsNBI6ffq0JGn37t3KysqyPAzyNRIKCwvTkiVLPI4vXrxYNptN+/btk/TP7cZmz57tdt7V240VFhbKZrMpLS3NPNa23RiREAAAAAAAAAAAgCciIeAmcfLkSY8gyNuorKy0eqqAJGlVTIwZWWzOybE8/GAwujO2f/BBj6wm1NLSouPHj8vhcLitFNRRIHT8+HHzsceOHVNsbKyqq6stj4Oqq6t19uzZTl/rAw88oHPnznkcP3funP71X/9V48ePN4/NnDlTd999t8rLyyV9EwTdeeedbpFQbW2tvv/97+vFF1/UlStXJH2zBSeREAAAAAAAAAAAgHdEQsBNoKSkxKdAqKqqyuqpApIk5/HjbDPGsHTsrSjX3opy7Skv+/Z/y7t9jZVxceb7OP/YsW59Bk6fPq2DBw96REBJSUkqKirqMhCSvll5qKKiQnV1daqtrdWJEyf06aef6tNPP3ULh3r7eGVlpVJTU5WQkKCWlhaP1/rVV1/pt7/9re644w79z//8j8fP/fz8dMcdd+j22283f97c3KxXXnlFd911l37xi19o5MiReu2113TbbbfJz89PJ06ckCRlZmZq4MCBuu++++Tv76/w8HDZbDbdf//9WrdunXbt2qWBAwfKZrNp4MCBstvtCgkJ0X/+53+a17p48aICAgL0//7f/9Pdd9+tcePGdevfEgAAAAAAAAAA4EZBJATcwFwulwoLC7uMgxwOh+rr662eLmBKcTjMuGJDerrlwQjjFhnl5dpT7tSeMu9jb7lTeyp8j4Xarya0fseOLt/3dXV1OnjwoJKSkjzCoPz8fHMbMUn68MMPOw2E2rty5Yq+/vpr5eTkKDY2VrGxsfr888/19ddf99nxhIQEVqoDAAAAAAAAAADo54iEgBtUU1OT8vLyugyE9u/fTyCEficiOtqMK1KLiqyPRxg3/ygv8wyDyp1eo6G95WU+XTO7tNR8H4dGRXndcqyhoUFFRUVKS0vzWBnowIEDOn78uNfVdy5evOhTINRebW2tzp07p3Pnzrldsy+OAwAAAAAAAAAAoP8jEgJuQPX19XI4HF0GQnl5eXK5XFZPF3Bzvr7ejCoitmyxPh5h3PRjr9dAqEx7Kyq0t6Ki44DIh2u333LsxLdbOra0tKi8vFw5OTkeYVB2drbKy8vV0NDQ5WclPj5e5eXlvf2RBAAAAAAAAAAAwC2CSAi4wVRXV/sUCJWUlBAIoV86UVVlRhUr4+IsD0gYN/nwFgD5Egl9e05X14/atct8P+85cEAHDhzwCIPS0tJUVFTkUxjU3oULF3rpUwgAAAAAAAAAAIBbEZEQcAOpqqrqMg6y2+1yOp1WTxXoUE9GQhtSUmQYhtfxxLBhnT726ZEjPR7z1PDhloQs6ceOadzzz+up4cMVs3dvj157a06Ox+t8Y8mSPr9GX4yd+fkKXbNGL0yerCeGDdOggAANefxxjZ4wQfMWLdLOD3O7FwmVdb2a0OacHPP9vHbLFjMMSkpKUn5+vqqrq63+yAEAAAAAAAAAAACSiISAPnPhwgWdOXNGZWVlKisrU25urtvIyMhQSkqKUlJSPH5WVFSk0tJS5eTkKDs7Wzk5OR0GQlXfbncD9Ff5x46ZUcWG9PTri0I++kihq1drdmioW+gTunq1Fv/jH50+NmLjRoWuXq2nR47UkMcfV+jq1VqyYYMlccvquDhz/nPDwnr02skFBQpbu1Zha9dqyOOPX1Pg0xPX6M2xu7xcU+fOlf+gQTIMQ8+OHav5S5fq7ehNCl21Un8eP16GYWhwYKCWb93SvUioi9WEro6EDhw4oNOnT1v9MQMAAAAAAAAAAAA8EAkBvaQtCMrNzTXjn54cqampSk9PV1ZWlnJycuRwOFRbW2v1ywa69H5hoRlVbM7J6ZFIxO506olhw2QYhvwHDVJyQYFPj0s7ckQBAQEKevNNSyOX5IICPTV8uAIGD9bG1NRee56nhg+/7sCnJ67R08PudJqRVdCbb8ru/HYFoG9DH3vpJ5o6d8437w9/f23YlaQ95eXtIqFy7Sl3ug8zEup8NaH2kdDe/HyrP14AAAAAAAAAAABAh4iEgB505swZFRUVua0K1Ffjww8/1KlTp9TS0mL1rwHoVG9EQnsqKjTnrbfMUCRs7VqfHhOxcaMMw9Cm61zRqKdCl8ySkl59jps9Enpq+HD332H5P1cDyiouNldBGjNhghkIdTT2VJT7tOVY+0jo/cJCqz9eAAAAAAAAAAAAQIeIhIAecOrUKdnt9k4jHrvdrtzcXDmdTjmdTtXU1LiN9nHP1T+rrKyU0+nUwYMHtW/fvk6fJyMjQ2VlZf0uFmppadG5c+fM0X5+tbW1vXoc/UtvRUJbs7PNSGjMhAk+PeYvEyfq6Wee0e7ycstDl74YN3skNH3ePPeftdsybG9FhV6ZNct8j+wqKLhlI6Gamho1NjZaPQ0AAAAAAAAAAAD0MSIh4DrU1NR0GAfZ7XYVFxfrzJkzvXIztqamRk6ns8NoqC0W6i+++OILxcbGmuPzzz9XU1OTmpqalJOT0+vHd+3axXZs/URvRUJ7Kir0zJ//bEYg2z/4oNNzE/Py+l3s0tvjZo2EdpeXa11iohJyc91/1i4S2lNRrrlhYeb7Y2t2drsgqEJ7KsrdR/mNHQk1Njbq1KlTqqmpMY85nU7zb4TT6TSP19TUmH832h8HAAAAAAAAAADAzYVICLhGlZWVXsOc4uJiXbhwoU/n0tjYqMrKSq/BUm5ubo+vquNwOFRdXe3Tua2trbpw4YKqq6tVWVlpjurqatXW1qq2tlYnTpzo1ePFxcVKTU1VQkJCv1xhaPLkybrnnnt0zz33uB3fsGGDBgwYoPr6+l553qKiIi1cuLBXrt2Z3oyE/r5smRmBzI+I6PTckBUrZBiG3tu3z+24vaxMUTt3amZwsEaNG6fAIUM0KCBAT40YoUmzZukfycler5f9ySfmc7eNF6dO1Z6KCm3bvVuvvPqqnnz6afNnTwwb1uljrh7XOq/OAp9lW7dq/N/+piGPP67AIUM07oUX9HZ0dKcrK/kaCaUcPqw3liwx5xr42GMaOXq0Zv397x6/814b5WX/DH3KnAqaP9/8Pe/IPfDPSOiq89xGed9GQi0tLd36jvWm/d+nw4cPm8fb4tKrVxJqbGyU0+lUcXGxTp06ZR4/c+aM7Ha7ysrKuhW7Xs93l7fHWvVdBQAAAAAAAAAAcLMhEgKuQXFxsUcc5HQ6+0WAUlNTo9zcXLf57du3r0fnFh8fr/j4+C5vZDudTu3fv9+Mdawc1dXV+uKLL3rsd9DTwsPDPSKhQ4cOac6cObp8+XKvPGd0dLRuv/32Xrl2Z3ozEkrIzTUjkKdHjuw0dhk1dqxGe9mWrP1qM5NmzdKiqCgt/sc/NDM4WAGDB8swDM0ODfUaCY0YNUojRo1S4GOPmcFP1M6dChg8WIMDA/XUiBFukZC9rEyhq1crdPVqPTt2bKeR0LXOq6PAZ2ZwsAKHDNHLM2dqZnCwxr3wgnn9l4OClFNaes2R0MbUVA15/HEZhqFXZs1SxMaNiti4UVPnzJG/v7/8/f21KCqqDyKhcrfg54VXXvnmd//UU7I7S32LhCo634quNyIhX79j2z+m/YpBbeHo9QarNTU1OnjwoMfKQ125nu8ub4+16rsKAAAAAAAAAADgZkMkBHTTmTNn3AKcgwcP9os46GpXr3R08ODBHrt22w3srm5kHzt2TLGxsZYHQu3HlStXeuz30JO8RUK97WaMhPZUVLjFLtEZGV7PidmzR4ZhKGztWo+fvbZwoQzD0NvR0R4/2/7BBwocMkSGYWj5u+92OIeJM2bIMAyNe+EFPTVihJZs2KDsTz7RnooKxX3wgYY8/rieGDbM62M6ioR6Yl5tgc/IMWP05+eeU3JBgdvPl23ZYv7uXl+06Joioff27TOjJW9zXRsfbz7HOzt29EEo9E3sk150WAEBATIMQ8FLl2pPeVmXkdDeLlYR6u1IyJdY6MKFC7Lb7crIyLju5+5IY2Oj29+5vv6bRyQEAAAAAAAAAADQM4iEgG5qv6VX+21c+qOrg6ae2gbt6hvYHd3I7o+RkMvl6vB1NTc3a9KkSbrrrrt0//33a+TIkXrttdd02223yc/PTydOnFBERIRsNptsNpuysrJkGIZuv/122Ww2FRcXKyEhQX/84x9lGIYeeeQRBQYG6pNPPunweX71q1/ppZdeUnBwsFskFBMTo4EDB5rXbdPa2qrw8HD9+te/1p/+9Cf94Q9/0OrVq9Xa2ipJbvPLzMzU//7v/+qOO+7Qr3/9a7f367Jly/Rf//Vf+s53viM/Pz/5+flp3bp1kqT3339fjzzyiPkannjiCeXm5l7Xe6a93o6EFv/jH2aEMjM42Os5c8PC5O/v7xHJtMU4z/z5zx1eP/jtt2UYhsZ4WYXo6uDHMAyFrFzp+RwhIdcUCV3vvNoCH8Mw9J7D4fWcaXPnyjAM+Q8apMS8vG5HQuP/9jcZhqG/TJzY5e9n5OjRna721DOR0DerCS2OWmeu4JR6qNCnSGiPD3Pri0ios1ho3759ysjIcFtJqDedOXNGGRkZHYZC3r67fP1e8vbYzr6rAAAAAAAAAAAA0D1EQkA3tLS0uG0x1h9XELra4cOHzTl/+OGH+vjjj697dHQDu22kpaWpoKBARUVF+uyzzywPg9pGfn6+YmNjO/xdBQUF6e6771Z5ebkkqbCwUHfeeafHCj/FxcWy2Wz6v//7Px09elS1tbUaOHCgiouL9eyzzyouLs48d82aNbr33nvV1NTU6fMMGDCgw+dpHwnNnTtXP//5z/XVV19Jks6ePasBAwZo2bJlHo8LDAxUeXm5vvzySz388MPy8/Nzu7631TlaWlr0gx/8QHa73Tw2bdo0zZs3r8PfW3f1diSUcviw/AcNkmEYGvL448q+atsse1mZnho+XM9Pnuz18RnHjin96NEOr//Ojh1maJNx7FinEcyggACv19pdXi57WVm3IqGemFdb4ONtm7W2sSElxbzOguXLuxUJxezdaz42YuPGDp9j6aZN5nlbsrJ6NxKqqFDakSI9MWyYDMPQ2rjt3wZAXURC5WU+Xbt9JLQjM1Mff/yx2/u9pKTE/O705fixY8e6/I5tHwu1tLT0WADqiwsXLnS5/Zi37y5fv5e8PZaVhAAAAAAAAAAAAHoGkRDQDTU1NWZw05Mrq/Sm9tuO7dy5s8ubzz054uLi9NVXX1keB/kSCTU2Nur222/XnDlz3I6PGzeuw3gnJibGPHbu3DldunRJVVVVbluanT9/XjabTfn5+df8PG03yy9evKjvfe97ioiIcDsvKChIAwYM8Hjc9u3bzWNRUVG67bbbzBWHJO833qurq2Wz2bRmzRq3Y21BU0/o7UhoT0WFXpw2zYxQ1sTFuf1s/a5dMgxDy7Zu7fI69rIypRw6pB0ffqiE3Fwl5OZqRUyMee2E3NxOI6HzlnvsAAAgAElEQVQ/P/ecz3PuKhLqiXm1BT5B8+d3eO30Y8fM63gLqTqLhMLWrjUfu+q998y5XT3ab2vmbcu3nh6TZs2SYRiaG/aW9xWDrjEQujoSWrtli+Lj493e7+2/E7t7vKvR9r3S13Jzczv9G9hZJNTV9xKREAAAAAAAAAAAQO8hEgK6obGx0W0loRtBcXGxOeesrCw5HI7rHl3duN6xY4cyMzPlcDgsD4N8jYSOHj0qm82m6Ohot+MhISEdxjuHDh3yuE5paanGjRunBx98UH5+fnrooYdks9mUnJx8zc/TdrM8Pz9fNptNP//5z81td/z8/PTAAw/oP/7jP3Tx4sUO55eYmCibzaaGhgbzWEc33ufNm6d/+Zd/0X333ac5c+Z4rHRyvfoiEloZG2tGKC/PnOn2s+nz5mlwYGCHq+3sqahQ1M6d+tuUKQp87DHzOt7Ge/v2dRr8vNDBakXXGgld77zaAp95ixd3OpfAIUPM7cC6Ewm9umBBp/PyNmaHhvZqIPT3ZctkGIYmzZr1zepN5WXaW+4ZBu0t714c5C0S2rJjhxwOh9v7vf13py/H9+7d69NqbcePH5f0Tbza2NjYo5/RzrS0tCgjI8Mt4rlaZ5FQV99LREIAAAAAAAAAAAC9h0gI6KaMjAwzuunsJml/0LYtTNuoqanpkev6cuNa+mYVo+zsbMvjoPbD5XJ5fU0dxTsLFizwaRsw6ZuI7Mc//rHGjx+v5uZmSVJTU5NsNpuSkpKu+3naIqGNGzd2+u/jbX5JSUmy2WxmSCR1fuP99OnTioyM1H//93/rO9/5jtt2ZterLyKhzJISM3QJCAhQ2pEjbsenzJnT4WPfWLLEDFjGPf+8Qlev1srYWK2Oi9PquDgtWL7c50jIl1WBfH1MT8yrs8Cn/Xj8ySdlGIaefPrpbl1j2uuvu60Q1Da3zsa23bt7LRBasmGDDMPQXydNUtbHH7v/vLzcfVzjc7SPhN4vLLzuz0dLS4vP37GNjY3KyMjQvn37+iwUOnz4sDIyMjrd4qyzSKir7yUiIQAAAAAAAAAAgN5DJAR0U/vtu1JSUlRSUmL1lLw6c+aMW9DUk9ujdXXjus2xY8cUGxtreRjUfly+fNnra2rbBmz27Nlux33ZBqxNYWGhbDab0tLSzGNt2421RULX8zxt243NmjXL7bzKykpNnTq10/l5uxm/efNm88Z7a2urGhsbVVdXJ7vd7nb98ePH695771VP6YtI6OpgJWLjRu2pqNDKb7fkitq503vwkZlpPmbq3Llez9mUnt7nkVBPzast8Hl90aJO53KtKwm9FhJizmFrL/7b+jKWbd0qwzA0/m9/U2Zxca89T19EQh19x0rfxKAZGRk6fPjwdT+3Ly5cuNBlcNrTkZC37yoAAAAAAAAAAAB0H5EQcA0OHjzoFgrt27dPp06dsnpakr6JUK6eX0ZGRo/eVPXlxrUkOZ1OxcbGqqqqyvI4qLa2Vl988UWnr2vmzJm6++67VV5eLumb6OcnP/mJz5FQbW2tvv/97+vFF1/UlStXJEnLli1zi4Q6ep4777zTp+d544039KMf/ch8bEtLi0aMGKHw8PBOH+ftZnxWVpZsNpsaGxuVn5+v3/zmNyotLdVPf/pTnT9/3jxvzJgxGjp0aKe/u+7oq0joH8nJZrAy4aWXtKeiQi9Nn64nhg2T3en0+pjXFy0yHxOzd+81xzg9HQn11LzaAp+g+fM7nEf60aPmdf42ZUqH1/AWCYW984752NXbt1sWCK2KjZW/v79GT5ig9E62leuJ0ZuRUFffsW0aGxvV0tJi/veZM2d05syZ655LTU2NSkpKPMLBrvR0JOTtuwoAAAAAAAAAAADdRyQEXKPDhw+7hTgpKSmy2+06deqU283avnLmzBkVFRV5zGnfvn2dbgtzLXy9cd3S0qLS0lLV1dWptrZWJ06c0KeffqpPP/1U1dXVZrzTF8d3795trmrUkebmZr3yyiu666679Mtf/lIvvPCC5s+fr5/97GfmObt27dLAgQNls9k0cOBATZkyxe0amZmZGjhwoO677z75+/srPDxcNptN999/v9atW+fxPL/4xS80cuRIvfbaa7rtttvk5+enEydOKCYmxu15YmJiJH2zisbSpUv1wAMP6OGHH9bDDz+sRYsWqbW11ev87Ha7oqOjdf/998tms+l3v/udDh06ZP77DBkyRL/97W/10EMPKTMzUxcuXNCUKVP04IMPyjAM/eEPf9Do0aN19uzZbr1HOtNXkZC9rExPDBtmRivv5uTIf9AgzXnrrQ4fM33ePPP8lMOHvZ6zLjGxzyOhnppXW+AzesKEDuexftcu8zoLVqzo8BreIqHYvXvNx3a1WtFL06crYPBgbc7M7NF/93d27JD/oEF6duxYpXr5XdnLyjT2r3/V4n/8o99GQr5+x3Zk37595t+A9t//basA1dTUuP2dunDhgs6cOaOysjK3oDQ3N1cpKSk6fPiwz6Gpt+8uX7+XOvre8/ZdBQAAAAAAAAAAgO4jEgKuw6lTp9y29Go/Dh48qFOnTvV4oNOmpaXFDIM6mkNxcbElwdLVWltb1dzcrJycHMXGxio2Nlaff/65vv76a3399dd9cjwhIUGVlZWdzrOurk7Nzc1uxyZNmqRBgwb15q/nltNXkdCeigrNDg01o5URo0aZsVBH58+PiDDP35SW5v2cpUv7PBLqqXm1BT6GYeg9h8PrOVPmzJFhGPIfNEg7P/qoW5HQnooK/WXiRBmGoadGjFD2J594PScxL0/+gwbp6ZEjZS8r67F/7/W7dikgIEDP/PnPSi4o8HqO3ensdP5WR0I9paamRk6n0+1Y+78V7bcMa4uBrj7Otl4AAAAAAAAAAAA3FyIh4Dq1tLTI6XR2GOq0bfeVm5ursrIylZWVmSs5+KJt5YdTp06prKxMBw8elN1u7/C5urvqQ1+qra3VuXPndO7cObd4qbePNzQ0+DS/4OBghYSEmP996tQp/ehHP1J8fPw1vV5415eR0Lt2uxnFGIahZ0aP7vT8mD17zHPHPf+80o8edfv51pwcDQ4M7PNIqKfm1Rb4BAwerD8/95xHSPP25s3mNeYtXtzpNTqKbLa//745l6D58z0ioPSjRzX2+edlGIZWxsT02L/1pvR0DQ4MVMDgwVq2das2pad7HRtTU2+JSMibzlYS8vVvEgAAAAAAAAAAAG5cREJAD2lpaVFlZaXbNi99Oex2u4qLi/tlHHSj2L17tx599FH96U9/kmEY+v3vf69NmzZZPa2bTl9GQnsqKvTM6NFm+PL35cu7PD84MtI8//Enn1TQ/PmaHxGhl2fOlP+gQWbg0ralVtjatYo/cEB7KioUsXGjwtau1aixY2UYhkaOGaOwtWsVtnatojMyPJ7LXlZm/tzbY3aXl1/3vJILCszrDXn8cRmGodmhoRr3wgsKfOwxvRwUpKD58zX2r381Hz9xxgzllJaaz+3tGn+dNElha9dq2ZYtHq8rOiNDjz/5pAzD0J+fe04hK1YoYuNGzQ0P1xNPPfXNVmY+/Fv4OpILChQ4ZIhbENbVuBUjIQAAAAAAAAAAANzaiISAXtDY2KjKykqfVv25npGbmyun09lrW5oBvaGvI6G/L19uhiE7PvzQp8dE7dypF6dO1dAnnpD/oEF6/Mkn9bepU7U2IUGb0tM9gpPVcXHaU+G+nZcvUUr2J590GrLYnc7rntfWnByvc8kuLVXIihUaPWGCAocMUeCQIRr7/PNaummTW5y0p6LC6zXaxqhx47z+DtOOHFHw229rzIQJemzIEAUEBOjpkSM1be5cbe3hf/f39u3rViBEJAQAAAAAAAAAAIBbEZEQ0AcaGxt15swZOZ1OFRcXKzc31+cVh7Kzs5Wbm6vDhw/L6XTq1KlTREG4oeUfO9ankRCD0ZujfSS0PjZWRUVFqqurs/pjBgAAAAAAAAAAAHggEgIsVFBQILvd3umora21eppAjzpRVWVGFSu/XYGHwbhRR/tIaO2WLYqPj1d8fLxycnJUXl6uhoYGqz9yAAAAAAAAAAAAgCQiIcBSREK4FREJMW6msSE93Xw/78rJUVpamhkKtY0DBw7o+PHjamlp6dZnpbvnAwAAAAAAAAAAAJ0hEgIsRCSEW9H5+nozqojYvNnyyIPBuJ6xMi7OfD+fqKqSJNXV1amoqEhJSUkewdDBgwdV9e15XUlLS9Px48d78dMIAAAAAAAAAACAWwmREGAhIiHcqiKio82wIrWoyPLQg8G41tH2Pg6NitL5+nqP9/rp06eVn5/vEQslJSWpqKhIdXV1Xj8jFy9eNM/1JRRqaGjQuXPnzNFebx9nxSMAAAAAAAAAAIAbA5EQYCEiIdyqUhwOM6zYtnev5aEHw/oRMHhwt0fIihWWzjkhL898H/8jIaHT93xLS4uOHz+uAwcOeARDaWlp+vjjj9XQ0GCeX1pa6nZOdXV1h9dubW1VeXm5YmNjzdHU1GSOvjiekZHB3ysAAAAAAAAAAIB+jkgIsBCREG5VR51OthxjuI2E3Nxuj7QjRyydc/utxrJzc31+/zc0NKi8vFzZ2dkewVBOTo6OHz/udeUhb6sOXblyRefPn1d1dbUqKyvNUVtba47ePl5UVKTU1FQlJyf3y1WFJk+erHvuuUf33HOP2/ENGzZowIABqveyAlRPKCoq0sKFC3vl2gAAAAAAAAAAANeCSAiwEJEQblVNly65bTnGakKMG20kHTzY5VZjvqirq1NRUZHS0tI8wqCuQqFjx47pgw8+cAt2rBrV1dUe25D1J+Hh4R6R0KFDhzRnzhxdvny5V54zOjpat99+e69cGwAAAAAAAAAA4FoQCQEWIhLCrSz/2DEzsAjfuFEZxcWWhx8Mhi8ju7RUkTEx5vs3xeHokc9EdXW18vPzlZCQ4FMotHv3bmVlZVkeCLUf/ZW3SKi3EQkBAAAAAAAAAID+hkgIsBCREG51q9qFFpExMcouLbU8AGEwuhprEhP/uV1edLSaLl3qsc9Ea2trlysK7dixQ6dOnbrhIqHm5mZNmjRJd911l+6//36NHDlSr732mm677Tb5+fnpxIkTioiIkM1mk81mU1ZWlgzD0O233y6bzabi4mIlJCToj3/8owzD0COPPKLAwEB98sknHT7Pr371K7300ksKDg52i4RiYmI0cOBA87rtf//h4eH69a9/rT/96U/6wx/+oNWrV6u1tVWS3OaXmZmp//3f/9Udd9yhX//61zp8+LB5nWXLlum//uu/9J3vfEd+fn7y8/PTunXrJEnvv/++HnnkEfM1PPHEE8rtxnZ1AAAAAAAAAAAA14pICLAQkRBudWdraty2HSMUYvT3EbVrl9s2Y0edzh79TJw+fbrLSKhtpKWl6cSJE5aHQW0jKytLu3fv7vC1BQUF6e6771Z5ebkkqbCwUHfeeafHCj/FxcWy2Wz6v//7Px09elS1tbUaOHCgiouL9eyzzyouLs48d82aNbr33nvV1NTU6fMMGDCgw+dpHwnNnTtXP//5z/XVV19Jks6ePasBAwZo2bJlHo8LDAxUeXm5vvzySz388MPy8/Nzu763lYRaWlr0gx/8QHa73Tw2bdo0zZs3r8PfGwAAAAAAAAAAQE8hEgIsRCQESEedTrfoIjImRqlFRZbHIAxG+5FdWqqVcXFu79X3Cwt7/POwd+/eLuOgtu3IEhISLA+DfI2EGhsbdfvtt2vOnDlux8eNG9dhvBMTE2MeO3funC5duqSqqipduXLFPH7+/HnZbDbl5+df8/O0RUIXL17U9773PUVERLidFxQUpAEDBng8bvv27eaxqKgo3XbbbeaKQ5L3SKi6ulo2m01r1qxxO9YWNAEAAAAAAAAAAPQmIiHAQkRCwDeuDoXCN27UlpwcVhVi9Iuxff9+RWze7PYeTXE4evxz0NLSovj4eDkcDjkcDhUVFamkpESnT59WdXW1GhoazHPr6up0/Phxy8MgXyOho0ePymazKTo62u14SEhIh/HOoUOHPK5TWlqqcePG6cEHH5Sfn58eeugh2Ww2JScnX/PztEVC+fn5stls+vnPf25uEebn56cHHnhA//Ef/6GLFy92OL/ExETZbDa3fyNvkZAkzZs3T//yL/+i++67T3PmzNHHH3/s9XcGAAAAAAAAAADQ04iEAAsRCQH/dNTpdNt6LDQqShGbN2tjRoaSCgosD0UYt9ZILSrSlpwcjzgoNCpK+ceOWf1xkSQdOnRIubm5lsdB7UdHOop3FixY4NM2YNI3qwT9+Mc/1vjx49Xc3CxJampqks1mU1JS0nU/T1sktHHjxk5/797ml5SUJJvNZoZEUseRkPTNtnKRkZH67//+b33nO99x284MAAAAAAAAAACgtxAJARYiEgLcna2p0aqYGI8oo300tDIujsHotRHZyftvVUyMnMePW/0xMe3evVtZWVmWh0G+REJt24DNnj3b7bgv24C1KSwslM1mU1pamnmsbbuxtkjoep6nbbuxWbNmuZ1XWVmpqVOndjo/b5HQ5s2bzUiotbVVjY2Nqqurk91ud7v++PHjde+99woAAAAAAAAAAKC3EQkBFiISArw76nR2GgsxGH05IqKj9X5hoZouXbL6o+Hm2LFjio2NVXV1teVxUHV1tc6ePdvpfGfOnKm7775b5eXlkr6Jfn7yk5/4HAnV1tbq+9//vl588UVduXJFkrRs2TK3SKij57nzzjt9ep433nhDP/rRj8zHtrS0aMSIEQoPD+/0cd4ioaysLNlsNjU2Nio/P1+/+c1vVFpaqp/+9Kc6f/68ed6YMWM0dOjQTn93AAAAAAAAAAAAPYFICLAQkRDQOefx48rOzSUYYvT5iIiOVorDIefx4/0uDmrT0NCgkydPqq6uTrW1tTpx4oQ+/fRTffrpp27hUG8fr6ysVGpqqhISEtTS0tLhfJubm/XKK6/orrvu0i9/+Uu98MILmj9/vn72s5+Z5+zatUsDBw6UzWbTwIEDNWXKFLdrZGZmauDAgbrvvvvk7++v8PBw2Ww23X///Vq3bp3H8/ziF7/QyJEj9dprr+m2226Tn5+fTpw4oZiYGLfniYmJkfTNij9Lly7VAw88oIcfflgPP/ywFi1apNbWVq/zs9vtio6O1v333y+bzabf/e53OnTokKRvAqMhQ4bot7/9rR566CFlZmbqwoULmjJlih588EEZhqE//OEPGj16dJeBFQAAAAAAAAAAQE8gEgIs9P777ys0NFTz5s3Tpk2bzDAoIiJC06ZNIxICrnK+vl4nqqoYvTyOfvKJElNSfB77cnMtn3NPjbM1NVa/zbvtypUr+vrrr5WTk6PY2FjFxsbq888/19dff91nxxMSElRZWdnpPOvq6tTc3Ox2bNKkSRo0aFBv/noAAAAAAAAAAADwLSIhwEJhYWFasWKF1q9fr5CQEEVERCgnJ0d2u11TpkwhEgJgmf3793e50hmrnvUvtbW1OnfunM6dO+e2ok9vH29oaPBpfsHBwQoJCTH/+9SpU/rRj36k+Pj4a3q9AAAAAAAAAAAA6B4iIcBCy5cvd7vJvmnTJi1dupRICIDlqqqquhUJFRYWWj1l9HO7d+/Wo48+qj/96U8yDEO///3vtWnTJqunBQAAAAAAAAAAcMsgEgIsdHUkZLfbtXnzZkVGRhIJAbBcQUFBt0Khqqoqq6cMAAAAAAAAAAAAoANEQoCFlixZ4rbFWNvYsGGDXnzxRSIhAJaqra3tViS0f/9+q6cMAAAAAAAAAAAAoANEQoCFPvjgA8XHx3u92Z6QkEAkBMByJSUlPgVCO3fuVFZWliorK62eMgAAAAAAAAAAAAAviIQAC129lU9OTo6SkpKUmZlpHiMSAmClpqYmORyODuOguLg4paWlKT4+XqtXr5bD4ZDL5bJ62gAAAAAAAAAAAACuQiQEWCglJUVz5sxReHi40tPTNXv2bL344ouaNGmS3n33XSIhAP1CZWVlh5FQcnKywsPDFRISoldeeUWpqakqKSmxesoAAAAAAAAAAAAArkIkBFhowYIF2rx5s1atWqXXX39dmzZtUk5OjhITE/Xmm28SCQHoF1wul9fVhNLT0/X2229r4sSJCg0N1Y4dO7RixQrZ7XbV19dbPW0AAAAAAAAAAAAA7RAJARZauXKlebM9ODjY7eZ7REQEkRCAfqOqqsr8fsrOzta6des0ZcoUvfnmm9q+fbvCw8PNbRPtdrsKCwutnjIAAAAAAAAAAACAdoiEAAu9/fbb5k337du3u0VCYWFhREIA+pW8vDzFxcVp1qxZevXVV7Vt2zbzOysqKkoxMTFu32N8fwEAAAAAAAAAAAD9B5EQYKG3335bS5cudbupnpmZqbfeekshISHcZAfQr9TW1io5OVnBwcEKDQ31GG+88Ybb99n+/futnjIAAAAAAAAAAACAbxEJARYqKChwu6Heto1PYmKi0tLSiIQA9DtHjhzx+N5q22YsOzvb4/jJkyetnjIAAAAAAAAAAAAAEQkBlvIWCV09iIQA9CdNTU0dfl8lJSXp7bff1pIlS5SYmCi73S6HwyGXy2X1tAEAAAAAAAAAAIBbHpEQYKGCggJt3bpVcXFxbjfaY2NjFRsbSyQEoF9yOp0egdD27ds1adIkLVy4UBs3blRYWJgSEhJkt9tVWVlp9ZQBAAAAAAAAAACAWx6REGChgoICJSQkKCgoSNu3b5fdbte2bds0c+ZM7dy5k0gIQL/kcrnkcDjcIqEFCxZo/fr1blsnhoeHm//d1NRk9bQBAAAAAAAAAACAWxqREGChtu3GduzYoaCgIK1atUozZ85UUlIS240B6NdOnjyp6OhorVq1Sna7XaGhocrOzja/u3bs2KHg4GDzv48cOWL1lAEAAAAAAAAAAIBbGpEQYKG2SMhut+udd97Riy++qA0bNritzkEkBKC/WrVqlWJiYsztxlatWqWUlBRFRUVp8uTJ2rJlC99nAAAAAAAAAAAAQD9BJARYqC0S2rx5s2bNmmVuNbZt2zZuqgPo9z777DMtWbLE/L7atGmTJk6cqIkTJ2rdunXm8ZSUFNntduXl5Vk9ZQAAAAAAAAAAAOCWRSQEWKigoECbN2/Wq6++at5ET0pKcguFiIQA9GdJSUkKDg7W7Nmz9corrygsLEw7d+50W0Fo1qxZSktLk91uV1VVldVTBgAAAAAAAAAAAG5JREKAhQoKCrRz506lpqa63VBPTk5WcnIykRCAfq++vl52u10ZGRnKyclx+y6z2+3atWuX5syZY/73/v375XK5rJ42AAAAAAAAAAAAcMshEgIs1LbdWGeDSAhAf1dSUmJ+Z2VkZGjhwoVav369du3apaioKC1fvtzte62ystLqKQMAAAAAAAAAAAC3HCIhwEJXR0LZ2dmKj483tx4jEgJwI3C5XHI4HOb3WExMjCIjIzV79mxNmjRJCxcuVExMjLKysmS32+VwONTU1GT1tAEAAAAAAAAAAIBbCpEQYKHk5GRNmzZN06ZN0/bt2zV//nxNmTJFEydO1IYNG4iEANwwKisrPVZCy8nJ0YwZM7RhwwaFhYUpKChI77zzjux2u0pKSqyeMgAAAAAAAAAAAHBLIRICLPTWW28pISFB7777rl577TXFxcXJbrcrJSVFb775JpEQgBuGy+XS/v373SKh7du3a8GCBW7HMjIyWCkNAAAAAAAAAAAAsACREGChVatWmTfLw8LC3G6kR0REcBMdwA2lqqrK7Xts+fLlioqK8lhhqG0UFhZaPWUAAAAAAAAAAADglkEkBFgoNDTUXEno1f/P3v0HRX3feRynczPt3dxMb6bT6dzkbqbX67V3N53JXO96da7T613nvgokxmiMmvojTU1qExJ/gYjxFxVEAihCEBEliIqAoIDLz+WTZI0IVkHFQJslyTbCHTGhBgONJWEbX/dHwreu/BAE/Qo8HzPvmeTrsvvZZXf/4TmfT2SkCgsLZYxRWVmZoqOjiYQATDgNDQ12BJSdnS2XyzXoMWRut1vGGHV2djq9ZAAAAAAAAAAAAGBKIBICHHT06FEtX75ckZGROnr0qFauXKnly5crLCxM2dnZREIAJpyurq4hdw4yxqiwsFDPP/+8vZNabW2t00sGAAAAAAAAAAAApgQiIcBBN+64YYxRZWWlCgoKAnbeIBICMNG0tLQMGQmVlZXJ5XJp1apVKisrkzFGPp/P6SUDAAAAAAAAAAAAkx6REOCgmyOhwYZICMBE09vba3+Hud1u5eTkaM+ePTp06JAqKipkjNHu3buVkJAgY4w8Ho/8fr/TywYAAAAAAAAAAAAmNSIhwEGvvfaatm7dqg0bNtjHixljlJSUpJUrVxIJAZiwfD6fjDGKjY3VqlWrtGPHDr344ovatm2btm7dqtTUVD377LM6duyYjDFqaWlxeskAAAAAAAAAAADApEYkBDho27ZtSk1N1b59+xQTE6OkpCTV1NTIGKPly5cTCQGYsPx+v9xutyIiIlRZWTlgl7SioiLt2rVLhw4dsq/19vY6vWwAAAAAAAAAAABg0iISAhyUkpIS8Efz7Oxsbd++nUgIwKTQ3t6u+Pj4Wx6r2D+NjY1OLxkAAAAAAAAAAACYtIiEAAfdHAkZY5STk6Pk5GQiIQCTwt69e3Xw4EG5XC653e6A77uqqiqlpaUpKSnJPnaM7zwAAAAAAAAAAADgziASAhyUmJgYcMRY/2RlZWnZsmX8wRzAhPfBBx8oISFBGzduVHl5ecB33YYNGxQVFaVdu3YpOjpax44dU21trdNLBgAAAAAAAAAAACYlIiHAQSdPnlRhYeGgx+4UFRURCQGYFBoaGuzvNrfbrYKCAlVWVmrt2rX27kLV1dVKSEiQMUYdHR1OLxkAAAAAAAAAAACYdIiEAAfd+IfzoYZICMBE19vbawdCa9euVWRkpKKjoxUXFxfwfQvHfqwAACAASURBVBcTE6OKigp5PB75/X6nlw0AAAAAAAAAAABMKkRCgIMaGhp08OBBHTlyJOAP5Xl5ecrLyyMSAjBpeL1eFRYWKjo62j5iMSEhQVVVVTLG6NixY1q7dq1cLpeMMfL5fE4vGQAAAAAAAAAAAJhUiIQABzU0NKioqEjh4eEqKCiQMUa5ubmKiIhQcXExkRCAScPv98vtdisxMXHQXdOqq6vldrvtSMgYo97eXqeXDQAAAAAAAAAAAEwaREKAg/qPGzt69KjCw8OVlpamiIgIlZSUcNwYgEmnra1Nu3btUmZmpr1b2s2zZs0alZeXyxijpqYmp5cMAAAAAAAAAAAATBpEQoCD+iMhY4wyMjK0bNkyZWVlBfzBnEgIwGRy8uRJ7dixQ7t27RoQCB0/flzr1q3jOxAAAAAAAAAAAAC4A4iEAAf1R0I5OTlas2aNfdRYbm4ufyAHMCl1dnba32+VlZWKjY3Vvn37dPz4cWVmZiolJSUgEmpsbHR6yQAAAAAAAAAAAMCkQCQEOKihoUE5OTmKjIyUy+WSMUYlJSUBoRCREIDJpj+QdLvdOnz4sJKTkxUVFaWwsDDFxsbq8OHDqq6utkOhjo4Op5cMAAAAAAAAAAAATHhEQoCDGhoaVFxcrLKysoCdM0pLS1VaWkokBGBS6unpGXDUWE1NjVavXq2srCxt27ZN4eHhysjIkDFGtbW18vv9Ti8bAAAAAAAAAAAAmNCIhAAH9e+mMdwQCQGYjFpaWgK+6woKCrRly5aAa5WVlfZ/+3w+p5cMAAAAAAAAAAAATGhEQoCDbo6E3G63CgsL7aPHiIQATFZ+v18ej8f+rktJSVFmZuaQwaTH41Fvb6/TywYAAAAAAAAAAAAmLCIhwEGlpaVauXKlVq5cqYKCAm3atEnLly/X008/raysLCIhAJOaz+ezI6Ds7OyAQHKwaWlpcXrJAAAAAAAAAAAAwIRFJAQ4KC4uTkVFRTp06JDWrl2rI0eOyBgjl8ulzZs3EwkBmNT8fr9qa2sHDYIqKyu1b98+paenB8RDPT09Ti8bAAAAAAAAAAAAmJCIhAAHpaWl2X/43rZtW8AfyJOSkoiEAEx6HR0dAwIhl8uliIgIRUZGKjk5WdHR0SouLpYxRo2NjU4vGQAAAAAAAAAAAJiQiIQAB23dutXeSSgyMlKFhYUyxqisrEzR0dFEQgCmhIaGhoBIaOfOnYqPj1dNTY2MMaqurlZCQoL9752dnU4vGQAAAAAAAAAAAJhwiIQABx09elTLly9XZGSkjh49qpUrV2r58uUKCwtTdnY2kRCAKaGrq0uVlZWqqqqSMUaJiYk6fvx4QDi0efNm+99ra2udXjIAAAAAAAAAAAAw4RAJAQ66efeMyspKFRQUyOVy2deIhABMBS+99JJSUlJkjFF+fr4yMzPt78H8/HytX79eFRUV9jWfz+f0kgEAAAAAAAAAAIAJhUgIcNDNkdBgQyQEYCro7u5WeHi4vYPQzp07lZycLGOM3G63/Z3YH1F6PB75/X6nlw0AAAAAAAAAAABMGERCgINee+01bd26VRs2bLCPFzPGKCkpSStXriQSAjCllJaWKjY2VmlpaUpMTAzYVa1/1qxZo/Lychlj5PV6nV4yAAAAAAAAAAAAMGEQCQEO2rZtm1JTU7Vv3z7FxMQoKSlJNTU1MsZo+fLlREIAppS+vj4lJSWpqKho0J3Vjh8/rnXr1gVc6+3tdXrZAAAAAAAAAAAAwIRAJAQ4KCUlJeCP3dnZ2dq+fTuREIApq6Ojw/5OrKysVGxsrPbt26fjx48rMzNzwPdmY2Oj00sGAAAAAAAAAAAAJgQiIcBBN/+x2xijnJwcJScnEwkBmLJqa2tljJHb7dbhw4eVnJysqKgohYWFKTY2VocPH1Z1dbX9vcn3JAAAAAAAAAAAAHBrREKAgxITEwOOGOufrKwsLVu2jD9+A5iSurq6BgSUNTU1Wr16tbKysrRt2zaFh4crIyNDxhidPn3a6SUDAAAAAAAAAAAA9zwiIcBBJ0+eVGFh4YA/hhtjVFRURCQEYMpqaGgI+E4sKCjQli1bAq5VVlba/93R0eH0kgEAAAAAAAAAAIB7GpEQ4KCb/wg+2BAJAZiKent7A74LU1JSlJmZOeR3pcfjkd/vd3rZAAAAAAAAAAAAwD2LSAhwUENDgw4ePKgjR44E/LE7Ly9PeXl5REIApjSv12t/L2ZnZ8vlcgXsIrRv3z6lp6fb130+n9NLBgAAAAAAAAAAAO5ZREKAgxoaGlRUVKTw8HAVFBTIGKPc3FxFRESouLiYSAjAlOb3++XxeAbsGuRyuRQREaHIyEglJycrOjra/s7s7e11etkAAAAAAAAAAADAPYlICHBQ/3FjR48eVXh4uNLS0hQREaGSkhKOGwMAST6fb0AktHPnTsXHx6umpkbGGFVXVyshIUHGGLW0tDi9ZAAAAAAAAAAAAOCeRCQEOKg/EjLGKCMjQ8uWLVNWVlbAH8OJhABMdbW1taqsrFRVVZWMMUpMTNTx48cDvis3b95s/zvfmwAAAAAAAAAAAMBAREKAg/ojoZycHK1Zs8Y+aiw3N5dICAA+19nZqRdffFEpKSkyxig/P1+ZmZn292R+fr7Wr1+viooKGWPU2Njo9JIBAAAAAAAAAACAew6REOCghoYG5eTkKDIyUi6XS8YYlZSUBIRCREIAIJ0+fVrh4eH2DkI7d+5UcnKyjDFyu90DjiTr6OhweskAAAAAAAAAAADAPYVICHBQQ0ODiouLVVZWFvDH7dLSUpWWlhIJAcDnenp6tG/fPsXGxiotLU2JiYl2XDnY1NbWyu/3O71sAAAAAAAAAAAA4J5BJASMQWhoqIKDg2VZlmbMmKHQ0FCFhoZqxowZWrRokV544QV1dnYO+fP9x40NNbGxsQoNDZVlWdq8efNdfGYAcO9pbm5WQkKCioqKhv3u7B+fz+f0kgEAAAAAAAAAAIB7BpEQMEavvvqqLMtSYWGhfe0Pf/iDqqurFRwcrEcffVRXr14d9GcbGhqUl5enQ4cODXpcTv9OQnPmzCESAjDl9fb2yuPxjCgQMsbI4/GwmxAAAAAAAAAAAADwOSIhYIwGi4T6JSYmyrIsFRQUDPqze/bs0apVqxQeHq5NmzappqaGSAgAhuHz+UYcCRlj1NLS4vSSAQAAAAAAAAAAgHsCkRAwRsNFQqWlpbIsS9u3bx/0Z+Pj4+0wKDk5WYcPH5YxRhUVFcrPzycSAoCb+P1+1dbWjioU6unpcXrZAAAAAAAAAAAAgOOIhIAxGkkklJWVNeDfPvjgAy1dulSzZs3SzJkz9eijj2rp0qVKSUlRdna2wsPDh4yEDh48qNDQUFmWpfT0dPv6jh07FBISIsuyVFFRcWeeMAA4rKOjY1SRUGNjo9NLBgAAAAAAAAAAABxHJASM0a2OG5s+fbrefvvtgOsffvihFi1apLlz5+rFF1+UMUbZ2dmaNWuWli1bppqaGnuHoaF2Evr9738/IBKSpN/85jdEQgAmvdOnT48qFOrs7HR6yQAAAAAAAAAAAICjiISAMRosEvroo49UXV2tp59+WvX19QN+ZufOnfbPHDlyxP4jdlxcnCzL0p49e+xrREIAMFBXV9eoIqGmpianlwwAAAAAAAAAAAA4ikgIGKP+SGjGjBkKDQ1VcHCwLMvSrFmzBg11rl+/rjlz5mjhwoVqaGgI+CN2dna2LMtSZGQkkRCAUfO+dUnuV+p1IL9MB/LLlJCao5jEvQwz7pOQmmO/z45XnpD3rUtOv/0BAAAAAAAAAABwC0RCwBjdvJPQp59+qqamJs2ePVuWZamhoSHg9t3d3bIsS5ZlKSQkRMHBwQEzffp0/eIXvyASAjAiVz/s0fHKEwRBzD0xxytP6OqHPU5/LAAAAAAAAAAAADAIIiFgjAY7bkySqqurZVmWli9fHnC9PxJ66qmnBuwkNNiMNhJqaWkhEgKmgN6PP9FrdeeIg5h7co5XnlDvx584/TEBAAAAAAAAAADADYiEgDEaKhL69NNP9bOf/UyWZam5udm+3n/c2Jw5cwaNhHJzc1VUVHTLSOgPf/iDLMtSampqwPVTp04RCQGTXO/Hnygz59iAMCMh9aD25lapsOxXOlZ9TlW1rTL1PoYZ96mqbdWx6nM6Vn1Oe3OrtH1X3oD3Y+qePF1+/4rTHxcAAAAAAAAAAAB8jkgIGKOhIiFJeuWVV2RZ1oDAJzU1VZZl6ciRIwGBUEVFhR544AHt3r37lpGQJM2aNUsbNmwIuJaRkUEkBExil9+/MmD3oJTMQh2rPud4OMJM7TlWfU4pmYU3hWs58r75jtMfGwAAAAAAAAAAAIhICBiz4SKhTz/9VE888YQsy1J7e7t9vbu7W4sXL9aSJUvsUKi0tFRPP/20li5dKrfbPaJIaNu2bQoNDdX58+fV19en06dPa9WqVURCwCQ1WCB0sMjjeBzCMDdOYdmvFLfjpYD3KTsKAQAAAAAAAAAAOI9ICBiD0NBQBQcHy7IszZgxQ6GhoTpz5kzAbYwx9r/PnDnTvn716lVt2LBBs2fP1qxZszRv3jxt3LhRZWVldiAUGxur0NBQWZal6dOnKzQ0VG+88YZ9Hz09Pdq2bZseeeQRzZkzRy+++KIuXrxoP96CBQvu2msB4M66+YixuB0vqdRcdDwIYZjBptRcVELqwYAdha5+2OP0xwgAAAAAAAAAAGBKIxICHNTQ0BBw3Nhg09XV5fQyAdwDDuSXEQgxE2qqalsDdhTKzDnm9McIAAAAAAAAAABgSiMSAhxEJARgJC61vxtwdFNh2a8cD0AYZiRTai4GhEJNza1Of5wAAAAAAAAAAACmLCIhwEFEQgBG4sZjxnbvdzkefjDMaCY739jv39Q9eer9+BOnP1IAAAAAAAAAAABTEpEQ4CAiIQC34n3znYBjxqpqWx2PPpipOG9/PqP/2araViWkHmQ3IQAAAAAAAAAAAIcRCQEOIhICcCulFR47rtibW3UPxCLMVJmX696SOfXmoPNy3VsydSOPhg4W/el9XFDsdvpjBQAAAAAAAAAAMCURCQEOIhICcCupe/LsuOJY9TnHwxFmCswwcdCAqXtrRPdZ/mqL/T6OSdzr9McKAAAAAAAAAABgSiISAhxEJARgOFc/7Ak4aszxeISZ/DNYIFT3ll6u9+nlYf59JPe9fdefgrdL7e86/fECAAAAAAAAAACYcoiEgLvoypUrunLlinw+n1pbW2WMUXl5+bBz8eJFtba26vLly7py5Yr6+vqcfhoA7pJL7e/aUUVKZqHzAQkzuafu7SF3Cxo2EhphKJSSWUgkBAAAAAAAAAAA4CAiIeAOuXbtmtrb23XhwgWdOHFCLpdr3MYYo7Nnz6q1tVXd3d1OP1UAdwiREHM35+W6oY8Uu1Uk9HLdm7e8/+x8Y7+fT5xqdPrjBQAAAAAAAAAAMOUQCQHj6Nq1a/L5fOMeBY0kGmppaSEYAiaZXzW8bkcVe3OrHI9ImEk8Q+0iNNKdhE69KVP/9rCPQSQEAAAAAAAAAADgLCIhYBx0d3frwoULt4x5Tpw4obq6OjU3N8vr9aq9vd0+gmyo8Xq98nq9qqurU11d3YiCofb2dqdfEgDj4MSpRjuqyM43zockk2CeWb5GwcEhsixLcUkZjq/nXpmXB4l/Yl9IU3DIZ6/VM8+tuXUkdIvdhIiEAAAAAAAAAAAAnEUkBIxBd3f3sOHO2bNn5fV6deXKlXF/3Pb2dp0/f17GmCFjocuXL4/r447Fe++9p7y8PHveffdd+f1++f1+GWPu6HWPx6OTJ0+qq6vL6ZcBGJUTpxq1KW6XLMvSsyujHA9J7taUvdIsy7IUtXHbHbn/w8UniYRunrqBuwb1z8yHHrYjocHG1N+wC9Ewj0EkBAAAAAAAAAAA4CwiIeA2Xb58WZWVlYOGQe3t7err67tra+nu7lZzc/Og62lpaRn3xzt79qw++uijEd32+vXr6unpUUdHh86cOWNPR0eHurq61NXVpebm5jt6/cKFCyouLlZRUdGI1303Pffcc/r617+ur3/96wHXs7KydN9996mnp+eOPO6FCxcUGxt7R+4b44NIiEjors0gR4sRCQEAAAAAAAAAAEwuRELAbfD5fANinPPnz+vatWuOrquvr08+n2/A7kInTpwY18cpLCxUYWHhLWOh//3f/9WFCxfsWMfJ6ezs1DvvvDOur8N4io+PHxAJnTt3TuvWrdMf//jHO/KY+/fv15e+9KU7ct8YH0RCREJ3bdhJCAAAAAAAAAAAYNIjEgJGqbu7e0CA093d7fSyAvT19am5uTlgnV6vd9zuvz8SulUs9PrrrysvL8/xQOjG+fTTT8ftdRhPg0VCdxqR0L1v2wvbNWPGDFmWpenTpys4JETBISFa83yMUvcUyLIsWZalhYufUFHFGf386ZUKfeBBWZal8LXR+mVcqoJDQgYEN+FRv1Rw8GfXk17Msa/ffJ9Hyur15LLnFBr6gOYtWKjtaQcGjT9Kay4oYt0WzXlknmY9PEePzvuJwlZEalfWUfs2xyob9PymF7TgJ0v08OxHNOeRefrFs+E6XHwy4L5iE9LtNU+fMSPgOfffpsR9XuFRv9Ssh+do5sxZmjf/J9ocm6yqk95BgqDX9OSy5xQSEqpZD89W5POxOlD48m1FQmN6faJ+ab8+c+c9pk0xyao48Zsh73uw3+eAx3fV64mlTyskJFQ/WfRT7TtULlPvU/KuQ3pk7nw9OPMhha2I1HHTFLCewX4XTz+7WoePef4U+9wwN0ZCpu6tQW/zWWBEJAQAAAAAAAAAAHAvIxICRunEiRN3bIee8dbe3h4QCo1XzHRzJDRULHQvRkJ+v3/I5/Xxxx8rLCxMX/nKV/Ttb39b8+fP19q1a/XFL35R06ZN06VLl5SUlKSgoCAFBQWpurpalmXpS1/6koKCgtTc3KyioiL953/+pyzL0o9+9COFhobqN7/5zZCP88///M/6xS9+oejo6IBI6PDhw7r//vvt++13/fp1xcfH67vf/a5+/OMf6wc/+IF27dql69evS1LA+qqqqvTf//3f+ou/+At997vf1fnz5+372blzp/7+7/9eX/jCFzRt2jRNmzZNe/bskSS99tpr+tGPfmQ/h1mzZqmurm5M7xncnuF2EjpumrQ/3635CxZp/mOL9fgTy5SYkq09OaVauPhnCl8bLVM/9K48B46YAZFQwH0uWKQnlj6tHbsOafdLx/T4z5bJsixl57sHrGPuowu0+PEndayqQabep6KKM1r8+JMKfeBB+3Y7dh3SzJmzdKDwZZl6n8pfbdHqyM0KDg5RfmltwH0Ot5NQ/+M98eTTKq4+93l84tash2drWdgq1dS9bd+2sOy0Hpz5kObOe0wv5VWpuLpRiSnZ+unnz2W0kdBYXp8lT/xcxdWNdrg0e86jemLp03LXvjni3+fNj7/0588qJSNPafsK9ei8nyg09AHt2HVIYcsjlbG/RLEvpGv6jBlaEb4+YE3D/i6KXxtDJPQWkRAAAAAAAAAAAMA9jEgIGIW+vr6A6Kavr8/pJd1SXV2dvd76+nr9+te/HvMMFQn1T01NjS5cuKCzZ8/q7NmzjodB/dPc3CxjzJCvVXh4uL72ta/pzTfflCQ1Njbqy1/+8oAdfpqbmxUUFKT/+Z//0cWLF9XV1aX7779fzc3NWrBggY4cOWLfNj09Xd/4xjfU29s77OPcd999Qz7OjZHQ888/r29961v64IMPJEnvvfee7rvvPu3cuXPAz4WGhurNN9/U7373O/3whz/UtGnTAu5/sJ2E+vr69Fd/9VcBr9PKlSu1YcOGIV833DkjOW5s0eNLZVmW9h502df2HizTCzuzRh0J3Xyf+28IXvqP6FofnRBw24h1W2RZlnKPnRhw/zdGQnv2lyouaU/AbapOehUSEqrI52NHHAn1P94RV33A9bikDFmWpT37S+1rK8LXy7IsvZRXFXDbqI1xYzpu7HZenwNHTMD1xJRsWZalF5L3jer3eeNt+iMfU+9Typ58WZaleQsWyn3qT7HOL8JWKzgkJCCeGvZ3sS7m9iOhW7xuREIAAAAAAAAAAADOIhICRuHKlSt2cDNRdla5cTeh4uLiWwY+4z0ffPCB43FQ/5w5c0Z5eXmDvk7Xrl3Tl770Ja1bty7g+pIlS4aMdw4fPmxfe//99/XJJ5+oo6Mj4EizDz/8UEFBQTpz5sxtP05/JPT73/9ef/7nf66kpKSA24WHh+u+++4b8HMFBQX2tczMTH3xi1+0dxySBo+EOjs7FRQUpPT09IBr/UET7q6RRkIPznxoyDDjdiOhmQ89HHDNfeotWZalFeEb7Gs1dW9r5kMP6+HZjwy4D/ept+zjr4abeQsWaunPnx3Rmvsf75G58wcJUNyyLMsOjmrq3tYDD84c8DxMvU+ZB46PORIazesz2BpKqs/Jsiw9sfTpUf0++2/z0KzZAddyj3lkWZbWbogLuL4+OlGWZam0pmnY+7R/F0+F3V4kdItdhIiEAAAAAAAAAAAAnEckBIxCd3e3HdwMtyPNvaS5udlec3V1tTwez5jnVmFQUVGRysvL9eqrrzoeBo00Erp48aKCgoK0f//+gOsxMTFDxjvnzp0bcD9vvPGGlixZou9973uaNm2avv/97ysoKEilpaW3/Tj9kdCZM2cUFBSkb33rW/YRYdOmTdN3vvMd/e3f/q1+//vfD7m+Y8eOKSgoKOA4uMEiIUnasGGD/uzP/kzf/OY3tW7dOv36178e9DXDnTfSSOixhUvGPRIa7D6DQ0L03Ko/rcP18kVZlqVFS5beMhCpfO0NxSbs1sLFT+jBmQ8pOCREwSEhsixLS574+YjW3P94lmXZP3/jTJ8xQ78IWy1T/9nxXZZl6bGFjw9YS+6xE2OOhEbz+gy2BveptzR9+nQ9PGfuqH6fQ90m//gpWZalLfEvBlyPjkuRZVkqqjgzwt/FU6OPhOpuvYsQkRAAAAAAAAAAAIDziISAUaqsrLSjm/b2dqeXM6zu7u6A9V65cmVc7neoOKikpEQtLS32MWzvv/++zp0753gc1D8dHR169913B31OQ8U7W7ZsGdExYNJnuwT99V//tR5//HF9/PHHkqTe3l4FBQWppKRkzI/THwm99NJLw/5+BltfSUmJgoKC7JBIGjoSkqT/+7//U3Jysv7lX/5FX/jCFwKOM8PdM9JIaOHiJ0YdCe0vcA8bCQ12n6OJYG6esOWRsixLiSnZKn+1xb4+f8GiUUdCI3m8P0VCA4Ob8YiERvf6DFzDcJHQcL/PoW7THwnFJqTfMhK65e/iphDos0go4rMYqG70OwgRCQEAAAAAAAAAANwbiISAUfJ6vXZ043K55PP5nF7SoLq7u3XixAl7nSdOnBi3+75VHNTv9ddfV15enuNx0I3zxz/+cdDn1H8MWFRUVMD1kRwD1q+xsVFBQUEqLy+3r/UfN9YfCY3lcfqPG1uzZk3A7Xw+n1asWDHs+gaLhHJycuxI6Pr167p27ZquXr06YJesxx9/XN/4xjeEu288IqEKz68DjuHqn/SXjo45EhruOK2aurd1rKpBVSe9Knv1s+hnyU+fGnC70URCwz1ef/xTVP4r+7YPPDhTM2fOGnC78ThubKyvT/9xYz978pm7GgmN+HdR97YdBNmR0M27B9W9ParXjUgIAAAAAAAAAADAWURCwG24Mb5xuVyqq6vTtWvXnF6WJKmvr0+tra0B63O5XOru7h63x7hVHNSvPxLq7Ox0PA7q6upSZ2fnsM8rIiJCX/va1/Tmm29K+iz6+Zu/+ZsRR0JdXV36y7/8Sy1btkyffvqpJGnnzp0BkdBQj/PlL395RI+zceNGffWrX7V/tq+vT48++qji4+OH/bnBIqHq6moFBQXp2rVrOnPmjP71X/9Vb7zxhv7u7/5OH374oX27RYsWaebMmcO+drgzTpxq1C9fyJBlWXrmuUiZep9Ka5q0blO8qk56RxyVPPDgTPsYrv55ftMLY46ETL1PEeu2yLIsHThiAq5n5VYoJCRUZa82q+o1r6bPmKFFjwceS1Z10qvQBx4cEAlVnfQGhE03PufI52NlWZZeyqsK+JkKz6/1wIMztfulY/a1FeHrB71t1Ia4uxIJ3fj6ZOe7A64npmTLsiy9sDPrrkZCo/1dmHrfDTsJvSVT/6cw6MW9R3Sw6JUBtx/qenTci4rc8AKREAAAAAAAAAAAgEOIhIDb0NfXp7q6ugEhztmzZ3X58mVH1nTt2jW1trYGHC/mcrlUWVk5bseM9btVHNTvo48+UkNDg+ORUEdHh+rq6lRYWKiPPvpoyPV+/PHHevbZZ/WVr3xF//RP/6SnnnpKmzZt0j/8wz/Ytzl+/Ljuv/9+BQUF6f7779fy5csD7qOqqkr333+/vvnNb2r69OmKj49XUFCQvv3tb2vPnj0DHucf//EfNX/+fK1du1Zf/OIXNW3aNF26dEmHDx8OeJzDhw9L+mzHn+3bt+s73/mOfvjDH+qHP/yhXnjhBV2/fn3Q9RljtH//fn37299WUFCQ/v3f/13nzp2T9Nn7+MEHH9S//du/6fvf/76qqqrU3d2t5cuX63vf+54sy9IPfvADLVy4UO+9997o3ygYsxOnGhWTuFcPznxYi5YsVU3d29qedkDz5v9kVFHJivD1Cg4OUVZuhapOepWxv0RPLH16XCKh46ZJcx9doCVP/FzF1Y0y9T4dKavXgp8s0aaYZPt2zyxf83mYs0cVnl+rtKZJq9Zs/GxXm0HClLnzHtPSnz874Dm7Xr6oufMe08LFT+hIWb0dET39XISW/jxM7lN/Ov6qsOy0Hpz5kObOe0wv5VWpuLpRian7NXfeY3ctEup/fRY//qSOVTXI1PuUV3JScx6ZpyeWPq3q2ta7Ggndzu/is0hoTcC1NlNkxQAAIABJREFUA0eMLMvSAw/OVM0NOwrd6npwSKi2JGQSCQEAAAAAAAAAADiASAgYg+bm5gGhUH+Yc+HChTseDHV3d8vn8w3Y2ejGI8ZuFfLcjv4gZaT++Mc/6tq1a3K73crLy1NeXp4uXbqknp4e9fT03LXrp0+fHnadV69e1ccffxxwLSwsTDNmzBj1awSMh/5IaNXaGM2ZO18PzZqtxxY+rpfyqpSVW6HgkBBZlvV5fBEy5JFkrpdf14rw9Xpo1mzNfOhhRa7fqpfyqmRZlqZPn6HZcx6VqfcNep8HCl/Wzt259vXp06crOCREpTUX7PsvrbmgiKhfavacRzXr4Tmav2CR4pL2BAQ7Za80K3L9Vs15ZJ6Cg0M0b8FCxe/Yp3kLFgY8Vv/t9x50af6CRQHP+U+P16Q1z8fYjzdv/k+0cct2lb3aPOC5Hy5+TUt//qyCg0M0c+YsrQhfr6zcCvu5B4eEjDgOGq/XZ+68x7QxZocqTvxm2Pu++fc51OOvj05UcHCI/ZzmLVgoU+/TI3Pna/qMGZ/dNjhE6zbFj+p3EZuQPuB59f+OiqvPac4j8wbsUDXc9YdmzdH8x5awkxAAAAAAAAAAAIBDiISAMbp27ZrOnz8/aKRzY6zT0tIin8+nK1eujPror2vXrunKlSu6fPmyWltbVVdXN2DHoJuPP3NqR6Ph+Hw+vf7663r99dcDdvS509fff//9YXcQ6hcdHa2YmBj7/9vb2/XVr35VhYWFt/2cgbHoj4RiEvcqO9+MOGZhmHtxsvON/X4mEgIAAAAAAAAAALj7iISAcXLt2jU1NzfLGDNsMDRU1HPzDBcBDTVnz54d96PFppKXX35Z//Vf/6Uf//jHsixL//Ef/6Hs7Gynl4UpjEiImUxDJAQAAAAAAAAAAOAsIiHgDuju7lZzc/OQx4CN15SXl+vs2bNqb2+/I8eKAXCW98137KgiLavY8ciDYcYyREIAAAAAAAAAAADOIhIC7oIrV67I6/Xq/Pnzqquru63dhsrLy1VRUaHKykq53W7V1NTIGCOfz+f00wNwh1xqf9eOKlIyCx2PPBhmLLN7v8t+Pzc1tzr98QIAAAAAAAAAAJhyiISAe0B3d7euXLkSML/97W9ljBnR9PT0OP0UANwBN0ZC29PzHI88JvM8uey5W47Ta5zok5JZaL+fL7W/6/THCwAAAAAAAAAAYMohEgLuUX6/X7W1tSOKhGpra+X3+51eMoA7oD+qiEncq/JXWxwPPRjmdufG9/LVD4lbAQAAAAAAAAAA7jYiIeAe1tXVNeLdhLxer9PLBXAHFBS77bAir/SU46EHw9zOFJb9yn4fZ+4/6vTHCgAAAAAAAAAAYEoiEgLucV6vd8ShUFdXl9PLBTDOftXwOkeOMRN+0rKK7fdx9Sv1Tn+sAAAAAAAAAAAApiQiIWACOH369IgiIY/Hw7FjwCTT+/EnSkjZz25CzISdY9XnOGoMAAAAAAAAAADgHkAkBEwAPT09I95NqKmpyenlAhhnJ0412oHFC6kHVVXb6nj4wTAjmaraVm1Pz7Pfv6UVHqc/TgAAAAAAAAAAAFMWkRAwQfh8vhGHQp2dnU4vF8A4unk3oZTMQsfjD4YZyWTklLGLEAAAAAAAAAAAwD2CSAiYQBoaGkZ87Fhvb6/TywUwjrxvvhMQW2TklDkegDDMcLMvtyrgPdvU3Or0xwgAAAAAAAAAAGBKIxICJpDe3l55PJ4RhUKNjY1OLxfAOPtVw+sB0UVKZiFHjzH33FTVtg7YQYhjxgAAAAAAAAAAAJxHJARMMG1tbSM+dqytrc3p5QIYZ6UVnoD44oXUg8orPeV4GMIwpt6nY9Xn9ELqQQIhAAAAAAAAAACAexCREDABNTU1jfjYsZ6eHqeXC2Cc3byjUEziXm1Pz9PBoydU/mqL46EIM7WmqrZVeaWnlJJZOOB9Wf1KvdMfFwAAAAAAAAAAAHyOSAiYgPx+/y2PHSspKVFcXJxqa2udXi6AO8D75jtKSNk/IMroD4ZSMguVklmo/UdeZphxn7SsYqVkFmp7et6g78GElP1qam51+mMCAAAAAAAAAACAGxAJARNUZ2fnsJFQenq6kpKSlJSUJJ/P5/RyAdwBvR9/ohOnGoeMhRjGial+pV69H3/i9McDAAAAAAAAAAAANyESAiYwr9c7bCjkdru1bt065ebmqqury+nlArhDej/+RE3NrSoodjseiDBTcw7kl+lXDa/r6occcQkAAAAAAAAAAHCvIhICJjC/36/a2loZY1RcXKyYmBhFRUVp8+bNSkhIUGZmprKysrR69Wq98sor8vv9Ti8ZwF1w+f0rutT+rrxvvqMTpxoZZtzH++Y7utT+ri61v+v02x0AAAAAAAAAAAAjRCQETHBdXV2qqanRqlWrlJSUJJfLJWOMysvLlZeXp4yMDMXHx+vQoUPyer1OLxcAAAAAAAAAAAAAADiASAiYBJqbm7V+/fphjx7rn87OTqeXCwAAAAAAAAAAAAAA7jIiIWCSSEhIkNvtHjIOOnbsmI4dOyaPx8OxYwAAAAAAAAAAAAAATDFEQsAk8cYbb2jr1q1KS0tTfn5+QCC0detWhYWFaf369dq+fbuampqcXi4AAAAAAAAAAAAAALiLiISASeTixYvavXt3wI5ChYWFCg8Pl8vlkjFGubm5yszMVEdHh9PLBQAAAAAAAAAAAAAAdwmREDDJNDQ02HHQjh07tGfPHqWmpgbsLBQdHS2Px6Pe3l6nlwsAAAAAAAAAAAAAAO4CIiFgkunt7VVlZaWeffZZpaamas+ePdqyZYsdCJWWlmr16tUqLy9XY2Oj08sFAAAAAAAAAAAAAAB3AZEQMAk1NjZq27Ztdhh05MgRVVdXyxijsrIy++gxY4za2tqcXi4AAAAAAAAAAAAAALjDiISASej69evavn273G53wDFjN86RI0eUkZEhY4x6enqcXjIAAAAAAAAAAAAAALiDiISASaqtrU2//OUvFRsbq4qKigGRUEZGhtLS0mSM0enTp51eLgAAAAAAAAAAAAAAuIOIhIBJrLW1Vfn5+YPuJBQfH68DBw7Y/+/1ep1eLgAAAAAAAAAAAAAAuEOIhIBJzuv1yhijQ4cOae3atYqLi9OuXbsUERGhoqKigHCoq6vL6eUCAAAAAAAAAAAAAIA7gEgImOT8fr9qa2tljFF5ebkOHz6s9PR0hYWFKSoqSuHh4dq0aZNyc3NVW1srv9/v9JIBAAAAAAAAAAAAAMA4IxICpoCenp6AHYOKi4u1YcMGGWNUU1Oj4uJiuVwuGWPU0tLi9HIBAAAAAAAAAAAAAMA4IxICpgifz2dHQjk5OUpKSgoIh26czs5Op5cLAAAAAAAAAAAAAADGEZEQMIWcPn1axhilpKRo7969A+KgvLw8FRQUyOPxcOwYAAAAAAAAAAAAAACTCJEQMIX09PTI4/HI7XarurrajoNqamq0efNmrVixQlu2bFFCQoIuXLjg9HIBAAAAAAAAAAAAAMA4IRICppi2trYBOwgVFBQoKipKlZWVMsYoNzdX+/btU1tbm9PLBQAAAAAAAAAAAAAA44BICJiCGhoaZIxRdna2Nm7cqISEBO3evduOhioqKrRp0yZ5PB719vY6vVwAAAAAAAAAAAAAADBGRELAFNTb2yuXy6XnnntOBw4cUFFRkWJiYlRRUaGqqipt3bpVW7dulTFGjY2NTi8XAAAAAAAAAAAAAACMEZEQMEU1NDQoOTnZ3j0oNTVVMTExCgsL0/r161VWVmb/m8/nc3q5AAAAAAAAAAAAAABgDIiEgCnq008/VXJysqqqqlRaWqrw8HCVlJSopqbGjoNKSkoUFxen6upq9fT0OL1kAAAAAAAAAAAAAABwm4iEgCmso6ND69evV1hYmHbu3GnHQf2Tnp6upKQkJSUl6fTp004vFwAAAAAAAAAAAAAA3CYiIWCK6+rqGhAH3Thut1vr1q1Tbm6uvF6v08sFAAAAAAAAAAAAAAC3gUgIgLxer4wxKi4uVkxMjKKiorR582YlJCQoMzNTWVlZWr16tSoqKtTV1eX0cgEAAAAAAAAAAAAAwCgRCQGQ3+9XfX29Vq1apaSkJLlcLhljVF5erry8PGVkZCg+Pl6HDh1SbW2t/H6/00sGAAAAAAAAAAAAAACjQCQEQJJ0+fJlrV+/ftijx/qnqanJ6eUCAAAAAAAAAAAAAIBRIBICYEtNTZXb7R4yDjpy5IgyMjJkjFFnZ6fTywUAAAAAAAAAAAAAACNEJATA1t7eroSEBKWlpSk/P39AJJSRkaG0tDQZY+TxeDh2DAAAAAAAAAAAAACACYJICECAjo4O7dmzZ9AdheLj43XgwAH7/xsbG51eLgAAAAAAAAAAAAAAGAEiIQADtLW1yRijQ4cOae3atYqLi9OuXbsUERGhoqKigHCora3N6eUCAAAAAAAAAAAAAIBbIBICMKiGhgYZY1ReXq7Dhw8rPT1dYWFhioqKUnh4uDZt2qTc3Fx5PB719vY6vVwAAAAAAAAAAAAAADAMIiEAg/L7/fJ4PPaOQcXFxdqwYYOMMaqpqVFxcbFcLpeMMTp9+rTTywUAAAAAAAAAAAAAAMMgEgIwpM7OTjsSysnJUVJSUsBRYzeOz+dzerkAAAAAAAAAAAAAAGAIREIAhtXU1CRjjFJSUrR3794BcVBeXp4KCgpkjFFPT4/TywUAAAAAAAAAAAAAAIMgEgIwLL/fr9raWrndblVXV9txUE1NjTZv3qwVK1Zoy5YtSkhIUH19vfx+v9NLBgAAAAAAAAAAAAAANyESAnBLXV1dA3YQKigoUFRUlCorK2WMUW5urvbt2yev1+v0cgEAAAAAAAAAAAAAwE2IhACMiNfrlTFG2dnZ2rhxoxISErR79247GqqoqNCmTZtkjFFXV5fTywUAAAAAAAAAAAAAADcgEgIwYm63W88995wOHDigoqIixcTEqKKiQlVVVdq6dau2bt0qY4w8Hg/HjgEAAAAAAAAAAAAAcA8hEgIwYhcvXlRycrK9e1BqaqpiYmIUFham9evXq6yszP63pqYmp5cLAAAAAAAAAAAAAAA+RyQEYMQ+/fRTvfjii6qqqlJpaanCw8NVUlKimpoaOw4qKSlRXFycqqur1dnZ6fSSAQAAAAAAAAAAAACAiIQAjNL777+vjRs3KiwsTDt37rTjoP5JT09XUlKSkpKS5PF41Nvb6/SSAQAAAAAAAAAAAACY8oiEAIxab2+vPB7PgECof9xut9atW6fc3Fw1NjY6vVwAAAAAAAAAAAAAAKY8IiEAt6WtrU3GGBUXFysmJkZRUVHavHmzEhISlJmZqaysLK1evVoVFRVqa2tzerkAAAAAAAAAAAAAAExpREIAbtuFCxe0atUqJSUlyeVyyRij8vJy5eXlKSMjQ/Hx8Tp06JA8Ho96enqcXi4AAAAAAAAAAAAAAFMWkRCA23b16lVt2LBhyGPHbpzTp087vVwAAAAAAAAAAAAAAKYsIiEAY7J792653e4h46AjR44oIyNDxhj5fD6nlwsAAAAAAAAAAAAAwJREJARgTNrb27Vjxw6lpaUpPz9/QCSUkZGhtLQ0+/85dgwAAAAAAAAAAAAAgLuPSAjAmL333nvau3fvoDsKxcfH68CBA/b/19bWyu/3O71kAAAAAAAAAAAAAACmFCIhAOOiq6tLxhgdOnRIa9euVVxcnHbt2qWIiAgVFRUFhENer9fp5QIAAAAAAAAAAAAAMKUQCQEYNz6fT8YYlZeX6/Dhw0pPT1dYWJiioqIUHh6uTZs2KTc3V8YYdXZ2jumxoqOjFRISIsuyVFhYOO63BwAAAAAAAAAAAABgMiESAjCuTp8+be8YVFxcrA0bNsgYo5qaGhUXF8vlcskYI4/HM+Zjx37729+OKvoZ7e0BAAAAAAAAAAAAAJgsiIQAjKuenh47EsrJyVFSUlLAUWM3TlNT05gei0gIAAAAAAAAAAAAAICRIRICMO7a2tpkjFFKSor27t07ZCRkjFFHR8dtPw6REAAAAAAAAAAAAAAAI0MkBOCOaGhokNvtVnV19aBx0LFjx7Ry5UrNnTtX8+bN02OPPaaNGzfqt7/97aD35/P5FBkZqQceeEBz585Vamqq3njjjSGjn9HeHgAAAAAAAAAAAACAyYxICMAd0dvbK4/HY0dBhYWF2rdvn0pLS2WMUWJiokJDQ7VlyxY1Njbq2rVrSkpKUmhoqC5duhRwXx0dHXr44Ye1ePFiXbx4Ub/73e/kcrm0YsWKQaOf0d4eAAAAAAAAAAAAAIDJjkgIwB3T0dEhY4zS09MVFhamrVu3Kjo6WnFxcYqKilJcXJwdEbW1tamvr08PPPCAUlNTA+5n27ZtsixLFy9eDLi+a9euQaOf0d4eAAAAAAAAAAAAAIDJjkgIwB3V1NSkNWvW6OjRo3YQVFxcPOgRZD09PfrpT3+qiIgI++evX7+uWbNmac6cOQPu++zZswOin9HeHgAAAAAAAAAAAACAqYBICMAd5ff7FRcXJ7fbHRAEVVZWKjY2VgsXLtSDDz6o4OBghYSEyLIsPffcc/bPf/jhh7IsS0899dSA+3777bcHRD+jvT0AAAAAAAAAAAAAAFMBkRCAO+7ChQtKSEhQTk6OSkpKZIxRWFiYLMtSYmKiysvL7Xho0aJFg0ZCTz755ID7HS4SGuntAQAAAAAAAAAAAACYCoiEANwVr776qpKSklRZWamysjJZlqUlS5YMOHJs/vz5euaZZ+yf6z8+bPbs2QPuc7jjxkZ6ewAAAAAAAAAAAAAApgIiIQB3hd/vV21trYwxqqqq0vTp07Vo0aKAQKiqqkqhoaH66U9/Kr/fb//stm3bZFmWLl68GHCfu3btGjT6Ge3tAQAAAAAAAAAAAACY7IiEANw1PT09dhD0zDPPyLIsxcXFqaKiQqWlpVq1apW9w1BLS4v9cx0dHXr44Ye1ePFiXbx4Ub/73e9UVlamxYsXDxr9jPb2AAAAAAAAAAAAAABMdkRCAO4qn88nY4zKysoUGRmpOXPmKDg4WPPmzVN8fLzmzZsny7IUHBys+vr6gJ9bs2aNQkNDNXv2bG3btk0XLlyQZVmaMWOGQkNDBzzOaG4PAAAAAAAAAAAAAMBkRiQE4K47ffp0wDFjQ43H4wk4dgwAAAAAAAAAAAAAANweIiEAd11PT488Hs+IQqGmpianlwsAAAAAAAAAAAAAwIRHJATAEW1tbSOKhIwxamtrc3q5AAAAAAAAAAAAAABMaERCABzT0NAw4mPHent7nV4uAAAAAAAAAAAAAAATFpEQAMf09vaO+NixxsZGp5cLAAAAAAAAAAAAAMCERSQEwFGdnZ0jPnbM5/M5vVwAAAAAAAAAAAAAACYkIiEAjmtqahpxKMSxYwAAAAAAAAAAAAAAjB6READH+f3+QY8dq6mpkdvtVlVVlT2nTp1Sa2vrkHPlyhVduXLF6acEAAAAAAAAAAAAAMA9hUgIwD3hnXfeUVVVlcrLy+VyucZlKisrVVdXp9bWVl2+fFl9fX1OP00AAAAAAAAAAAAAABxBJATAMZcvX9aFCxdUWVk5bmHQraaurk7t7e0EQwAAAAAAAAAAAACAKYVICMBd1dfXp9bW1hGFQcYY1dXV6fz58/J6vbec5uZm1dXV6cSJEyMKhs6ePcvRZAAAAAAAAAAAAACAKYFICP/P3r0HR1kf+h/feuZonZ7T0/F0nI49c1rrr7adzjCnN5nTY7Wd80CMeEMRrYraYlVQkMYLIGC4pNwiNwUkmHARg1wMhEA2lwU2kqYrJCTBbGGTdNWkLpFtXMhKurALfH5/2H1Olt0sCSR5QvJ+zXxnzLPP5bth13/ynu8X6BPhcFhut7vTOMjhcKi6ulrNzc1qa2vrkWe2t7erpaXFjIeSrS7UU88EAAAAAAAAAAAAAKA/IhIC0Ova2trkcDgShkF1dXV9FuiEw2E1NzfrwIEDCWOh5ubmPpkHAAAAAAAAAAAAAAB9jUgIQK9qbm5OuHKP1dt8tbe3q7q6Om5uNTU1ls4LAAAAAAAAAAAAAIDeQCQEoNe0t7fHbC9mt9vV0tJi9bRitLe3x21F5vV6rZ4WAAAAAAAAAAAAAAA9ikgIQK/pGN+UlZUpHA5bPaVOdVxVyG63q7293eopAQAAAAAAAAAAAADQY4iEAPSKcDgcszrP5RDddIyampubrZ4OAAAAAAAAAAAAAAA9hkgIQK9obW01g5uKigqrp9MlXq/XnHNdXZ3V0wEAAAAAAAAAAAAAoMcQCQHoFR0jobKyMqun0yV1dXXmnD0ej9XTAQAAAAAAAAAAAACgxxAJAeg1Hbcba21ttXo6SYXDYTkcDnO+LS0tVk8JAAAAAAAAAAAAAIAeQyQEoNd0XJnHbrf321AoHA6rrKzMnKvD4VA4HLZ6WgAAAAAAAAAAAAAA9BgiIQC95vzVeQoKCuR2u/tVgNPc3Cy73R4zx5KSErlcLjU1NSkUClk9RQAAAAAAAAAAAAAALhmREIBe1dbWFhcK2e121dfXq7293bJ5NTc3x82roKBAxcXFcjgcMYNgCAAAAAAAAAAAAABwuSMSAtDrwuGwDhw4EBfkFBQUqKysTF6vt0+CoZaWFtXU1MStHFRQUKCdO3eqtLQ0LhAiGAIAAAAAAAAAAAAADAREQgB6XDAYVH19vcrLy+V0OhUIBCRJra2tqqioSBgLFRQUyOFwqKamRl6vV62trRcdDoXDYbW2tqq5uVlut1tlZWWdPrOwsFB2u71LgRDBEAAAAAAAAAAAAADgckUkBKBHdAyDzo9pvF5vzLmtra2drizUWTxUUVFxwZEsBkq0glFzc7P8fn+34yCCIQAAAAAAAAAAAADA5YZICMBFSxYGRUdlZWWn4Uw4HFZzc3O3gqFLGYm2NguFQj0SCREMAQAAAAAAAAAAAAD6MyIhAN3SlTDoYiOZtrY2eb1eVVdXq6KiQna7/aKDoIqKCh04cEAej0etra0Kh8OdPreysrLHQyGCIQAAAAAAAAAAAABAf0IkBOCCejMM6or29na1trZ2aVyMSCSS9L0RDAEAAAAAAAAAAAAALndEQgASsjoM6muRSERer7dPYiGHw6Ha2lodPXpUkUjE6rcOAAAAAAAAAAAAABgEiIQAmEKh0AVDmYEUBnUmGAzK4/EQDAEAAAAAAAAAAAAABgwiIWCQC4VCampqksvlGtRhUGesCoYAAAAAAAAAAAAAAOhJRELAINSVMKi8vFxer3dQhkGd6ctgyOl0yu12KxAIWP22AQAAAAAAAAAAAAADAJEQMEh0NQzyeDwKBoNWT7ff68tgiGALAAAAAAAAAAAAAHCpiISAAYwwqG8EAgG53W45nc5eD4ZcLpeOHj2qSCRi9dsGAAAAAAAAAAAAAFxGiISAASYSiejo0aOqqqoiDLKA3+/vs2Do4MGD8vv9Vr9lAAAAAAAAAAAAAMBlgEgIGACiYVBtbS1hUD/S28HQyy+/rOnTp+utt95SfX0925EBAAAAAAAAAAAAADpFJARcxqIRCmFQ/9fTwVBhYaFWrFihLVu2aMGCBUpLS9PChQtVXl6uo0ePWv12AQAAAAAAAAAAAAD9DJEQcJm5UGzidDrldrvZhqof8/v9SVd96u7YsGGDZs6cqVdffVVFRUXm54DVhQAAAAAAAAAAAAAAUURCwGUgGAyqvr5e5eXlhEEDSCQSkc/nu6hgqLS0VDk5OUpPT9cbb7whu90uh8OhkpISLVu2TOnp6Vq8eLHy8vJUVVXFZwMAAAAAAAAAAAAABjkiIaCfCoVC8nq9nYZBDodDtbW18vl8ikQiVk8XlygaDLlcri5tNTZt2jS9+uqrKikpiXlt5cqVeuGFF7Rz504VFRXp1Vdf1euvv25uP9fU1MTnBQAAAAAAAAAAAAAGISIhoB+JRCJqampKGopUVlYSBg1wFwrEFi9erPT09ISvpaena9WqVebPxcXFSktLU2lpadzKU2xFBgAAAAAAAAAAAACDB5EQ0A8cPXo06ZZTLpdLTU1NRB2DUDAYlNvtltPpND8PGRkZysrKSvhZWblypZYvX27+XFJSok2bNpk/b9u2TRs2bIhZjSoQCFj9NgEAAAAAAAAAAAAAvYxICLCI3++Piz86jvLycnk8HsIgmPx+v2pra/XOO+9o1qxZKioqUklJiRYvXiyHw6GdO3dqyZIlevHFF/Xaa68l/Fzl5+dr8uTJccerqqqIhQAAAAAAAAAAAABgACMSAvpQMBhUfX19p9tIRbeBCgaDVk8V/VgoFNLBgwe1bNkyzZo1S0uXLpXD4dD06dO1ZMkSMwbqbGWq6dOna+vWrXI4HLLb7Vq9erVKSkqIhQAAAAAAAAAAAABgACMSAnpZJBJRU1OTXC5Xp9FGbW2t/H6/1VPFZSgQCMjtdsvhcOi5555LGgdFR05OjmbNmqWMjAylpaVp8eLFstvtcjgcKi4uVn5+viorK4mFAAAAAAAAAAAAAGAAIRICekl0a6jOQo3Kykr5fD5FIhGrp4oBIBKJqKCgQIsWLVJBQYHWrVunN998M+Yzt23bNi1evFhpaWl6+umntX79epWWlpqv5+XlaeLEicrIyNCCBQuUnZ3NykIAAAAAAAAAAAAAMEAQCQE9KLqdmNPpTBgGlZeXy+v1KhQKWT1VDFB+v195eXlatGiRtm3bZn721q9frylTpmjVqlUqLCzU3LlztXbt2pjP56xZs/Tqq6+aPy9cuFDr1q0zV7vicwsAAAAAAAAAAAAAly8iIeASXWg7MafTKbfbzWos6HOhUEherzdhtPbOO+8oPT095tgrr7yizZs3mz8vW7ZMCxYsiDnH6/Wy+hUAAAAAAAAAAAAAXIaIhICL5Pf75Xa7O91OrLa2Vj6fz+ppApIkn88XF7JNnjxZdrtdDodDhYWFWr6SNgI4AAAgAElEQVR8uRYtWqTS0lIVFBToueeeU3Z2thwOh7KyspSRkaGCggKVl5fr6NGjVr8lAAAAAAAAAAAAAEA3EAkBHZw6dUq7du1Sbm6uXnnlFe3cuTPm9ejKLOXl5Z1uJ9bU1MS2TOi3AoGAKisr5XA4VFpaagZCEydO1JIlS5Sdna2pU6dq9uzZev31183P9quvvqrs7GylpaXp9ddfV3FxsaqqqhQMBq1+SwAAAAAAAAAAAACALiASwqAViUT0+eefxxxbuHChmpubJUltbW2aOHGimpqadPToUVVVVSXdToxYApeTQCBgroS1fv16vfzyy+Zn+vXXXzdXEDp/FBUVafbs2UpLS9P27dvldDrV1NRk9dsBAAAAAAAAAAAAAFwAkRAGnVOnTik/P1+bNm1SRkaG1q5da772xhtv6Ny5c5K+WDVowYIFys3NTRhLuFwu+Xw+RSIRi94JcOlCoZBcLpemTZtmriz0yiuvaPny5eZn3W63a82aNZo3b57mzJmjxYsXa8OGDSopKTHPqaqqYgUtAAAAAAAAAAAAAOjHiIQw6CxcuFCNjY2SvggkJkyYoOPHj5uvd1w1KD09XTt37oxZNcjj8RBDYMA5fPiwli1bpqlTp2rq1Kmy2+1yOBxavXq10tLS9MYbb6iwsDBhMDd37lxt27ZNTqdTPp/P6rcCAAAAAAAAAAAAAEiASAiDjsPhUHt7uyTpzJkzmjdvnk6ePKn6+no5nc6YbZVmzZolh8Oh2tpa+f1+i2cO9L7jx4+rsrJSDodD27dv19NPP6133303YRwUHZmZmVq/fr35s9vtZoUtAAAAAAAAAAAAAOhniIQwaH322WdatGiR5s6dq/nz56ugoCAmfFi7dq2KiooUCoWUn5+v06dPWz1loM8EAgHl5eVpxowZSQMhh8OhVatWxWxPFt2OjxW3AAAAAAAAAAAAAKD/IBLCoBOJROT1erV3714VFRWZK6FMmTJFDodDlZWV8vv9euONN3T69GlVVlZq9uzZqq6utnrqQJ+KRCKaP3++ufXYpk2bVFxcbIZAJSUlysvL07JlyzRlyhTNnz9f06ZN0+9//3vl5+fL6XQqGAxa/TYAAAAAAAAAAAAAACISwiASDAbldrsTroRSXFysJ5980gwa/vKXv2j69OmaOnWqNmzYoKamJotnD1jj5MmT2rx5sxnSlZaWmmFdWlqaZsyYoblz52rSpEnasGGDtm/fbp7jcDgIhQAAAAAAAAAAAACgnyASwoB39OhRVVVVxYVB7777riorK+Xz+dTU1KQFCxaY19TV1Wnfvn06deqUhTMH+pdAICCXyxX3XSotLdWkSZOSbknm8/msnj4AAAAAAAAAAAAADGpEQhiQoluKlZeXJwwW3G63li5dqm3btmnXrl3avHkzq50AXeT1euO+Uy+++KK5LVl0rFmzRjNmzNDChQtVWFgov99v9dQBAAAAAAAAAAAAYNAiEsKAEgqF5Ha75XQ64yKG8vJyeb1eRSIRSZLf79fhw4f1+eefWzxr4PITDAZjIryMjAzl5eWZP2/YsEHPPPOMsrOztXnzZs2dO1e7d+8mxgMAAAAAAAAAAAAAixAJYUAIBAJyu90JVw2KbikGoGdFIhHV1tYm/N4tW7ZMWVlZ5s+5ublavny5nE6nGeoBAAAAAAAAAAAAAPoOkRAua4FAQFVVVZ1uKcaqJUDva2pqMr9369ev1/Tp0zVz5kxlZ2ebx1esWKF58+bJ4XCoqqrK6ikDAAAAAAAAAAAAwKBDJITLUmdxkNPplMfjUSgUsnqKwKDi8/m0a9cuPfPMM1qzZo127typjIwMZWVlaenSpRo/frw2btxoflebmpqsnjIAAAAAAAAAAAAADCpEQrisdBYHlZeXy+v1so0RYKEPP/xQs2fPNr+Xq1ev1oIFC7Rs2TJt2bIlLugj5gMAAAAAAAAAAACAvkMkhMtCsjjI5/NZPT0A/5CVlaX8/Hxt3rxZ48aN04QJEzRhwoS4SMjhcMjj8Vg9XQAAAAAAAAAAAAAYNIiE0K8RBwGXl1OnTmnVqlUaP3685s6dq5KSEr355puaMmWK+f0tLS01VxNi9S8AAAAAAAAAAAAA6BtEQuiXQqGQamtr4+Igp9OppqYmq6cHIIn29natWLEi5ru7YMECbd26VaWlpZozZ46ys7PlcDjk9Xqtni4AAAAAAAAAAAAADApEQuhXQqGQ3G53wjjI6/Wy6ghwGWhtbdX06dNVUlJifoe3bt2q1157TQ6HQ0uWLNHSpUvlcDjkcrmsni4AAAAAAAAAAAAADApEQugXiIOAgaWtrU2NjY0x3+c5c+aooKBAaWlpKioqMo/z/QYAAAAAAAAAAACA3kckBMt5vV45nU7iIGCACYVCcVuOzZw5U2+++WbMcb/fb/VUAQAAAAAAAAAAAGDAIxKCZQKBgMrLy4mDgAHkxIkTqqysNH92uVzm93v9+vV66aWXVFpaGvO993q9Fs4YAAAAAAAAAAAAAAYHIiH0uVAopNra2ritxdxuN3EQcJlrb2/X9OnTzZ+bmprM73hJSYl27NiR8LsPAAAAAAAAAAAAAOhdRELoM5FIRF6vNy4QcLlcCgQCVk8PQA/JzMzU0aNHJX2xYtiuXbvivvcdR8eVhwAAAAAAAAAAAAAAvYNICH3C7/cn3FqsqanJ6qkB6GHFxcXKzc1Vfn6+Zs6cqcmTJ6u4uJhICAAAAAAAAAAAAAAsRCSEXhUKhVRVVcXWYsAA9/nnn+v999/X6tWrNXnyZD3//PP64x//mHBrQSIhAAAAAAAAAAAAAOh7RELoFWwtBgwue/fuVV5enjwej86cOaMZM2bo9OnTCf8/kCgaBAAAAAAAAAAAAAD0LiIh9LhAIMDWYsAgt2HDBn3wwQfyeDwXjIS8Xq/V0wUAAAAAAAAAAACAAY9ICD0mEomovr4+LgDweDxsLQYMQCdPnlR2drZmz56t3bt3x7xWU1OjjRs3xgWDiYbP57PoHQAAAAAAAAAAAADA4EEkhB4RDAbjYgCXy6VgMGj11AD0krfffluNjY364IMPNHnyZFVXV5uvRSIR/fWvf71gIORwOBQKhSx8FwAAAAAAAAAAAAAwOBAJ4ZJ5vV62DwIGmdbWVu3YscP8uaamRnl5eTHnuN3uCwZC5eXlfT11AAAAAAAAAAAAABiUiIRw0YLBoFwuF6sHAYOQ1+vVwoULdebMGUnSxx9/HBMNRSKRLq0i5Ha7rXoLAAAAAAAAAAAAADCoEAnhoiRaPcjj8SgSiVg9NQB9JBAImP996tQp5efn6+DBg/rkk09UX1/fpUio4z0AAAAAAAAAAAAAAL2HSAjdEgqFVFVVFbddEH/oBxA1c+ZMrV69mq3GAAAAAAAAAAAAAKAfIRJClzU1NcnpdLJ6EICkKisrVVpaesFIqKmpyeqpAgAAAAAAAAAAAMCgQSSEC4pEInGrBzmdTvn9fqunBqCf8fv9XdpmzOl0EhgCAAAAAAAAAAAAQB8iEkJSwWBQ5eXlMX/cr62t5Y/7AOJEIpG4/190Nrxer9XTBQAAAAAAAAAAAIBBhUgInfL5fKweBKDLPB4PqwgBAAAAAAAAAAAAQD9FJIQ4kUhEbrc75o/6LpdLoVDI6qkB6KfOjwqTDZ/PZ/V0AQAAAAAAAAAAAGDQIRJCjFAoJJfLFfMHfbfbzaofADoVDAa7HAi5XC6rpwsAAAAAAAAAAAAAgxKREEyBQEBOpzPmD/pNTU1WTwtAPxaJROL+v5FsBINBq6cMAAAAAAAAAAAAAIMSkRAkSV6vN+YP+U6nkz/mA0gqEonErTyWbBAdAgAAAAAAAAAAAIB1iIQGuUgkotra2rjtgNheDEAy3Q2EKisrrZ4yAAAAAAAAAAAAAAxqREKDWDAYjPsjv8fjsXpaAC4D3QmEnE6nQqGQ1VMGAAAAAAAAAAAAgEGNSGiQ8vl8cjqdMX/E9/l8Vk8LwGXA7XZ3ORByOBxsXQgAAAAAAAAAAAAA/QCR0CDk9Xrjthfjj/hA97z33nuaOnWq7rvvPqWkpOi+++7TCy+8oNzcXH3yySdWTy9Oe3u7duzYoQkTJmjkyJG6++67NXbsWG3atClue8HU1FSlpKTIMAwNHz5cqampSk1N1f33368JEyYoMzNTRUVFXQqEiA8BAAAAAAAAAAAAoH8gEhpEIpFI3AogtbW1cYEAgM6dOnVKr7zyiu69914VFxcrGAwqHA7rk08+UXZ2thnX7N+/3+qpxkhPT9dtt92msrIynT17VmfOnFFxcbGGDx+u6dOnx52/d+9eGYahLVu2SJLOnj2rsrIyZWRk6I477tD999+vjRs3Jg2E2L4QAAAAAAAAAAAAAPoPIqFBIhKJyOVy8Qd84BLNmzdPKSkp+stf/pLw9YKCAhmGoffee6+PZ5bcK6+8opUrV8Ydnz9/vgzDUHV1dczxjpHQ+f//2Lx5s+666y7dddddysvLSxgIud3uvnprAAAAAAAAAAAAAIAuIBIaBILBoJxOJ1sAAZeorq5OhmFo0aJFnZ5z9uxZjRo1qt9FQnv27JHX6407Ho2a3nnnnZjj0Uho06ZNcYGhw+HQ0qVLZRiGJk6cGPdaZWVlX70tAAAAAAAAAAAAAEAXEQkNcD6fLyYQcjqdCgaDVk8LuCwtXLhQhmHo/fffT3peQ0ODAoFAzLFAIKDFixfrwQcf1KhRo/TII49ozZo1CoVC5jnRMMcwDD355JP65JNP9OKLL2rEiBF67LHHZLfbzXNDoZBSU1PN81NTU3Xo0CFJUnFxsflaamqq/va3v3U617y8PBmGocLCwpjj0blkZmYmXCmouLhYI0aM0LBhw1RYWGged7lcbGEIAAAAAAAAAAAAAP1QtyKhpqNHta+qSvuqqlT6pz9pQ0EBox+PN7ds0Wvr15tjxdtva31+vuXzutAo/dOfzM9Z09GjvfXZB7rtsccek2EY+vTTT7t13YkTJ/Twww/r2WefNYMdr9erBx54QJMmTdKZM2fM8+rq6vT444/r8ccf16RJk1RcXKyKigpNmDBBhmGorq4u5t7PPvusRo4cqXA4HHO8vr5ejzzyiM6dO5d0btHt01pbW2OOFxYWyjAM/eEPf0gYCTkcDv32t7+VYRjKzs4mEAIAAAAAAAAAAACAfu6CkdCh+nptKSlR5tq1ysjKYjD6fGSuXastJSXyfPRRH3wlgM7dcccdMgxDJ0+e7NZ1S5YskWEYOnz4cMzx6FZf27dvjzk+bty4uCDoww8/lGEYysrKijl3586dMgwjbnuzZcuW6a233ko6r9bWVt1xxx1x9wwGg1q+fPkFI6FouLRs2TICIQAAAAAAAAAAAADo5zqNhD72+fTmu+9aHogwGB3HhoICfezz9eV3BDDdeeed3Y6Ezp07p5EjR2rkyJFxr7W2tsowDE2aNCnm+Lhx4+LOP3v2rAzD0Lx582KOnzx5Urfffrtefvll81g4HNbIkSOTrnh07tw5vfLKKxo3bpxOnz5tHvf5fHI4HFq2bNkFI6Fnn31WhmFo1apVBEIAAAAAAAAAAAAA0M8ljIQKnM6EgUbm+vXKLizUutJSvb13r7YfOMBg9Ph4e+9erSstVXZhoTLXr0/4WSxwOvv4qwJc3HZjbW1tMgxDTzzxRNxrZ8+e1bBhwzR69OiY4+PGjdPYsWPjzk9NTdWcOXPijs+dO1fDhw83twzbu3evXnzxxaTzysnJ0UMPPaTPPvvMPNbU1GQGQF2JhH7zm9/IMAwdPHiwS78LAAAAAAAAAAAAAIB1YiKh0OnTcasHzcvJ0brSUtnr6rSnsZHB6PNhr6vTutLShKsKhTqsgAL0toULF8owDL3//vtdviYaCSWKfpJFQk8++WTc+Z1FQtXV1TIMQ++8844kafLkydqzZ0+nc8rLy9P999+vTz75xDzmdrtjAqALRUJFRUUaMWKEUlJSFAqFuvz7AAAAAAAAAAAAAABYw4yEEgVCK/LyVHLkiOWRCIOxp/GLWGhFXl7MZ/TNd98lFEKfcbvdMgxDixcv7vSc1tZW/fa3v1VBQYGkrm039vvf/z7meHcjoXPnzunhhx/W448/rmPHjmnkyJExW4h1tGvXLt1777368MMPJUmRSET79u3Tli1buhUJ5eTkyDAMLVy4sPNfGAAAAAAAAAAAAACg3zAjofMDoU379lkehTAYicb5qwptKSmx8juEQSYzM1O33XabGdmcb/Hixbr99tsVCATMY0uWLJFhGKqrq4s5t6CgQIZhKD8/P+Z4dyMhSVq/fr0Mw9DLL7+spUuXJjxn9+7duueee1RfXy9JCoVCcrlcWrZsmcaNG9flSGj37t0aOXKkRo8ebW5xBgAAAAAAAAAAAADo32ySVFJRQSDEuKzGpn37Yj6zJRUVVn+XMEiEw2HNnDlTo0aNUklJiYLBoMLhsD788EMtWLBAqampqqysjLnmxIkTevjhhzV+/Hj5/X5J0ocffqgHH3xQkyZNUiQSiTn/YiKhlpYWGYYhwzDk8XjiXi8vL9fw4cM1depUrV+/Xm+++aZmzZql9PR0jR8//oKRUElJibZu3aqVK1fq7rvv1mOPPaaPPvroIn+LAAAAAAAAAAAAAIC+ZvvY54uJLd7eu9fyAITB6MrILiyM+eyeCAat/j5hEHnvvff00ksvaeTIkbr99tv12GOPadGiRfrrX/+a8PxAIKDFixfrgQce0KhRo/TII48oJydHoVDIPKempkapqalm7JOamqojR46otLTUPD5s2DClpqbGrFQU9cILL2js2LEJn//ss8+a9000OkZCKSkpGj58uPm8lJQUpaSk6N5779WUKVO0a9cuhcPhnvlFAgAAAAAAAAAAAAD6hG1DQYEZWazIy7M8/GAwujNe27y5X207dvLkSR07dswcHfX2caINdEV9fX3c9mEXGk6nU0EiPAAAAAAAAAAAAAC4rNk6rsRir6uzPPpgMLozdtbUxKwm9Glrq2VfpnPnzqmmpkYbN240RygUMkdfHLfb7QlXmAEikYhqa2u7HQiVl5cTCAEAAAAAAAAAAADAAGBGQlk7dlgefDAG02jQngaP9tSfNxrqtaehoVv3ytqxw4yESioqeuSLEYlE9Oc//7nLq/OcOXNGx48fl8/nk9frNUcgEDBHbx+vqanRli1blJ+f3+X3+dprr8lms6mmpqZL5z/77LP61re+pW9961tdfgasFwqF5HK5uh0IuVwuRSIRq6cPAAAAAAAAAAAAAOgBZiS0/cCBfhCOMAb8aOgkDoqLhTxdvudWl8uMhN58990e+WKEw2Ft2bJF27dvv2AsdPDgQdXW1sYEO1YNn8+n48ePd/l9/vjHP9YVV1yhCRMmdPmaefPmEQldRoLBoJxOZ7cDIbfbTSAEAAAAAAAAAAAAAAOILSMrS/NycqyPRxgDfzQ0JF45qLHhi9FQH/Pa3gZPl1cV6rjl2Ike2BopGgl1HAcOHNDJkyfjzt29e7eKi4stD4Sio6uRUG1trW699VYNGzZM//7v/67Tp0936ToiocuHz+frdhzkcDjk8XisnjoAAAAAAAAAAAAAoIfZMrKy9NrmzdYHJIyBPRIFQv+IhPY2NmpvY2NcJGSGQl24/2ubN5uR0Mc+3yV/MRJFQp3FQv0tEgoEAl16jxMnTtS6deu0ceNG2Ww2bd68Oe6cU6dOafz48brmmmv0gx/8QE899ZTS09PjIqGtW7fqF7/4hQzD0C233KLU1FQdPnzYfD0zM1M2m002m01FRUW65ZZbdPXVV+sXv/iFmpubtWPHDl1//fX62te+pnHjxuns2bMX9w8HU319/UUFQr4e+P4AAAAAAAAAAAAAAPofW0ZWlrJ27LA+ImEM7NHZFmMXiIS+CIXqL3j/jpHQocOH5ff7k46PPvpIf/7znzsddXV1nUZC0VFaWqqamhpVVVXp448/tjwMio7i4mLt3r076Rf/9OnT+va3v6329naFQiF97WtfU0pKStx5aWlpuvbaa9XQ0CBJqqqq0nXXXRcXCT3wwAMxkdGKFSt0/fXXKxQKmcfq6upks9l0xx136MMPP9Qnn3yi73//+7r55pv13HPP6fjx49qzZ4+uuOIK5eXlXcL/1nAxKwg5nU4Fe2AVLgAAAAAAAAAAAABA/2TLyMrSutLSi44/sgsKZBhGwnHXyJFJr7139Oi4a+657z5LIpbCDz7QmLFjdc999yl3794evfdbpaVx73P6woV9fo++HkV1dXph5kwZhqE77rrroiOhL85Lvu1YdmGhGQmt3rDhgoFPTw+rw6DuRkJbt27V2LFjzZ+feuopXXHFFfrrX/9qHmtvb9dVV12lKVOmxFw7ZsyYuEjI5/PFrP5z4sQJ2Ww27d+/3zwWjYS2bNliHps2bZquuOIKnThxwjw2ZMiQuGcOZu3t7WptbTVHS0uL6uvrzdHxtdbWVoXDYTmdzm4FQi6XKyboAgAAAAAAAAAAAAAMPJccCW17/31lLF+uyRkZMaFPxvLlWrB6ddJrM3NylLF8ue4dPVoj7rxTGcuXa2F2tiVBy/LNm835T507t0fvnV9ZqbkrV2ruypUaceedFxX49MQ9+nKsLSzUqAcfNH+nlx4JJV9NaF1pqRkJrVy//oJRz/bt2+V0Ojsde/fu7dI9SktL5XQ6LQ+DuhsJpaam6o9//KP58/vvvy+bzaY5c+aYxw4dOiSbzaa1a9fGXDt79uy4SOjIkSMaM2aMfvrTn2ro0KG66aabZLPZlJ+fb54TjYSqq6vNY5mZmbr22mtj7nXrrbfq6aef7ur/wwaM9vZ2MwCqqKiQw+FQQUHBRY+dO3dq165dKioqUklJiUpLSxMGQrW1tYpEIla/fQAAAAAAAAAAAABAL7vkSCg6HB6P7ho5UoZhaNjw4cqvrOzSdbtqa5WSkqK0V16xNGrJr6zUPffdp5TbblPOzp299px77rvvkgOfnrhHb42Sw4c1de5cDRs2TPf/+te6/9e//r9IqKFBexrPH43/Fwk1Nsa/3jEcSvLcjpHQe1VVl/zFCIfDncZBu3bt0kcffWSee/DgQVVUVFgeB3Ucyfh8Pv3Lv/yLhg4dGjO+/OUv64YbbjDP6ywSmjVrVkwk1N7erm984xt69NFHderUKUlSKBSSzWbT9u3bzfOikVBdXZ15LDMzU9/85jdj7n/rrbfqqaee6uo/1WWtra1Nbrf7koOg7oRDRUVFZjDk8Xis/hUAAAAAAAAAAAAAAPpIj0VCexobNeUPfzBXjpm7cmWXrsnMyZFhGFpTWGh54OLweFTkdvfqMwZ6JDRxyhQZhqGX5sxRkdutJ5599v8iocYGMwjq6ohGQnsbrI+Ezo+Donbv3q3i4mLLw6DoOH78eNL3NnfuXC1cuDDu+IIFC2Sz2VRWVibp/7Ybmzx5csx55283VlVVJZvNpl27dpnHotuNEQnFC4fDqq+v73IYZLfbVVFRYY4DBw7I4/GYo+NrFRUVXQ6GHA6Hmpubrf51AAAAAAAAAAAAAAD6SI9GQm+VlJiR0MOPP96la37z9NO69/77tbuhwfLApS/GQI+EXpw9O2Ylpp6KhPZYGAl1FgdFvffee9q+fbvlcVAgEJDf75ff70/63n74wx/q2LFjccePHTumf/7nf9ajjz5qHnv++ed17bXXqqGhQdIXQdBXv/rVmEgoEAjoK1/5ip588kmdPXtWkrRkyRIiofNE4yC73Z40BvJ4PGppaVF7e/slPa+trU3Nzc2qq6tLGg/1x1jI6/Vq9+7d2r17tw4ePGgeDwQCvX68rq4u4fcDAAAAAAAAAAAAAC53PRoJ7WlsNLeXMgxDm/btS3punsvVb2OX3hoDPRI6P/aKiYSisU/MaOgQBDXEv17vsWy7sQvFQVHHjh3T0aNHzVDnL3/5izk6Bjy9fdzj8Wjnzp3Kz89XOByOm+dnn32mn/zkJ7r66qv1P//zP3GvDx06VFdffbWuuuoq8/VTp07pmWee0TXXXKPvfe97Gj16tF566SVdeeWVGjp0qD7++GNJUlFRkYYMGaIbbrhBw4YN07x582Sz2XTjjTdq1apV2rFjh4YMGSKbzaYhQ4bI4XBo9uzZ+s///E/zXp9//rlSUlL0r//6r7r22ms1ZsyYS/tH7Efa2toSxkF2u13V1dVqaWnp9TmEw2E1NzfrwIEDCWOhsrKyhJ+bS31md+557tw5tbe3y+12q7i4WMXFxTFb+X388ce9fnzjxo3auHGjvF5vj/4uesqzzz6rb33rWzGhniRlZ2fruuuuUzAY7JXn1tTUaM6cOb1ybwAAAAAAAAAAAAB9o8cjoZlLlpiR0IzMzKTnzl62TIZh6J2yspjjjvp6ZW3bpufT0/XgmDFKHTFCw1NSdM+oURr/wgtanZ+f8H4lhw+bz46OJydO1J7GRr29e7eeefFF3X3vveZrd40cmfSa88fFzitZ4LPkrbf06O9+pxF33qnUESM05okntGjt2qQrK3U1Eiqortb0hQvNuabefrtGP/SQXpg5M+533lsjLhI6fzTUx68a1Ml5fRkJXYyzZ8/q73//uxkZbNy4UX//+9/N0dvHt27dqvz8fAUCAUvePxJrbm5OGORYuXpPOByWx+OJ2/LMbrerra2tx57j9/u1ZcsWHThwQCdPnkx67rFjx3T8+HHLV+MKBAKqqKjQ4cOHe+z30NPmzZsXFwkdPHhQU6ZM0ZkzZ3rlmWvXrtVVV13VK/cGAAAAAAAAAAAA0Dd6PBLaWlFhxjb3jh6dNHZ58JFH9FCCbcmmzp1r3mP8Cy9oflaWFqxerefT05Vy220yDEOTMzISRkKjHnxQox58UKm3324GP1nbtinlttt0W2qq7hk1KiYSctTXK2P5cmUsX64HHnkkaSR0sfPqLPB5Pj1dqSNGaNzzz+v59HSNeeIJ8/7j0tJUeuTIRUdCOT+3hA4AACAASURBVDt3asSdd8owDD3zwgvKzMlRZk6OJk6ZomHDhmnYsGGan5V1+URCF3hOf4iEoo4dO2aOvjx+oQgDfa+1tTUuwumLVYO6w+v1xs2xp1YUikZC0ZEsFtq9e7eKi4stD4Sio7dW5OkJiSKh3kYkBAAAAAAAAAAAAFz+ejwS2tPYGBO7rLXbE56Tu2ePDMPQ3JUr4157ac4cGYahRWvXxr22ad8+pY4YIcMwtHTDhk7n8PTvfy/DMDTmiSd0z6hRWpidrZLDh7WnsVGb9+3TiDvv1F0jRya8prNIqCfmFQ18Rj/8sH792GPKr6yMeX3J+vXm7+7l+fMvKhJ6p6zMjJYSzXXlli3mM954993+HwldYBWh/hYJAdIXq/V0XKmnN7bz6innb4d24MCBHrnv+ZFQslho48aN2r9/v+VxUFcjoVOnTmn8+PG65pprdOONNybcii8zM1M2m002m03FxcUyDENXXXWVbDab6urqtHXrVv3iF7+QYRi65ZZblJqaGreCUcfn/OAHP9BTTz2l9PT0mEgoNzfX3M6vrq7OPH7u3DnNmzdPP/rRj/SrX/1KP//5z7V8+XKdO3dOkmLmV1RUpF/+8pe6+uqr9aMf/UjV1dXmfZYsWaLvfOc7+tKXvqShQ4dq6NChWrVqlSTpvffe0y233GK+h7vuuksVFRUX9XkBAAAAAAAAAAAA0Lt6JRJasHq1GaE8n56e8Jypc+dq2LBhcZFMNMa5/9e/7vT+6YsWyTAMPZxgFaLzgx/DMDT7tdfinzF79kVFQpc6r2jgYxiG3nE6E57z3NSpMgxDw4YPV57L1e1I6NHf/U6GYeg3Tz99wd/P6IceSrraU49FQnffrb0NFxEJNVx4FSEiIfRHHVcRcjgc/TYQimpra4tZUagndBYJJYqFHA6H6urqLI+DouPgwYNxq3V1lJaWpmuvvVYNDQ2SpKqqKn31q1+NW+Gnrq5ONptN//u//6tDhw4pEAhoyJAhqqur0wMPPKDNmzeb565YsULXX3+9QqFQ0udcd911nT6nYyQ0depUffe739Vnn30mSfr000913XXXacmSJXHXpaamqqGhQX/729908803a+jQoTH3T7SSUDgc1r/927/J4XCYx5577jlNmzat098bAAAAAAAAAAAAAOv0SiRUUF2tYcOHyzAMjbjzTpWct22Wo75e99x3n8Y++2zC6+0ffKDCQ4c6vf8b775rhjb2Dz5IGsEMT0lJeK/dDQ1y1NcnvKazSKgn5hUNfBJtsxYd2QUF5n1mLV3arUgod+9e89rMnJxOn/HqmjXmeeuLi/skEtrT2PhF9HN+BNRQ/49xcYEQkRD6I4/HYwY3HcON/qysrMycc15eXtLApytj69atXT63P60iFAgEtHHjRn3wwQcJf0/t7e266qqrNGXKlJjjY8aM6TTeyc3NNY8dO3ZMp0+fls/n09mzZ83jJ06ckM1m0/79+y/6OdHP2ueff64vf/nLyszMjDkvLS1N1113Xdx1mzZtMo9lZWXpyiuvNFcckhJHQn6/XzabTStWrIg5Fg2aAAAAAAAAAAAAAPQvvRIJ7Wls1JPPPWdGKCs2b4557c0dO2QYhpa89dYF7+Oor1fBwYN6909/0taKCm2tqNCy3Fzz3lsrKpJGQr9+7LEuz/lCkVBPzCsa+KTNmNHpvQs/+MC8T6KQKlkkNHflSvPa1995x5zb+aPjtmaJtnzrtUiosbHzbcW6ucUYkRD6s46RkMfjsXo6XVJRUWFZJPT+++9bHgZ1NRI6dOiQbDab1q5dG3N89uzZncY7Bw8ejLvPkSNHNGbMGP30pz/V0KFDddNNN8lmsyk/P/+inxONhPbv3y+bzabvfve75hZhQ4cO1Q9/+EP9x3/8hz7//PNO55eXlyebzRazJVyiSEiSpk2bpn/6p3/SDTfcoClTpujPf/5zwt8ZAAAAAAAAAAAAAOv1WiT02saNZoQy7vnnY16bNG2abktN7XS1nT2Njcratk2/mzBBqbffbt4n0XinrCxp8PNEJ6sVXWwkdKnzigY+0xYsSDqX1BEjzO3AuhMJvThrVtJ5JRqTMzL6NhIyR0N8HNR4cVufEQmhv2lpabmstxs7evSo/H7/JY3GxsakYVBpaakaGxvl9/vl9Xrl8/ksj4Oio7KystPtxjqLd2bNmtWlbcCkL1YJ+sY3vqFHH31Up06dkiSFQiHZbDZt3779kp8TjYRycnKS/rsnmt/27dtls9nMkEjqPBKSpE8++USLFy/Wf/3Xf+lLX/pSzHZmAAAAAAAAAAAAAPqPXouEitxuM3RJSUnRrtramOMTpkzp9NrpCxeaAcuYsWOVsXy5Xtu4Ucs3b9byzZs1a+nSLkdCXVkVqKvX9MS8kgU+Hcedd98twzB09733dusez738cswKQdG5JRtv795tUSTUc4NICP1NOByW3W43o5uamhqrp9SpcDgcs9VYRUVFj9zX7/cnjIOcTqf8fn/MuRs3buxXW44Fg8FO31d0G7DJkyfHHO/KNmBRVVVVstls2rVrl3ksut1YNBK6lOdEtxt74YUXYs7zer2aOHFi0vklioTWrVtnRkLnzp1Te3u7jh8/LofDEXP/Rx99VNdff70AAAAAAAAAAAAA9D+9FgmdH6xk5uRoT2OjXvvHllxZ27Yljj2KisxrJk6dmvCcNYWFfR4J9dS8ooHPy/PnJ53Lxa4k9NLs2eYc3uqlf9fuDCKhxMLhsFpbW9Xe3m71VNCLOq4mVFBQoLKyMrW1tVk9rRgtLS0xMdOuXbvU2NiYNJLpqvMjoURxUJTdbpfD4bA8DupKJCRJzz//vK699lo1NDRI+iL6+eY3v9nlSCgQCOgrX/mKnnzySZ09e1aStGTJkphIqLPnfPWrX+3Sc6ZPn66vf/3r5rXhcFijRo3SvHnzkl6XKBIqLi6WzWZTe3u79u/frx//+Mc6cuSIvv3tb+vEiRPmeQ8//LDuuOOOpL87AAAAAAAAAAAAANbo1UhodX6+Gaw8/tRT2tPYqKcmTdJdI0fK4fEkvObl+fPNa3L37r3oGKenI6Gemlc08EmbMaPTeRQeOmTe53cTJnR6j0SR0Nw33jCvXb5pk2VxUHQM9kiora1NXq83Jgyprq42gwyPx2Me93g8KigokN1uV3NzsxXTRS+oq6uLCYUKCgp04MABtba2Wjqv5ubmmNWDoqO4uFgOh0MOh0NOp1O1tbVqamq6qGgoGgkli4OiXC6XSkpKLI+DAoGAampqVFtbm3S+p06d0jPPPKNrrrlG3//+9/XEE09oxowZ+n//7/+Z5+zYsUNDhgyRzWbTkCFDNGHChJh7FBUVaciQIbrhhhs0bNgwzZs3TzabTTfeeKNWrVoV95zvfe97Gj16tF566SVdeeWVGjp0qD7++GPl5ubGPCc3N1fSFyv+vPrqq/rhD3+om2++WTfffLPmz5+vc+fOJZyfw+HQ2rVrdeONN8pms+lnP/uZDh48KOmLwGjEiBH6yU9+optuuklFRUVqa2vThAkT9NOf/lSGYejnP/+5HnroIX366afd+6AAAAAAAAAAAAAA6BO9Ggk56ut118iRZrSyobRUw4YP15Q//KHTayZNm2aeX1BdnfCcVXl5fR4J9dS8ooHPQ48/3uk83tyxw7zPrGXLOr1Hokho49695rUXWq3oqUmTlHLbbVpXVEQkdJ5wONylsCGZjnFIxxiotbVVXq83biWh1tZWeTweVVdXx0RCXq9XZWVlqq+vVzgc7vLzs7Ozdd11111U3JHo2pqaGs2ZM6fb90L8aj0dVxbyer19tqJUW1ub3G63HA5H3Fz27Nmj0tJSMxBKNLobDUW3pOqKcDisc+fO6eTJkwoEAiouLjZHx4Cnt49v375dGzdulMvlSjrf48eP69SpUzHHxo8fr+HDh3fp/QIAAAAAAAAAAABAX+vVSGhPY6MmZ2SY0cqoBx80Y6HOzp+RmWmev2bXrsTnvPpqn0dCPTWvaOBjGIbecToTnjNhyhQZhqFhw4dr2/vvdysS2tPYqN88/bQMw9A9o0ap5PDhhOfkuVwaNny47h09Wo76eiKh84TD4S5tkXT+NR1Xh2lra1Nzc/MlByAtLS2qqKhQQUFBt1YYOnjwoKZMmaIzZ850+5mJrl27dq2uuuqqbt8LX2hvb49ZRSpRMFRTU6Pm5uYe25IsGqQdOHAgYRgUXbnK4/HI7/cnDYR6Ihrqjt27d5ujL4+/99578nq9F5xfenq6Zs+ebf7c3Nysr3/969qyZUuX3h8AAAAAAAAAAAAA9LVej4Q2OBxmFGMYhu5/6KGk5+fu2WOeO2bsWBUeOhTz+lulpbotNbXPI6Gemlc08Em57Tb9+rHHlF9ZGfP6onXrzHtMW7Ag6T06i4Q2vfeeOZe0GTPiIqDCQ4f0yNixMgxDr+Xm9mq8MxAioa7EQm1tbbLb7SorK7vkZ3fm/Nior1afiSIS6hnt7e2qrKzsNBY6P+CpqKjQgQMHVF9ff8FRUVFhBmVdubfH44lZnSoQCKi8vLzbsVBfREP9ze7du3XrrbfqV7/6lQzD0H//939rzZo1Vk8LAAAAAAAAAAAAADrV65HQnsZG3f/QQ2b4MnPp0guen754sXn+nXffrbQZMzQjM1Pjnn9ew4YPNwOX6JZac1eu1JY//lF7GhuVmZOjuStX6sFHHpFhGBr98MOau3Kl5q5cqbV2e9yzHPX15uuJrtnd0HDJ88qvrDTvN+LOO2UYhiZnZGjME08o9fbbNS4tTWkzZuiR3/7WvP7p3/9epUeOmM9OdI/fjh+vuStXasn69XHva63drjvvvluGYejXjz2m2cuWKTMnR1PnzdNd99zzxVZmXfi36O7YVVtrznPuypUa/Y9/+9Tbb485vqW8/LKLhJLFQg6HQ2VlZT22AsyFRLcg62z7sdzcXA0ZMkQ2m011dXWSpMzMTNlsNtlsNhUVFemXv/ylrr76av3oRz9SdXV10muXLFmi73znO/rSl76koUOHaujQoVq1alXvv9EBqKmpSU6nU6WlpSouLlZhYWGXop6eGHa7XdXV1WppaUk6x1AoJJ/PJ7fbTTQEAAAAAAAAAAAAAANEn0RCM5cuNeOXd//0py5dk7Vtm56cOFF33HWXhg0frjvvvlu/mzhRK7du1ZrCwpjViQzD0PLNm7WnMXY7r/NHopV3Sg4f7vR8wzDk8HgueV5vlZYmnEvJkSOavWyZHnr8caWOGKHUESP0yNixenXNmpg4aU9jY8J7RMeDY8Z0GuykL1qkhx9/XLePGKGUlBTdO3q0nps6VW/10r/55n37kv4+o+P1jRt7LRJa/+67cjqdMR90p9Npjq4c37t3b6eRUHQcOHBAJ0+elPTF6jCdBTu9oa2tTQUFBUm3Raqrq4sJfToeS01NVUNDg/72t7/p5ptv1tChQy94LSsJXZpAICCXy9VpUNOVrcG6O8rKylRdXX3JW5gRDQEAAAAAAAAAAADA5a9PIiEGo7dHx0ho5fr12rJlS8wHvWPc093jFxofffRRb39PE7Lb7TERz/mSRUKbNm0yj2VlZenKK6/UuXPnkl5LJHRxIpGI6uvrk8YzPp8v4bXt7e1qbW1Vc3OzPB7PBUdLS4taW1t7PVgjGgIAAAAAAAAAAACAy48tIytL2YWFlkceDMaljNc2bzYjobKKCrnd7pgPutvtNkdXjn/wwQcXjIM6bjvW3Nx8Wa0kdPDgQfNYXl6ebDabuSpSZ9cSCXWf3++X0+nsNJIpLy9XIBCwepqXjGgIAAAAAAAAAAAAAPo/W0ZWll77x1ZdDMblOjpGQh93sipLd4TD4S7FQdIXwY7dbldZWVmfhUIVFRWy2+1Jn5csEup4bPv27bLZbPr888+Tnkck1HWhUEhVVVVJY5hkgdfljmgIAAAAAAAAAAAAAPofW0ZWljLXrbM88mAwLmXMy8kxI6ETPRATJIqEzo+DOmpubpbdbpfH47nkZ3dFW1ub2trakp7T05HQunXrzEjo3Llzam9v76m3M6B4vd6k4UtlZaVCoZDV0+xTREMAAAAAAAAAAAAAYD1bNKzYWVNjeejBYFzM2OpymYHQ67m5PfLF6BgJ7d+/X8ePH7/gNW1tbTEr+zQ3N6ulpeWS59LS0qKamhqVlZV167qejoSKi4tls9nU3t6u/fv368c//vElvKuBJxAIJA1gkkVmg000GvJ4PHK5XERDAAAAAAAAAAAAANAHzEgou7DQ8tiDYe1Iue22bo/Zy5ZZPu+sHTvMSKikoqJHvhjhcFj79+/XyZMnL/oeBQUF5ugYD7W0tKi1tVWtra0x57e2tqq5uVn19fUxxx0Oh+x2u6qrq7v87NzcXA0ZMkQ2m01DhgxRbm6uduzYEXPM4XBo7dq1uvHGG2Wz2fSzn/1MBw8eTHht9HcyYsQI/eQnP9FNN92koqKii/7dDCSRSERutztpzOLxeBSJRKyear8ViUTk9/uJhgAAAAAAAAAAAACgF5mR0LycHJUcOWJ58MGwbmytqOj22FVba+mc7XV1ZiCUkZWlT88Lb6zW0tIStwVZx3ioo4qKCvN4x63ELrStGKzT1NQkp9PZabTicrkUCASsnuZlh2gIAAAAAAAAAAAAAHqe7fXcXDOwyNqxw/JQhcHozliRl2d+ft86L7rpr9ra2hKuJNTW1kYQdJkIBoOqqqpKGqc0NTVZPc0Bo2M0lGxLtwuN8vJyud1uHT16VKFQyOq3BQAAAAAAAAAAAAB9yvaxzxezEsumffssDz8YjK6MTfv2xXx2P/b5rP4+YYCLRCLyer1JQ5Ta2loClF4WCoXk8/nkdruJhgAAAAAAAAAAAACgi2yStKW4WB23HdtZU2N5AMJgJBvbDxyICYRKKiqs/i5hgAsEAkmDlPLycvn9fqunOSj1VDTkcrlUX18vv9+vSCRi9dsCAAAAAAAAAAAAgB5lk6TQ6dNavXVrTCi01eWyPARhMBKN81cQWr11q9XfIwxgkUhEtbW1SeMSr9dLVNKP9EY0BAAAAAAAAAAAAACXO1v0P04Eg8pcuzYmvlhfWqqSI0csj0IYjD2NjSo5ckQ5dnvMZ/T13FyFTp+28juEAaypqUlOp7PTiKSyslLBYNDqaeICeioaqqqqktfr5d8cAAAAAAAAAAAAwGXJ1vGHT1tbY1YUysjKUua6ddpUXk4sxLBslBw5orf37tW8nJy4FYRO8Md69IJgMCiXy9VpLOJ0OtXU1GT1NHGRQqGQmpqaVFtbmzQCSzacTqdqa2vV1NRENAQAAAAAAAAAAADgsmA7/0Do9Gm9VVAQE2NEx4q8PK0vLdWm8nJtr6xkMHptbCov1/rSUq3Iy0v4WdxSXMwKQuhxkUhEXq83aRxSW1vL1mIDTDAYvORoqLy8XG63W0ePHlUoFLL6LQEAAAAAAAAAAABAnLhIKOqQx/P/2bv/4Kjqe//j295erdN7ezu243TsnWut32qdzjDX1lumrT/auYcfEX9RFS2K2voTFH8E0AACgghCEAQR+RV+B0kiBEISkiywkRDX/IAENpBN4koSSYA0JrAQFrLA6/uHN6dZdpNsQsLZhOdj5j1Dzp4f77Occ/aP85rPRx/Gx4cMaFCUVfVhfLz2ud2X8x7BFaKhoaHdqahycnLU0NBgdZu4DLxerzwejwoKCro8NZnT6VRZWZnq6uqsPh0AAAAAAAAAAAAAkNROSEj6dlShzwoLg6Ygo6jLXUuTkggHoUf4/X4VFxe3G/jweDyMHnQFa2hokNvtbncKuo6qsLBQHo+HqckAAAAAAAAAAAAAWKbdkFBrx71e7XO79VlhoVIcDq1JSaGoHqsUh0OfFRZqn9ut47xURw+pqqpqd3qpgoICQh0I4Pf7VVdXJ7fb3e7IU+2Vw+FQcXExU5MBAAAAAAAAAAAAuKzCDgkBQF/h9XpVWFjYboijqqrK6jbRC/h8PtXU1KikpKTdwFl7lZOTw9RkAAAAAAAAAAAAAHocISEAVwy/3y+Px9NuYKO4uJipxdBlXq9XVVVVKigouKSpyaqqqgJGsaqrq1NpaSnXJgAAAAAAAAAAAIAuIyQE4IrQ0NDQ7vRQOTk5amhosLpN9DENDQ1yu91yOp1dHmWopKREhw4dksPh0OjRoxUfHy+Px2P1qQEAAAAAAAAAAADoZQgJAejT/H6/SkpK2g1ieDweRmhBj/P7/ebUZO0F1tqqFStWaPz48fJ4PGagraKiQrW1tRafGQAAAAAAAAAAAIDegJAQgD6rrq5ODoejzdBFQUFBwJROwOXUMjVZcXFxWCGhd999V/PmzTP/djgc2rp1q2JjYwNCbk1NTRaeFQAAAAAAAAAAAIBIRUgIQK925swZnT17NmCZz+dTYWFhm2ELh8OhqqoqizoGQqurq2t3arJXXnlFn3zySdDyt956S/Hx8crJydHatWs1YcIEnThxwtyv1+vVgQMHdOTIEQvPDgAAAAAAAAAAAIDVCAkB6JW8Xq/Wr1+vRYsWKTo6WoWFhZKkqqqqdkcPKi4uls/ns7h7oH0+n081NTUqLi6Ww+FQUlKSRo0apczMzKBrOjExUdHR0RozZozmz5+v9PR0ORwOlZSUaN++fRozZoy2b9+u7OxsLV68WMePH7f69AAAAAAAAAAAAABYgJAQgF7n7Nmzmj9/vjmtUnFxsV5//fU2R2BpGT2orq7O4s6BrklJSVFsbGzQNb527VqNGzdO0dHRWrRoUdB1P3PmTMXGxqqwsFBVVVXauXOnli1bZu43PT1deXl5TFEGAAAAAAAAAAAAXAEICQHodQ4fPqz58+dLkvx+vzwej6Kjo7Vt27aQASG32y2/329x10DXvf/++8rOzpbH45Hf71dNTY3ee+89TZ48WUlJSdqyZUvIe2DmzJlavHix+feiRYv09ttvq6ysTNXV1Vq4cKE2bNigSZMmKTY2VllZWQSGAAAAAAAAAAAAgD6KkBCAXuPYsWM6evSoJKm6uloNDQ3KycmR3W7X5MmTg8JBOTk5amhosLhr4NKcO3dOMTExWrx4sT7//HNzeX19vaRvp97zeDxauHChFixYEHAPbN68WVOnTlViYqKSkpL0+uuva/ny5bLb7crIyFB6erqKi4t16NAhLV68WEuWLNHp06etOlUAAAAAAAAAAAAAPYiQEICId/LkSa1bt04bNmzQuHHjtHPnTpWVlQWEId555x1z+qWNGzfK4/FY3TZwWfl8PmVlZammpkYlJSVKSUnR66+/ro8//lgLFy7U+PHjlZCQEHDfZGZm6qOPPtI777yjxMREOZ1OVVVVqaCgQBUVFVafEgAAAAAAAAAAAIBuREgIQETz+XyKjY3VyZMnJUn5+fkaP358QNBhy5YtmjNnjux2uxISEhQbG2tx14D1UlJStHTpUrndbjmdTk2dOlVr1qwx75tPP/1UMTExWrFiRdAoXImJiZowYYLKysrk9XolScePH7f4jAAAAAAAAAAAAABcCkJCACKaz+fT7Nmz5ff7VVxcrMTERM2ZM0ebN282Aw0rVqzQsmXLtGDBAsXGxppTkgFXss8//1wrV66UJJ0/f15vvfWW7Ha7iouLlZqaqtGjRys+Pj4oINRS06ZN0+rVq7V161bNmTNH48eP11dffWXuv7a2Vrm5uSovL9eFCxcsOksAAAAAAAAAAAAA4SIkBCDiVVdXy+FwKCUlRVOmTNHcuXM1duxYvf322+Z0SWPHjtWuXbsIKwCt2O12xcfHa86cOVq+fLnOnz8vSdq7d68mT56skpISORyOkCGhhIQEvfrqq4qOjtbixYuVmZkpu90uh8OhtLQ0vfbaa/riiy+0Z88eLVy4UN98843FZwsAAAAAAAAAAACgPYSEAESkyspKeb1eFRYWmqGFzMxMM6iQlpamV199Vbt375bL5WIqJKATjh49qsmTJ5uhoS+//FI5OTlyOp3KyMjQwoULFR0drZiYGC1ZsiTkKEPz588PGJlo2bJl5v7Xrl2r1NRUHTlyxKpTBAAAAAAAAAAAAHARQkIAIlLL1EhtVUlJiZYtW6bi4mKrWwV6paKiIq1atUobN27U+PHjVV1drfPnz2v69OlavXq1cnNztXnzZo0ZM8YM57XUrFmztHTpUvPv+fPna9q0aXI6nSotLTU/mzVrlqZNm6bU1FQ1NTVZfcoAAAAAAAAAAADAFY2QEICI4vP5lJubqzfeeCMoGJSWlqa0tDQ1NDTo2LFjWrJkiTkSCoCuOX36tM6ePWv+7ff7A/69cuVKrVu3LmBassTERL311ltau3at1qxZo1deeUXr1q0zP8/IyJDT6ZTL5dKiRYu0atUqnTlzxorTAwAAAAAAAAAAAPB/CAkBiAhpaWlKSUnRli1btG7dOr377rtBIaHi4mJNnDhRixYtUlpaWkCYAUDPOHXqlPbs2SNJqqurU0pKil5//XWtW7dOS5Ys0eTJk7Vly5aAe3Xr1q2KjY3VrFmzlJycLKfTqaqqKu3evVu7du2y+IwAAAAAAAAAAACAKxMhIQCW83q9SkhI0Ny5czVx4kS99NJLGjNmjObOnauVK1dq27ZtamhokCQdP35c586ds7hj4Mq1YsUKZWVlqaGhQW63W+PHj1dSUpIZEFqxYoViYmL06aefBgX9UlJSNG7cOH311Vfy+XySpKNHj1p8RgAAAAAAAAAAAMCVgZAQgMtqzpw5+uqrr8y/PR5PUJDg7bff1ooVK7R8+XItXbpUa9assbBjAK3l5OQoISFB0rehvdGjR+urr76S2+3Wpk2b9PLLLyslJSXovm6pWbNmaenSpUpMTNT06dM1depUNTY2Bh2HMCAAAAAAAAAAAADQvQgJAbhsDh48qNmzZ2vy5Mn65ptv5HQ6Q4YIoqOjtXv3bnm9XqtbBhBCbm6uNmzYoNjYWO3YscNcnpWVpcWLF8vtdisngh/uHgAAIABJREFUJyfk/R0XF6dRo0ZpwoQJWrt2bcB0grW1tfL7/SopKdG4ceMsPEMAAAAAAAAAAACg7yEkBOCySU1N1dmzZ/X222/r/fffDxkg2Lp1qyZPnmx1qwC6oLKyUrNnz9aFCxckSXv37tW+ffvkdDq1bt06TZw4UW+99ZYmT56sZcuWtTnaUGFhofbs2WPx2QAAAAAAAAAAAAB9CyEhAJfNiRMn5HQ6tXHjRo0cOVIbNmwICAY4nU7V1NRo3759VrcKoIsOHDigtWvXauXKlYqJidHZs2d1+vRpLVq0SLt27VJOTo6Sk5M1duxYZWVlhQwJvfvuu8rMzJTD4VBJSQmjigEAAAAAAAAAAADdgJAQgB5XWlqqL7/8MiAEsHDhQo0ZM0YZGRmy2+3yeDxWtwngMvF6vfrggw+0bt0685mQnJysmTNn6p133lFsbGxQcCgnJ0cej0c+n8/q9gEAAAAAAAAAAIBeiZAQgB7V2Nio6OjooBf+mZmZiomJ0YIFC1RbW6uamhqrWwVwGdXX16u2tlZer1cHDhxQdHS0FixY0OboQhdPR1ZbWyu/32/1aQAAAAAAAAAAAAC9BiEhAD3G4/EoKSlJkydPDnrJ73A4tGfPHo0aNUpr165lOiHgCnb48GFFR0fr2LFjKikpkcPh6DAo1PIcYToyAAAAAAAAAAAAIDyEhAB0u+TkZK1fv16bNm3SsmXLNG/evIAX+wUFBfL5fNqwYYMKCgqsbheAxZqbmzVp0iSdPHlSknTgwAEdOnRIxcXFYYWFWqYjq6qqYnQhAAAAAAAAAAAAoA2EhABckuzsbNXW1pp/Hzp0SCtWrFBsbKwmTpyokSNHauzYsZo9e7aWLl2qvLw8c91z585Z0TKACHTs2DFt2LBBK1as0NSpU83lfr9fVVVVcjqdjC4EAAAAAAAAAAAAXAJCQgC65Pjx41qwYIGWLl2qpqYm+Xw+FRYWBr2wnzBhgj755BMlJCQoKSlJW7dutbp1AL2U1+uV2+0Oezoyp9Op2tpaRhcCAAAAAAAAAAAAREgIQBd4PB5NnDjRHBWorq4u5Ev7rKwsvfbaa/J4PBZ3DKCvqampCXs6MofDIY/HI5/PZ3XbAAAAAAAAAAAAgGUICQHotKamJsXFxam5uVlOp1Pvv/++3nrrLc2bN08ZGRnmi/nMzEy99957VrcLoA/z+XzyeDzKyckJKzBUUlKihoYGq9sGAAAAAAAAAAAALjtCQgC6JD8/XwsWLNCMGTOUkpKiLVu2KCYmRjNmzJDdbpfH41FjY6NcLpfVrQK4QtTV1YU9ulBhYaHq6uqsbhkAAAAAAAAAAAC4bAgJAQjbmTNn5HK5VFZWJrvdrjlz5ighIcF86b5lyxaNHDlSNTU1VrcK4Arm8/nkdrtDToN4ceXk5Ki2ttbqlgEAAAAAAAAAAIAeR0gIQNhKS0s1c+bMNl+2u91uvf3222pqarK6VQCQJNXU1IQ1FRlhIQAAAAAAAAAAAPR1hIQAhKWmpkZxcXH64IMPAl6sp6amatOmTaqrq9OBAweUnJxsdasAEKShoSGsqcgICwEAAAAAAAAAAKCvIiQEoE0nT55URkaGtmzZos2bN2vOnDlasWJFwAv1goICTZ48WfPnz9euXbusbhkA2uXz+VRSUkJYCAAAAAAAAAAAAFccQkIAJElnz55Vamqq/H6/uezo0aOKi4vTrFmzNGHCBL344osaO3aspk+frgULFig3N1eSdObMGavaBoAu8fl88ng8cjgcHYaF6urqrG4XAAAAAAAAAAAAuGSEhADoyJEjeuedd5SWlqYLFy5IkjweT9DL8ujoaKWkpGjz5s3KzMzU3r17Le4cAC6N3+8PKyxUWFgon89ndbsAAAAAAAAAAABAlxESAq5we/fu1aRJk1ReXi7p29E1CgsLg16Qb9u2TWPHjpXb7Q4YbQgA+oJww0JlZWU8AwEAAAAAAAAAANArERICrnAej0dbtmyRJJWWluq9995TTEyM5s+fr6ysLPPF+MaNG/XBBx9Y3C0A9Cy/3y+3291uUMjhcKi2ttbqVgEAAAAAAAAAAIBOISQEQFlZWdq4caNmz56tbdu2KTk5WWPGjNHcuXNlt9tVUFCgI0eOqKKiwupWAeCy8Pl8KikpYQoyAAAAAAAAAAAA9BmEhIArnM/n0+eff66pU6dq69at5svvxMREjRo1Sh6Px+oWAcAyDQ0NKigoaHdUoaqqKqvbBAAAAAAAAAAAADpESAi4gjU0NMjhcIR88Z2Tk6MJEyZY3SIARISamhrl5OS0GRZyOp3yer1WtwkAAAAAAAAAAAC0iZAQcIXyeDxBL7lTUlKUlJSk4uJiORwO5ebmWt0mAEQMv98f8tnZuhhVCAAAAAAAAAAAAJGKkBBwhfH7/SosLAz5cjstLU1vvvmmFi5cqP3791vdKgBEJK/XK6fT2WZQqLi4WH6/3+o2AQAAAAAAAAAAgACEhIAriNfrbXN6MYfDIa/Xy4ttAAhTe6MK5eTkMP0YAAAAAAAAAAAAIgohIeAKUVVV1ebL7IKCAsJBANAFHY0qxPRjAAAAAAAAAAAAiBSEhIA+zu/3q7i4uM0X2B6Px+oWAaDXc7vdbT5nS0pKrG4PAAAAAAAAAAAAICQE9GVer1c5OTltTi/W0NBgdYsA0GfU1dW1OaVjcXExI7YBAAAAAAAAAADAUoSEgD6qpqamzZfVTqeTl9UA0AN8Pl+b04/x7AUAAAAAAAAAAICVCAkBfVBZWVmb09643W6r2wOAPq+kpISgEAAAAAAAAAAAACIKISGgD/H7/SouLm5zerG6ujqrWwSAK4bH4yEoBAAAAAAAAAAAgIhBSAjoI7xeb7tT3Hi9XqtbBIArTk1NDUEhAAAAAAAAAAAARARCQkAfUFdXJ4fDEfJFdHFxMS+iAcBCXq835DOaoBAAAAAAAAAAAAAuJ0JCQC/X1nQ2drtdHo/H6vYAAGo/KAQAAAAAAAAAAABcDoSEgF7K7/eruLg4ZDjI4XCorq7O6hYBAK20NfVYSUmJ1a0BAAAAAAAAAADgCkBICOiFvF6vnE5nyJfNTqdTXq/X6hYBACG0FRSqqamxujUAAAAAAAAAAAD0cYSEgF6mrq4u5JQ1drtdxcXF8vv9VrcIAGhHVVVVyGd4Q0OD1a0BAAAAAAAAAACgDyMkBPQibb1Yttvt8ng8VrcHAAhTSUlJ0HM8JyeHoCcAAAAAAAAAAAB6DCEhoJcI9ULZbrfL4XCorq7O6vYAAJ0UatpIt9ttdVsAAAAAAAAAAADoowgJARHO7/ersLAwZEAoJydHXq/X6hYBAF3g8/lCTh/JtGMAAAAAAAAAAADoCYSEgAjm9XpDjjRht9vldDqZlgYAerlQ00jm5ORY3RYAAAAAAAAAAAD6IEJCQIRqaGgIOcKE3W5XSUmJ1e0BALpJQUFB0HO+pqbG6rYAAAAAAAAAAADQxxASAiJQTU1NyHCQ3W5XVVWV1e0BALqRz+cLetYXFhZa3RYAAAAAAAAAAAD6GEJCQIQpKysLGQ5yOByqq6uzuj0AQA8oKSkJeu43NDRY3RYAAAAAAAAAAAD6EEJCQITw+/0qLi5uMyDk9XqtbhEA0EMYTQgAAAAAAAAAAAA9jZAQEAF8Pp+cTmfIgJDT6ZTf77e6RQBADws1mpDP57O6LQAAAAAAAAAAAPQRhIQAi3m9XjkcjpABoZKSEgJCAHCFCDWaUFVVldVtAQAAAAAAAAAAoI8gJARYqKamps2AkMfjsbo9AMBldvGock6n0+qWAAAAAAAAAAAA0EcQEgIsUlNTEzIcZLfbVVNTY3V7AHBFiYqK0qBBg2QYhgYOHKioqChFRUVp4MCBevzxx/Xee++prq6uR3vIzs7W4MGDZRiGhg8fzpRjAAAAAAAAAAAA6FaEhAALlJSUhAwHORwOeb1eq9sDgCvSzp07ZRiGEhMTzWWnT59WRkaGBg0apIcffliNjY092oPX69Xjjz8eEBIiOAoAAAAAAAAAAIDuQEgIuIz8fr+Ki4tDBoScTicBIQCwUKiQUIvZs2fLMAxt2LChx/sYMWJEQEiopKSkx48JAAAAAAAAAACAvo+QEHCZ+P1+OZ3ONgNCfr/f6hb7pFOnTsnlcpl16tQp8zOPx9Ojy7/++ms1NDT08BkC6C7thYQ2b94swzA0Z86cHu/j6aefDggJFRQU9PgxAQAAAAAAAAAA0PcREurlfGfPqqq2VlW1tcrbv1+7CgupCKzs/Hyt+fRTrUpMDKqN27ZZ3l841XKdHe9Fox2dO3dOVVVVWr9+vVmVlZXyer3yer3KzMy8LMudTqfVXwWAMIQTElq+fHnQZ998843ef/99Pfzww3rwwQf15JNPauXKlWpubg5Y78yZM1q+fLlGjBihRx55RI8//rimTZumL774ImC9v//97xo+fLgSEhL0zDPPKCoqSk899ZTS09ODjn3s2DF9/PHH+vvf/65HHnlEjz32mN566y199dVXAet98sknioqKkmEYmjx5srKzs/Xcc88pKipKjz76qFavXq3z5893+dwAAAAAAAAAAAAQ+QgJ9UK+s2eVt3+/1qakaPqSJRR12evD+Hhlff65jtbXW307hNTc3Cy/36+GhgZLq66uTtnZ2UpNTQ0YYag9CxYskM1mU1FRUVjrv/zyy7rhhht0ww03XMI3BkDqeLqxAQMG6MsvvwxYfvz4cT3++ON67bXXVP9/z0SXy6WHHnpIEyZM0IULF8x1586dq6eeekrHjh2TJJ04cUIxMTF6/vnnA/b53HPPadiwYXr66af1/vvva9GiRXrppZdkGIZcLlfAuhkZGXrwwQdVWloqSWpqalJsbKyioqJUWVkZdB5Dhw7VsGHD9Morr6isrExHjx7VihUrZBiG5s+f3+VzAwAAAAAAAAAAQOQjJNSL+M6e1a7CQsWuXGl5SISiWmptSkrEjS60f/9+JSYmWh4Sal3h+s1vfqPvfve7Gj16dNjbzJw5k5AQ0A1ChYROnTqljIwMvfjii/r888+Dtpk3b54Mw9DXX38dsDwxMVGGYQSMEvTII48oNjY2YD2Px6PJkycHLHvxxRdlGIZWrlxpTjm2d+9eGYahJUuWBKz7xRdfKCkpKWBZc3Oz7rnnnqDQj/RtSGjQoEFm6KfFuHHjZBhGQLCoM+cGAAAAAAAAAACAyEdIqJeorKlpMxw0d906LUhI0PK0NK3KyqKoHqkFCQlakJCgmXFxIa/DrBAvz62yf/9+rV+/3vJgUOs6d+5ch30XFxfr7rvv1oABA/TjH/9YZ8+eDet8CQkB3aMlJDRw4EBFRUVp0KBBMgxD999/v9LS0oLWv3DhgoYOHarhw4cHfeZyuYJG53nuued03333yW63tztd18iRI3XvvfeaASG73a6KigoZhqGZM2eGdS5PPfWUxowZE7R86NChGjlyZNDylunUNmzY0KVzAwAAAAAAAAAAQOQjJNQL7HO7QwaDNuzapXSXSzsqKijqslaS06klW7YEXZeJmZnyhRls6axwAzNS5IWEampqVFtb22Hfr7zyilatWqX169fLZrMpISEhaJ0zZ85o1KhRuvbaa3XrrbfqhRde0JQpU4JCQklJSbrzzjtlGIbuuusuRUVF6eDBg+bnsbGxstlsstls2rZtm+666y5dc801uvPOO1VdXa0tW7boxhtv1I9+9CONHDlS58+fD/v7B3qri0cSOn/+vIqLi/Xggw/KMAwVFBQErH/ixAkZhiHDMBQVFRVUAwcO1MSJE831S0tLNXz4cBmGoQceeEAzZszQ3r17g/oYOXKkHnvssYCQkMfjUVRUlN55552Adc+cOaMNGzbo+eef1wMPPGAe2zAMvfzyy0H7Hjp0aEBPLXbv3i3DMPTBBx906dwAAAAAAAAAAAAQ+QgJRbjM3NyAEEbs6tXasGuX5SERitpRUaF0l0sLEhICrtFln37aI0GhxMREJSYmKjk5WQ6HQ7t379aBAwdUXl6uuro61dXVSZIOHTqk/Px8eb1ey8NBLZWXl6f169e3e35nz57Vz3/+czU1Ncnn8+lHP/qRBg0aFLRedHS0rrvuOpWXl0uSCgsLdf311weFhB599NGAkNFHH32kG2+8UT6fz1zmcrlks9l077336quvvtLhw4f1q1/9SnfccYdeffVVNTY2aseOHfrud7+rjRs3dvW/Dug1Qk03JkkZGRkyDCNoGsCWIM2zzz4b9jHOnTun3NxcTZ8+3QzzzJo1K2CdkSNHasSIEWGFhN5++20ZhqGUlBQ1NTWZy59++uluCQl15twAAAAAAAAAAAAQ2QgJRbCLRxCau26dMktLLQ+GUNTFtSorK+BaXZuS0u33Q2lpqRkUCqesDgZ1NiSUlJSkZ555xvz7hRde0He/+119/fXX5rKmpiZdffXViomJCdh2xIgRQSGhmpqagNF/jh8/LpvNpry8PHNZS0iodSBi4sSJ+u53v6vjx4+by/r16xd0TKAvaiskdP78ef3tb3+TYRhyuVzm8pYpuYYOHRpyf19++WXAKGIXj8jV2Nio1157TYZhqKyszFweKiTkdruDQkKnTp2SYRh66aWXgo7dXkho1KhRQcvbmm4s3HMDAAAAAAAAAABA5CMkFKGO1tcHhC6WbNlieRCEotqrDbt2BVyzKQ5Ht94TJ0+eDCsclJCQoJycHMuDQa3L5XLJbre3e35RUVHavXu3+fcXX3whm80WEAjYt2+fbDabVq5cGbDttGnTgkJCpaWlGjFihG6//Xb1799fv/vd72Sz2bR582ZznZaQUOvpjmJjY3XdddcF7Ovuu+/Wiy++GO5/FdBrtRUSkqQdO3bIMAxNnjw5YPn8+fNlGIb27dsXsPz06dO6//77lZubay4bPHhwwGg/kpSWlibDMALuw1AhoYKCgqCQ0NmzZzVw4ECNHDkyYJ/Nzc2699572wwJDRo0SPX19QHLx40bJ8MwVFVV1aVzAwAAAAAAAAAAQOQjJBShPoyPZwQhqtfVup07A4JClTU13XpfpKSktBsQ2rhxo5qamrR//36tX7/e8nBQ6/L7/W2eV01Njf7t3/5N/fv3D6jvf//7uummm8z12goJTZ06NSAk1NTUpJ/+9Kd68skndebMGUmSz+eTzWZTcnKyuV5LSKj1yCixsbH62c9+FrD/u+++Wy+88EJX/suAXqW9kND58+f19NNPyzAMVVdXm8tPnDihJ554Qs8//7wOHz4s6dsRgiZNmqQxY8YEjB40cOBAzZ071wwKNTY26vXXX9fw4cPNe1UKPyQkSVOmTJFhGEpKStLp06fV2NioWbNmyTCMNkNCzz77rMaNG6fy8nIdPXpUK1askGEYmj9/fsC6nTk3AAAAAAAAAAAARD5CQhEob/9+M2QxMy6OgBDVq+qjjRu7ddqx5uZmHTp0SA6HQ0lJSW0GhJKTk9XY2ChJERkSunDhQpvnOGPGDM2ePTto+axZs2Sz2ZSdnS3pn9ONvfnmmwHrXTzdWGFhoWw2m1JTU81lLdONERICQouKitKgQYNkGIYGDhyoqKiogOn5JMlut5uf33vvvebyxsZGffDBB3r00Uf18MMP68knn9Ty5ct16tSpgO23b9+uiRMnavjw4XrkkUc0fPhwxcbG6tixY5KkoqIiRUVFyTAMGYahQYMGafXq1Zo3b54GDx4swzA0YMAARUVFqaGhQdK3o6wtWLBAjz32mAYPHqynnnpKmzZt0lNPPSXDMBQVFaXS0lKzh6FDh2ry5Mnat2+fRo0apaioKD366KNavXp1yNBPuOcGAAAAAAAAAACAyEdIKML4zp5V7MqVZshi3c6dloc+KKozle5yaWZcnHkN73O7u3QvHD58WLt37w5rirHWASFJ8ng8SkxMVE1NjeXhoMrKShUWFqq5ubnNc/31r39thgRaO3bsmP71X/9VTz75pLlszJgxuu6661ReXi7p20DQD3/4w4CQUENDg37wgx/o+eefN1/6z5s3j5AQ0IsUFBQEjSTUHVpCQgAAAAAAAAAAALjyEBKKMO5Dh8xwRezq1ZYHPqgrrMrLtLO8TDvL3dpR5tbO8jLtKC/TjvLyTu1nVVaWeR0nZmSEff03NjYqPz9fycnJQSGgvLw8HT58WDt27Gg3INTi5MmTOnnypBoaGuRyuVRQUKCCgoKA4FBPLy8qKlJycrKSkpJChoS++eYb/fa3v9U111yjP/7xj0Gf9+/fX9dcc42uvvpq8/MzZ87opZde0rXXXqtbbrlFw4YN0xtvvKGrrrpK/fv3V2VlpSRp27Zt6tevn2666SYNGDBAM2fOlM1m080336zFixdry5Yt6tevn2w2m/r16ye73a5p06bpv/7rv8x9nTx5UoMGDdK///u/67rrrtOIESPC/r8EcGkICQEAAAAAAAAAAKC7ERKKMCkOhxmuWJWVZX1ohLoyqrxMO8rc7dbO8rKw95fucv0z7LZyZbvX/KlTp1RUVKTU1NSgEYJ2796tQ4cOBQRsDh8+3GFAqLXz58/Lbrdr/fr1Wr9+vWpra+X3++X3+3t8eXZ2tpxOpzktEACEi5AQAAAAAAAAAAAAuhshoQjzYXy8Ga7YWlRkfXiE6vtVHiIUZI4gVHZRUMgd9qhCsatXm9dyZU1NwHV+6tQplZeXKysrKygYlJmZqfLy8jan5zp37py5bkcBIQDorbo7JBQfH6+BAwfKMAwZhqGBAwfq4MGD3dQtAAAAAAAAAAAAegNCQhGmJVQxfckS68MjVN+vkAEht3ZWVGhnRYV2VJSHHlkojH0vT0szr+XPCgvV3NysQ4cOaffu3UHBoNTUVBUVFenUqVNh3Sc7duxQVVVVD9+NAGCdnhpJCAAAAAAAAAAAAFcuQkIR5Gh9vRmqmLtunfUBEqpvV1tTjIUTEirvOCi0KivLvJ7Xb9mi5OTkgGBQcnKy8vLyujQa0IULF3rgDgSAyEFICAAAAAAAAAAAAN2NkFAEqaypMUMVCxISLAuPLE9JMacjubjuHzq03W3/MmxY0DYPPvSQJeeRtn+/RjzzjB586CHF79zZrftek5UVdJ5vzZ592fdxSRUq/BNuSKis42nH1u3caV7PC1etMsNBeXl5Onz4sNW3GwBErPr6euXm5iozM9Os3Nxc1dfXW90aAAAAAAAAAAAAejFCQhEkUkJCm774QtMXLtSb06cHBH2mL1yoWUuXtrttbFycpi9cqL8MG6Yh992n6QsXavby5Zacx8KEBLP/8TNmdOu+NxcUaMaiRZqxaJGG3HdflwI+3bGPrld74Z8wQ0IdTDuWnJ//z+t5zRodOnRIzc3NVt9mAGC5pqYmHTlyRGVlZcrNzVVubq7S09OVkpLSqWrZtqysTEeOHFFTU5PVpwYAAAAAAAAAAIAIRkgogkRKSKil7G637h86VIZhaMDAgdpcUBDWdqnFxRo0aJCiJ0+2tP/NBQV68KGHNGjwYMVt3dpjx3nwoYcuOeDTHfvoVLWeNqy87KIqbxUSqgjxeVmnQ0JrUlKsvr0AwFJHjhxRUVGR7HZ7p8NAnan09HTl5+erurqaYCYAAAAAAAAAAAACEBKKIJEWEtpRUaGYd981R+OZsWhRWNvExsXJMAytSEuzvH+7261tJSU9eozeHRIqMwNB4VbA6ELtHIOQEICecvz4cR09etTqNjpUX1+voqKiTo8S1DJCUKjqbGgoPz+facoAAAAAAAAAAAAgiZBQRInEkNCazEwzJPT400+Htc3fXnxRf3nkEW0vL7e8/8tRhIRCV28KCTU1Ncnj8aisrEzV1dUBy48cOaL6+nqm8QEsVllZqbVr12r69OkBtXbtWrndbqvbC1BfX99hoCc3N1dut9t8xnR21J/m5mbV19fryJEjcrvdHU5ZlpubG3FhoWPHjsnlcpnVWk8v/+qrr3Tq1KluPBsAAAAAAAAAAIDIR0gogkRiSGhHRYUe+etfzaDQhl272l13o9N5ecMuEVC9OyTUu6YbO3fu3CVt3xIGys/PDwgVVFdXB7xIb1FfXx9yuSSdOHGi08dfvny5rr/+enm93m7ZtqioSO+8806n94Ur2yeffKLbbrtNNpstKDgRiXw+n7KysoLCQRdXYmKifD5ftx77woULnVq/ublZ+fn5IUM6drtdLperS8+Ozjhx4oQ8Ho+ys7PbDAv1xDRknf2u/H6/vvzyS61fv94sr9dr1uVa7vF4uv276A4vv/yybrjhBt1www0Byy/ldyQc/K4AAAAAAAAAANC3ERKKIJEaEnp73jwzJDQpNrbddafNny/DMPRJdnbAcntZmZZs2qQxU6bosREjFDVkiAYOGqQHH35Yo8aO1dLNm0PuL/PgQfPYLfX8K69oR0WF1m3frpfGjdMDf/mL+dn9Q4e2u83F1dW+2gv4zFuzRk8+95yG3HefooYM0Yhnn9X7K1e2O7JSuCGhlL179dbs2WavUffco2HDh2vs228HfeftV6vRgC6ucnfoUYNCrHe5Q0KJiYnKz8/v8ugPR44cMV/Wtw4JNTc3t/nSvL6+3qxQ++nMC+Y9e/YoJiamS2GnUNuuXLlSV199daf3Bbhcrl4TEsrMzAwKBH344YdaunRpyFGFuktzc7OSk5N14MCBsEI1J06cCBnM2bt3b48Hg9rS1NQkl8sVNMKQ3W7v1p46812dOnVKzc3NamhosLRqamqUnZ2trKysbvseutvMmTODQkKX8jsSDn5XAAAAAAAAAADo2wgJRZBIDQkl5eaaYZu/DBvWbtjlsSee0PAQ05KNnzHD3MeosWP13pIlmrV0qcZMmaJBgwfLMAy9OX16yJDQw489pocfe0xR99xjBn6WbNqkQYMHa3BUlB58+OGAkJC9rEzTFy7U9IUL9egTT7QbEupqX20FfMZMmaKoIUM0cswYjZkyRSOefdbc/8joaGWVlnY5JBRH2OhxAAAgAElEQVS3dauG3HefDMPQS2PHKjYuTrFxcXolJkYDBgzQgAED9N6SJeH/315qSKii/enkeiok1FLhhIVOnDihkpKSgGXdMW1Yc3OzqqurzemCrMLLXHRVbwkJud3udkcL8vl8QSGivLy8bjl2c3Oz+bzpKADT3Nwsu90eEMRxuVwRM01hc3Oz3G53QH/p6end1l9nviun06mtW7daHhJqqePHj3fLd9ATQoWEehq/KwAAAAAAAAAA9G2EhCJIpIaEdlRUBIRdVqanh1wnfscOGYahGYsWBX32xjvvyDAMvb9yZdBnG3btUtSQITIMQx+sXdtmDy++/roMw9CIZ5/Vgw8/rNnLlyvz4EHtqKhQwq5dGnLffbp/6NCQ27QVEuqOvloCPsMef1x/feopbS4oCPh83urV5nc34b33uhQS+iQ72wwthep1UWKieYyPP/00vP/X1tOGdTYk1MEoQpcjJNRRWKj1aD89MbVOKEeOHGnzs/j4ePXr1y8gmBEbGyubzSabzaZt27bpT3/6k6655hrddttt2rt3b7vbzps3T7/4xS/0ne98R/3791f//v21ePHinj1B9BqfffaZ7rrrLhmGobvuukv3339/wJR5LSGh9q47SUpKStKdd95p7icqKkoHDx40P583b55uvfVW2Ww2xcfH6/bbb9f111+vW265RSkX3fcXLlzQzJkzddttt+nPf/6z/vCHP2jhwoXtTlMVGxtrhn8yMzPbXC8vL89cLzY2trNfV0itgy8dBWBaTzGWnp4eMPJYJKmvrw8YVejiaRS7qjPf1fbt25WRkWF5OKh1tefMmTMaNWqUrr32Wt18880aNmyY3njjDV111VXq37+/KisrA57lGRkZMgxDV199tfnM7ug+uvg4t956q1544QVNmTIlICQU6rdA6vjeCve3pr3flY6eKQAAAAAAAAAAoHcgJBRBIjkkNGvpUjOEMmbKlJDrjJ8xQwMGDAgKybSEcR7561/b3P+U99+XYRh6PMQoRBcHfgzD0LQFC4KPMW1al0JCl9pXS8DHMAx94nCEXOfV8eNlGIYGDByojU5np0NCTz73nAzD0N9efLHD72fY8OHtjvYUGBTqakio4/1frpBQW2Eht9ut7OzsyxYQqq6uVkpKSrtBoVCjt7Qsi4qKUnl5uf7xj3/ojjvuUP/+/TvclhEfEEpzc7P+4z/+Q3a73Vz26quvauLEiebfLdfTPffc0+519+ijjyohIcH8+6OPPtKNN94YMJqP3W6XzWbTkCFDdPr0aUnSrFmz9L3vfU+lpaXmeuPHj9cvf/lLffPNN5Kko0eP6vrrr9e8efNCnofP5wsI/rQ+Ziitpx+rrKzs6GvqUKjgS6gATHNzc8AIPZEaEGpx4sSJgKBQd0w7Fu53JUVeSKiysrLdoFB0dLSuu+46lZeXS5IKCwv1wx/+MGiEn5Z76n//93+1b98+NTQ0qF+/fnK5XGHdR6GOc/3117d5nNa/BeHcW+H+1oT6XQnnmQIAAAAAAAAAAHoHQkIRJJJDQil792rAwIEyDEND7rtPmRdNm2UvK9ODDz2kZ15+OeT26fv3K23fvjb3//Gnn5pBm/T9+9sNwQwcNCjkvraXl8teVtapkFB39NUS8Ak1zVpLLU9JMfcz9YMPOhUSit+509w2Ni6uzWPMWbHCXG91Rkb4/7+hgkIV5d9WeYiQUJgBpNYhoQVr1sjhcKixsdG83ouKiuRwODq1vL2QUGemIesp2dnZys/Pb/Pz9kJCGzZsMJctWbJEV111VcAIK4SEEK66ujrZbDZ99NFHActawgfSP6+n1sGFpUuXBl13NTU1On/+vPn38ePHZbPZAqb0agkJ5eTkmMv8fr9+8pOf6LnnnpMknTx5Ut///veDRvmJjo7W9ddfH/I8KisrzdDPmjVrOjzv1tOOxcfHm8+RrtbOnTs7fN4kJSUpLS2t20fm6WmtRz7Kysq6rN/Vzp07LQ8Gta6MjAxt37495PfU1NSkq6++WjExMQHLR4wY0WZ4Jz4+3lx27NgxnT17tsP7qCvHafktCPfeCve3JtTvSjjPFAAAAAAAAAAA0DsQEoogkRwS2lFRoedffdUMoXx0UX/LtmyRYRiat2ZNh/uxl5UpZc8effr550rKzVVSbq7mx8eb+07KzW03JPTXp54Ku+eOQkLd0VdLwCd60qQ29522f7+5n1BBqvZCQjMWLTK3/fCTT8zeLq7W05qFmvKt3Qo1WlCoKcbCHaHoopDQ+3FxSkxMVF1dnXm9OxwO8+VxZ5d3VK0DDJdTbm5uuyGB9kJCe/bsMZdt3LhRNpstIOxESAidMXHiRP3Lv/yLbrrpJsXExOjAgQMBn7dcT62nGgp13ZWWlmrEiBG6/fbb1b9/f/3ud7+TzWbT5s2bzXVaQkK1tbUBx+jfv79+//vfS/p2OjCbzaZf/vKX5jRG/fv3169//Wv953/+p06ePBl0Dvv27TNDPxdPXRbKZ599Zq7/8ccfh/28uNTauHGjGbi5eLq2SOVyucyeN27ceNm+q5awkNXBoHBDQvv27ZPNZtPKlSsDlk+bNq3N8E7rZ3mLju6jrhyn5bcg3Hsr3N+atn5XOnqmAAAAAAAAAACA3oGQUASJ9JDQgvXrzRDKyDFjAj57beJEDY6KanO0nR0VFVqyaZOeGz1aUffcY+4nVH2Snd1u4OfZNkYr6mpI6FL7agn4TJw1q91eooYMMacD60xIaNzUqe32FarenD698//H5eXaUV4WMLLQznK3dpaXdSocFCokFLdxo+rq6gKm/mpsbFRdXV2nlnf08tnpdOrUqVNqbm5WUVGRPB7PZbt/W6bwaR3iuVh7IaHWy5KTk2Wz2QKCE4SE0FmHDx/W3Llz9d///d/6zne+E3Lqofauu6amJv30pz/Vk08+qTNnzkj6dgowm82m5ORkc7vOhITi4uLC7v/o0aNm6GfZsmUdrp+YmGiun5eXZz5Hulq1tbXtPm82bdqkvLw8eTweM3Bjt9sv2xSHlyI7O9vs2ePxXLbvqra2VnV1dZYHg1pXbm5uyGCP1HZ4Z+rUqWFNAyaFdx9dynHCvbfC/a1p73elvWcKAAAAAAAAAADoHQgJRZBIDwltKykxgy6DBg1SanFxwPLRMTFtbvvW7NlmgGXEM89o+sKFWrB+vRYmJGhhQoKmfvBB2CGhcEYFCneb7uirvYBP67rvgQdkGIYe+MtfOrWPVydMCBghqKW39mrd9u2WXy+tQ0JrwhgFJBztjRx08RRjLdPpXK6gkMvlUnZ2drsBge4OCa1atcp8mXvhwgU1NTV15ymhl2psbJTdbg9Y9uSTT+rGG280/w7nuissLJTNZlNqaqq5Tss0SaFCQhdPN/bjH/84aLqxsWPHBvTl8Xj0yiuvtHkuLaGf6dOnq7Kyss31jh49qtjYWHPd48ePt7luuJqbm0M+b5KTk1VSUhJwr6enp5uhm6Kioks+dk8qKioye01PT++WUFNnvqvt27crIyPD8nBQ62pLyzRgb775ZsDycKYBaxHOfXQpxwn33gr3tybU70o4zxQAAAAAAAAAANA7EBKKIJEeEro4sBIbF6cdFRVa8H9Tci3ZtCnkNqu2bTO3eWX8+JDrrEhLu+whoe7qqyXgM+G999rtpasjCb0xbZrZw5qsLMuvgXDrcoSEQoWDWjQ3N2vv3r3tjuxzqU6cOBHwd0chne4OCWVkZMhms6mpqUl5eXn6zW9+c6mnhD6gtLRUP//5zwOCMo8//rjuvfde8+9wrruGhgb94Ac/0PPPP6/z589LkubNm9dmSOjRRx/V6dOnJUmzZs3S9773PZWWlprrvfXWW/rJT36i8vJySd/eow8//LBmzpzZ5rm0Hh3oww8/1NGjR4PWOX78uJYtW2aut2bNmk59X225OPgSKvDS4siRI2bwJiUlRbm5uREX2mtublZubm5An9XV1d2273C/q94UEpKkMWPG6LrrrjOv28LCQv3sZz8LOyQU7n0U6jg//OEPwzpOOPdWuL81oX5XwnmmAAAAAAAAAACA3oGQUATpDSGhpZs3m4GVp194QTsqKvTCa6/p/qFDZXe7Q24z4b33zG3id+7schinu0NC3dVXS8AnetKkNvtI27fP3M9zo0e3uY9QIaEZH39sbrtwwwbLr4FwqydDQu2Fg9rjdrtVVFSk6urqS3qB7/F4ZLfblZKSEhQUakt8fLz69esnm82mfv36KT4+Xlu2bAlYZrfbtXLlSt18882y2Wz6n//5H+3ZsyfkttK3L4KHDBmi3/72t/rd736nbdu2dfmc0HecOHFCo0eP1u233y7DMPSHP/xBw4cPNwM24V53krRt2zb169dPN910kwYMGKCZM2fKZrPp5ptv1uLFiyX9MyS0bds2/fGPf9T111+vW265RVu2bAno68KFC5ozZ45+/etf64477tAdd9yh9957TxcuXGjzXHw+nz788MOAEYWysrK0b98+lZWVKSsrK2AEodjY2G4ZRUj6Z/ClvcBLay6XKyCAk56erqKiIsvDQk1NTSorKwsY7SglJUV79+7ttmN05rtyu91KTEy0PBjU0NCgyspK7d+/v91zO3PmjF566SVde+21+tWvfqVnn31WkyZN0v/7f//PXOfie2r06NEB+wjnPmp9nFtuuUXDhg3TG2+8oauuukr9+/dXZWVlm78FHd1bnbnnQ/2udPRMAQAAAAAAAAAAvQchoQjSG0JC9rIy3T90qBlaWZuVpQEDByrm3Xfb3Oa1iRPN9VP27g25zuKNGy97SKi7+moJ+Ax/+uk2+1i2ZYu5n6nz57e5j1AhofU7d5rbdjRa0QuvvaZBgwdr1bZtll8rPRESKi0tlc/n6/L2brfbfFFeX19vLne5XCopKVFZWVnAC/3q6mrl5uYqNzc3IAzkcrmUn5+v6urqbpmqB+jNWkJC//jHP3pk/xdPJdZe7du3r9uOe+7cOR06dEh+vz/sbaqrq4PCOCkpKZY8L44cORIwtVjr6u5pGDvzXTU3N+vs2bPyer1qaGiQy+VSQUGBCgoKVFNTYwZ4enp5Xl6eEhMTlZaW1u7/S2Njo86cOROwbNSoURo4cOAlf28AAAAAAAAAAACXGyGhCNIbQkI7Kir05vTpZmjl4cceM8NCba0/KTbWXH9FamrodebMuewhoe7qqyXgYxiGPnE4Qq4zOiZGhmFowMCB2vTFF23uI1RIaEdFhf724osyDEMPPvywMg8eDLnORqdTAwYO1F+GDZO9rMzy66QnQkLd5cSJEwEvhV0uV5vhoZaQ0JEjR6xoFYh4PR0Skr6dUmzNmjVthoOWLl0aMaOanDhxImhar4sDQ2VlZQHPmu5QX18vj8ej/Pz8kEGllmnQuvu4l+L8+fOy2+1av3691q9fr9raWvn9fvn9/h5f/vnnn8vpdHYY3JoyZYqmTZtm/l1dXa2f/OQnSkxM7OmvBwAAAAAAAAAAoNsREoogvSUktNZuN0MxhmHokeHD210/fscOc90RzzyjtH37Aj5fk5WlwVFRlz0k1F19tQR8Bg0erL8+9ZQ2FxQEfP7+qlXmPibOmtXuPtoKCW347DOzl+hJk4JCQGn79umJZ56RYRhaEB9v+TUS6SEhAN1j3rx5uvXWW2Wz2fTb3/5Wdru9R49XWVmpvLw8paSkKDExUZ999pkqKyt79JhdVV9f325YqKWys7OVm5uroqIilZWVqaysTEeOHFF9fX1QHTlyxFynpKREubm5ys7O7vAYkRYO6k22b9+uu+++W3/+859lGIZ+//vfa8WKFVa3BQAAAAAAAAAA0CWEhCJIbwkJ7aio0CPDh5vBl7c/+KDD9afMnWuuf98DDyh60iRNio3VyDFjNGDgQDPg0jKl1oxFi5S4e7d2VFQoNi5OMxYt0mNPPCHDMDTs8cc1Y9EizVi0SCvT04OOZS8rMz8Ptc328vJL7mtzQYG5vyH33SfDMPTm9Oka8eyzirrnHo2Mjlb0pEl64u9/N7d/8fXXlVVaah471D7+PmqUZixapHmrVwed18r0dN33wAMyDEN/feopTZs/X7FxcRo/c6buf/DBb6cyC+P/gpAQAFw+TU1N8ng8YYV5urPsdrtcLlfAVIkAAAAAAAAAAAC4shESiiC9KST09gcfmOGXTz//PKxtlmzapOdfeUX33n+/BgwcqPseeEDPvfKKFiUlaUVaWsDoRIZhaOH/fQetp/O6uEKNvJN58GCb6xuGIbvbfcl9rcnKCtlLZmmpps2fr+FPP62oIUMUNWSInnjmGc1ZsSIgnLSjoiLkPlrqsREjQn6HqcXFmvL++3r86ad1z5AhGjRokP4ybJheHT9ea9qZ8s3qkFDcxo1W314AYLmmpiZVV1fL5XJ1e2goOztbe/fuVXV1NcEgAAAAAAAAAAAAhERIKIL0ppAQRXVUSU6neT3Pi4tTamqqioqK1NjYaPWtBgAR48SJE6qvr5fH49HBgweVnp6utLQ0paamKjU1VTt27FBubq5yc3OVn58vt9stt9stj8djTkMGAAAAAAAAAAAAhIOQUAQhJET1pVqVlWVez4tWr1ZiYqJZWVlZKi8v16lTp6y+7QAgYjQ0NMhutwdUQ0OD1W0BAAAAAAAAAACgjyAkFEF8Z8+aoYqZcXGWhzwo6lKqdUjI/vnnKikpUWpqakBYKDExUbt379ahQ4fU3Nwc9r1SX1+v8+fP9+DdCACXn8fjCQoJAQAAAAAAAAAAAN2FkFCEaQlVTF+yRJmlpZYHPSiqq/XRxo3mtbzP7Tav8cbGRhUVFSk5OTkoMJSfn6+ampoO75OW0YgAoC8pLi4OCAgVFBRY3RIAAAAAAAAAAAD6EEJCEWZNSooZrNiwa5flQQ+K6mq1Drwd93pDXu+HDx9WXl5eUFgoOTlZ+fn5amxsDNrm5MmTAaGijpw6dUoul8us1lOceTyeHl3+9ddfM1UQgLA5HI6AkJC7VcASAAAAAAAAAAAAuFSEhCJM3v79ZrBiyZYtlgc9KKorleR0mtfx0qSkDq/75uZmHTp0SLt37w4KDKWmpurAgQNm+KaoqCho9KG2nDt3TlVVVVq/fr1ZlZWV8nq98nq9yszMvCzLnU5ntz0jutPLL7+sG264QTfccEPA8uXLl+v666+Xt41w16UqKirSO++80yP7Bnorn88XNNVYOCOrAQAAAAAAAAAAAOEiJBRhjtbXB4zAku5yWR74oKjO1oKEhH9Om5eb26l74NSpUyovL1dmZmZQYCgrKytoWaigUHNzs06fPq2GhgZLq66uTtnZ2crKygoYYSiSzJw5MygktGfPHsXExOjcuXM9csyVK1fq6quv7pF9A71VXV1dUEjI5/NZ3RYAAAAAAAAAAAD6EEJCEaj1lGMLEhIsD3xQVGdqw65d5vUbu3Jlm1ONhaOxsVFFRUVKTU0NGQ5qKyi0f/9+JSYmWh4Sal2RKlRIqKcREgKCud3ugICQw+GwuiUAAAAAAAAAAAD0MYSEItBxrzdgNKENu3ZZHvygqHAq3eXSzLg489r9rLCw2+6Lurq6DsNCLUGh/fv3a/369ZYHg1pXe6PynDlzRqNGjdK1116rm2++WcOGDdMbb7yhq666Sv3791dlZaViY2Nls9lks9mUkZEhwzB09dVXy2azyeVyKSkpSXfeeacMw9Bdd92lqKgoHTx4sM3j3HrrrXrhhRc0ZcqUgJBQfHy8+vXrZ+63xYULFzRz5kzddttt+vOf/6w//OEPWrhwoS5cuCBJAf1t27ZNf/rTn3TNNdfotttu0969e839zJs3T7/4xS/0ne98R/3791f//v21ePFiSdJnn32mu+66yzyH+++/X7mdHIkK6K0KCgoCQkIFBQVWtwQAAAAAAAAA+P/t3XtslXWe+HE2v2R2k01mk81kspndP3YyO7ObTGI2exmzm0k2m33kongbbwzgZdR1HBTlMg4q3hAQ8cLFexEBUcpNhBYolIMUrQWhqGg70qKdAbRUsVNugwUqfH5/OD3L4RSsCjzt6euVfP/w6cNzPud4TvvHeef7ABQYkVAXVV5VlRMKLd64MfUAxLJOtsq3bIlJc+bk7CLUeujQKftMfP7551+6m9CCBQuioqIiNm7c2KUiocbGxti5c+cJn9uIESPiu9/9bmzdujUiIjZt2hTf/va383b4qampiV69esX//M//xDvvvBMtLS1x1llnRU1NTVxxxRUxf/787LlPPvlkfP/738+5XVFHj/O9733vhI9zbCR0xx13xA9/+MP4wx/+EBERH3/8cXzve9+LyZMn5/27fv36xdatW+PTTz+Nn/70p3H22WfnXL+jnYQOHz4cf/VXfxWZTCZ77NZbb43Ro0ef8HWDQnL8rcYaGhrSHgkAAAAAAIACIxLqwqYtXJgNLiY891wsXL8+9RDEsjpaHQVCHzc3n9LPw0cffdSpSKh9NTc3px4Hta8NGzZEcXFxh8/rwIED8ed//udx++235xy/8sorTxjvzJkzJ3vsk08+iUOHDkVjY2McOXIke3zPnj3Rq1ev2LBhw9d+nPZIaP/+/fEXf/EX8fDDD+ecN2LEiPje976X9+/mzZuXPVZUVBTf+ta3sjsORXQcCe3atSt69eoVTz75ZM6x9qAJCtm+ffvyIqGufJtCAAAAAAAAuieRUBfWeuhQPH5MeDGuqCheXLMm9SDEso5dizduzLnF2Liioninru6Ufx7WrFnTYQy0ePHiqKioiNWrV8err74aL7/8cixcuDD27t2behzUmUjonXfeiV69esXMmTNzjt9///0njHfefPPNvOts2bIlrrzyyvi3f/u3OPvss+MnP/lJ9OrVK5YsWfK1H6c9EtqwYUP06tUrfvjDH2ZvEXb22WfHj3/84/i7v/u72L9//wnnW7RoUfTq1Sv++Mc/Zo91FAlFRIwePTr+3//7f/GDH/wgbr/99vjtb3/b4WsGhWb79u15kVBbW1vaYwEAAAAAAFBgREJd3MfNzTk7Co0rKoqHZ82yq5CV+iqrqYmikpKc9+bpCoSOHj0aGzZsiNra2ti6dWvs2rUrdu/efcLz//jHP8a+fftSj4PaV01NTc5ttI51onhnzJgxnboNWMQXuwT9zd/8TVx11VVx8ODBiIhobW2NXr16xeLFi7/x47RHQs8999wJX/MTzbd48eLo1atXNiSKOHEkFPHFjlGTJk2Kf/7nf44/+7M/y7mdGRSq2tranECosrIy7ZEAAAAAAAAoQCKhbqD10KGYXVqaF2M8PGtWFJWUxEvr1sXi6uoo37Il9XDEKty1uLo6FldXx/OrVuXcWux03mLs63r33XejuLg49Tjo2HWiXUHabwM2atSonOOduQ1Yu02bNkWvXr1i2bJl2WPttxtrj4S+yeO0327s17/+dc55DQ0Nccstt5x0vo4ioVmzZmUjoaNHj8aBAwdi9+7deSHVVVddFd///vcDCt369etzIqHa2tq0RwIAAAAAAKAAiYS6kVc3bYqHZ87MizMsK+1VWlERe/btS/sjktUVI6GjR4+ecN6RI0fGd7/73di6dWtEfBH9/O3f/m2nI6GWlpb4y7/8y7jhhhviyJEjERExefLknEjoRI/z7W9/u1OPc9ddd8V3vvOd7L89fPhwXHrppTFhwoST/ruOIqGVK1dGr1694sCBA7Fhw4b4l3/5l9iyZUv8/d//fezZsyd73qBBg6J///4nfN2gELS1teXdamz79u1pjwUAAAAAAEABEgl1M62HDomFrC6zFqxcGdsaG9P+WORpaGiIBQsWRGNjY+px0LZt22LTpk1x+PDhE8578ODBuOmmm+Kv//qv45/+6Z/i+uuvj7vvvjv+4R/+IXtOSUlJnHXWWdGrV68466yzYujQoTnXWLFiRZx11lnxgx/8IM4555yYMGFC9OrVK370ox/FM888k/c4//iP/xiXX355/OY3v4lvfetbcfbZZ8e2bdtizpw5OY8zZ86ciPhix59HHnkkfvzjH8dPf/rT+OlPfxoPPvhgNn46fr5MJhMzZ86MH/3oR9GrV6/493//93jzzTcj4ovA6Lzzzot//dd/jZ/85CexYsWK2Lt3bwwdOjT+7d/+LZIkif/8z/+MgQMHxscff3xK3xvQ1bS0tORFQi0tLWmPBQAAAAAAQAESCXVjHzc3R3lVVcwuLY3ZpaXCIeu0rvb3WWlFRdT9/vfReuhQ2h+Bk9q/f3/s378/WlpaoqamJqqrq6O6ujonHDrdx99+++1YvHhxLFy48KSR0O7du+PgwYM5x4YMGRK9e/c+3S8TkLKGhoa8SAgAAAAAAABOB5EQfAO1tbV5X+42dsGddXqyI0eORCaTieLi4iguLo6dO3dGW1tb9hY/p/P42rVrY/369V+6K8i9994b999/f/a/d+zYEd/5zndiwYIFp/vlAVK2efPmnL8h1dXVaY8EAAAAAABAgRIJwTfQ2tqaFwlVVFREW1tb2qPRjaxevTr+67/+K/77v/87kiSJ//iP/4gZM2akPRZwBlRUVOT8Damrq0t7JAAAAAAAAAqUSAi+oY5uFdPQ0JD2WAB0cR2FpnajAwAAAAAA4HQRCcE31NbWlrcTRCaTidbW1rRHA6AL27Vrl78dAAAAAAAAnDEiITgFGhsb877ora2tTXssALqwurq6vNtVAgAAAAAAwOkiEoJTZP369XmhUEtLS9pjAdBFVVdX5/zNqK6uTnskAAAAAAAACphICE6RlpaWvEho06ZNaY8FQBd1/N+MhoaGtEcCAAAAAACggImE4BQ6fleITCYTjY2NaY8FQBezb98+u88BAAAAAABwRomE4BRqbW3N+9K3srIy2tra4ujRo/H555+nPSIAXcD27dvz/l60tbWlPRYAAAAAAAAFTCQEp1hdXV3eF7/r1q2LBx98MFauXJn2eAB0AbW1tXlBKQAAAAAAABKVSSkAACAASURBVJxOIiE4xdra2qKioiLny98VK1ZEc3Nz3HHHHbFv3760RwQgZevXr8/5O1FbW5v2SAAAAAAAABQ4kRCcBr///e9j1qxZ8cwzz8QLL7wQy5cvj9ra2njllVdizpw5aY8HQIra2trydpzbvn172mMBAAAAAABQ4ERCcBpMmzYthg8fHo8++mg89thj8cADD8S4ceNi0aJFMWzYsNi5c2faIwKQkpaWlrxIqKWlJe2xAAAAAAAAKHAiITjFPvvss7j77rvjww8/zPsSuLy8PMrLy91WBqAHa2hoyPv7AAAAAAAAAKebSAhOsc8//zxmz54dERHV1dV5XwTv2rUr5QkBSNPmzZtz/i5UV1enPRIAAAAAAAA9gEgIToPy8vKoqamJDz/8MMrLy7NfBK9YsSKefvrpmDdvXjQ1NaU9JgApqKioyImE6urq0h4JAAAAAACAHkAkBKfB0aNHo7i4OCZNmpSzm9Do0aNj1KhRMX/+/HjiiSeEQgA9TGtra94Oc42NjWmPBQAAAAAAQA8gEoLT7ODBg7Fw4cIoKyuL3/zmN1FeXh4VFRXR2toaxcXFaY8HwBnU2NiYFwm1tramPRYAAAAAAAA9gEgITqPPP/88xo4dG6NHj4577703xo8fn3N7maKiojhw4EDaYwJwhtTV1eUEQhUVFWmPBAAAAAAAQA8hEoLTaNu2bfH444/H4cOHo7KyMiZOnBgrVqyITCYTixYtivvvvz92796d9pgAnEZHjx6NV155JX73u9/FG2+8kQ2EZsyYEatXr46DBw9GW1tb2mMCAAAAAABQ4ERCcBp99tlnMXfu3IjIv8XMypUrY+PGjSlPCMDptn///hg6dGjcdtttceONN8aoUaNi4sSJcdddd8WGDRvitddei48++ijtMQEAAAAAAChwIiE4zVatWhWVlZWxdevWqK6uzgmFMplMtLS0xJ49e9IeE4DT6P3334+nnnoqlixZEs8//3xMmjQpbrnllhg6dGjceuutcfTo0bRHBAAAAAAAoMCJhOA0O3r0aLz00ktRXl4eLS0teZHQ+vXr49577439+/enPSoAp9Hrr78e48aNi5UrV8aKFSvikUceicOHD8eLL76Y9mgAAAAAAAD0ACIhOMM2b96cEwmVlJTEmDFj0h4LgNOstrY2iouLY9y4cTFnzpyYPXt2RERs2bIl5ckAAAAAAADoCURCcIbt3r07xo4dG88++2yUlJREUVFRPPbYY9HW1pb2aACcRpWVlZHJZGLu3LkxbNiweP3119MeCQAAAAAAgB5EJARn2JEjR6KioiImTZoUo0aNiiFDhsTYsWNjzZo1QiGAAtTS0hJ79uzJ2UVu6dKlsX379rRHAwAAAAAAoAcRCUEK2traoqKiIlatWhXDhw+P6dOnx4QJE+LOO++MNWvWpD0eAKfISy+9FCNGjIibbropnn/++Zg3b1489NBD8fTTT8fHH3+c9ngAAAAAAAD0ICIhSEljY2PMmzcvxowZk91Zora2Ng4ePJj2aACcAs3NzbFo0aKIiHjrrbfivvvui3vuuScmT54cd955Z0yfPj3lCQEAAAAAAOhJREKQoieffDKKiopybkHT0tKS9lgAnALvvPNOvPvuuxERUV1dHePGjYvy8vLIZDKxcePGePzxx1OeEAAAAAAAgJ5EJAQpWrt2bZSWluZEQps2bYq2trbYsGFD2uMB8A3s3LkzxowZE+vXr49nnnkm7rzzzuzv+rq6uli4cGHaIwIAAAAAANCDiIQgZdXV1TmRUCaTicbGxpg5c2bs27cv7fEA+AY2btwYjzzySEyaNCkef/zxeOCBB+KFF16IkpKSePnll9MeDwAAAAAAgB5EJAQpa21tzQmElixZEuPHj49bb73VLhMA3djq1aujtrY2GhsbI5PJxIoVK2LChAkxcuTImDZtWhw6dCjtEQEAAAAAAOhBRELQBdTV1UVZWVlMmjQphgwZEhMnToyamppYvXp1HDhwIO3xAPgaxowZE9OmTYsnn3wyVqxYkY1BKyoq0h4NAAAAAACAHkgkBCk7cuRIVFRUxNChQ+Oee+6JRYsWZb9EbmtrS3s8AL6GgwcPxp133hkREQsWLIg777wzFixYEJlMJqqrq1OeDgAAAAAAgJ5IJAQpOnr0aIwfPz7uvffenFuOta/a2tq0RwTga6ivr4+ioqKIiMhkMlFaWhr33ntvTJ06Nd5///2UpwMAAAAAAKAnEglByurr62P69OlRXV0dlZWVeaHQRx99lPaIAHxFK1eujFWrVkVLS0vO7/RnnnkmHnroofjkk0/SHhEAAAAAAIAeRiQEXcS+ffti165deZHQqFGjYv/+/WmPB8BX8O6778asWbPizTff7DD+fOONN9IeEQAAAAAAgB5GJARdTHV1dfaL5JKSkrj99tujpaUl7bEA+Bpqa2tzAqHKysq0RwIAAAAAAKCHEglBF9La2hpPP/10PPvss1FSUhJFRUUxZcoUXyoDdFPH30aytrY27ZEAAAAAAADooURC0IUcOXIk6uvrY9q0aTFq1KgYMmRIjB07NubMmRMNDQ1pjwfAV7Bs2bJYtmxZTiS0ffv2tMcCAAAAAACghxIJQRfU2toaa9asieHDh8f06dPjgQceiBEjRsTq1avTHg2ATiovL49x48ZlA6Hly5fHggUL4siRI2mPBgAAAAAAQA8kEoIuqrKyMsaMGZOzA8W7776b9lgAdFJDQ0OMHj06Zs+eHTNnzowRI0ZERUVFHD16NO3RAAAAAAAA6IFEQtBFlZSUxIwZM3IioUwmE62trWmPBkAnVFdXR3Fxcdx4441xzz33REVFRdojAQAAAAAA0IOJhKCL2rRpU9TV1eUEQmVlZTFv3rzIZDKxZ8+etEcE4CSmT58eI0aMiLFjx8bEiROjrq4u7ZEAAAAAAADowURC0MVVV1dHJpOJ0tLSGDlyZNx2221RXFwcjz/+eHzyySdpjwdAB4qKimLcuHGxdOnSKC8vj9tvvz3Wr1+f9lgAAAAAAAD0YCIh6OJaWloik8nE5MmTY8KECbFq1apYv359tLW1RXFxcdrjAdCB999/P2cnuIULF8Z9990XR44cSXs0AAAAAAAAeiiREHRhn332WRw6dCg2b94cDz30UJSUlGS/cG5sbIzHHnssDh06lPaYABzn+NtFVlRUREtLS9pjAQAAAAAA0IOJhKALKysri5KSkmhtbY25c+dGUVFR9gvnRYsWxUMPPRQHDhxIe0wA/qS5uTmWLVsWL774YqxcuTL7O7u6ujrt0QAAAAAAAOjhRELQhR06dCjuuuuuaGlpiYaGhpg8eXJMmjQpMplMlJeXR0NDQ9ojAvAnra2tMWHChJgzZ0785je/ifvvvz8bCfl9DQAAAAAAQNpEQtDFrVu3LqZNmxZlZWXxyCOPRGlpac7taz7++OO0RwQgIjZs2BANDQ3R0tIS5eXlcdddd8XSpUsjk8m41RgAAAAAAACpEwlBF3f06NEoLi6ODz/8MLZv354NhNrX7bffHvv37097TIAer7y8PLZt25b9XT19+vQYO3ZszJs3L7Zv3x4ffvhh2iMCAAAAAADQg4mEoJuprKzMBkIlJSVx++2326ECoAvYsmVLTJkyJd5+++3s7+lly5ZFeXl5LFiwIObPn5/2iAAAAAAAAPRgIiHoRlpbW+PJJ5+MZ599NkpKSqKoqCimTJkSmzZtSns0AP7k2Jgzk8lEbW1t2iMBAAAAAACASAi6kyNHjkR9fX089dRTMWrUqBgyZEiMHTs25syZEzt37kx7PIAer62tLe+2kNu3b097LAAAAAAAABAJQXfU2toaq1atiuHDh8f06dPjgQceiJEjR8aaNWvSHg2gR2tpacmLhNwSEgAAAAAAgK5AJATd1OrVq2PMmDE5X0Rv2bIl7bEAerSGhoa8SAgAAAAAAAC6ApEQdFMlJSUxffr0nC+iKyoqoq2tLe3RAHqs6urqnN/L1dXVaY8EAAAAAAAAESESgm5r06ZN8c477+R8GV1WVhYLFy6MTCYTe/bsSXtEgB6noqIi5/dyXV1d2iMBAAAAAABARIiEoNurrKyMTCYTpaWlMXLkyLjttttiwYIF8fjjj8cnn3yS9ngAPUZra2vercYaGxvTHgsAAAAAAAAiQiQE3d6uXbsik8nE5MmTY8KECbFq1arYtGlTtLW1RXFxcdrjAfQYjY2NeZFQa2tr2mMBAAAAAABARIiEoFv77LPP4tChQ1FdXR0PPfRQlJSUZL+YbmlpicceeywOHTqU9pgAPUJdXV1OIFRRUZH2SAAAAAAAAJAlEoJurKysLEpKSqKlpSXmzp0bRUVF2S+nFy1aFA8//HAcOHAg7TEBeoTq6uqcSKi6ujrtkQAAAAAAACBLJATd2KFDh+Kuu+6KlpaWqK2tjcmTJ8ekSZMik8lEeXl5bN++Pe0RAXqM42811tDQkPZIAAAAAAAAkCUSgm5u3bp1MW3atFi2bFk88sgjUVpamnOrm7a2trRHBCh4LS0teZFQS0tL2mMBAAAAAABAlkgIurmjR49GcXFxfPjhh9HQ0GAnC4AUbN++Pe/3r0gTAAAAAACArkQkBAWkra0tKisr876obm1tTXs0gIJWW1ub83u3srIy7ZEAAAAAAAAgh0gICkxjY2NeJLR58+a0xwIoaMcHmrW1tWmPBAAAAAAAADlEQlCA1q9fnxcKtbS0pD0WQFa/fv2iT58+kSRJ9O7dO/r16xd9+/aNvn37xi9+8YuYN29efP755xERMXfu3OjXr18kSRL33HNPypP/n7Vr12bnGjhwYM7v3O3bt3+ja3fV5wwAAAAAAED3JRKCAtTS0pIXCa1fvz7tsQByrFmzJpIkiQULFmSP/eEPf4ipU6dGkiQxbty4nPMvvvjiLhnM3HDDDXmR0KkKM7vqcwYAAAAAAKD7EQlBgdq8eXNeKNTY2Jj2WABZHUVCERFHjhyJa6+9NpIkifr6+uzxrhrMXHvttXmR0KnSVZ8zAAAAAAAA3Y9ICApUa2trXiRUWVkZbW1taY8GEBEnjoQiIh5++OFIkiQWL16cPdZVg5mrr746JxKqrq4+Zdfuqs8ZAAAAAACA7kckBAWsrq4uLxRqaGhIeyyAiOhcJLRkyZLssY6CmU8++SSefvrpuPbaa+Oyyy6LAQMGxF133RW/+93vOnzMlpaWmDx5cgwYMCAuvfTSuPLKK+O+++6LysrKnPP+8Ic/xKOPPhqXXnppXHTRRXHVVVfFzJkz4/Dhw3nXHDx4cAwcODDmz58f1113XZx77rlx9dVXR1lZ2QlnmDRpUnaGwYMHx4wZM6K1tTXvXJEQAAAAAAAAp4pICApYW1tbVFRU5ERCFRUVHX4RDXCmdeZ2Y1u3bs0e7yiYWblyZVx00UWxZcuWiIg4cOBAPPzww9GvX7/Ytm1bzrl79uyJQYMGxZAhQ2LXrl0REdHU1BRDhgyJ/v375503bNiwaG5ujoiImpqauOSSS+LOO++Mo0ePZs9tbW2NQYMGxeWXXx7XXHNNPProo7F06dIYOnRoJEkSNTU1Hc5w8803x6effhoREQ0NDXHFFVfEsGHD4vPPP885XyQEAAAAAADAqSISosfZvWdfbNuxs8esjZs2x6LFS3PW2tfWpT5XIa+mT5rTfptDt9BRJPTpp5/GlClTIkmSeOCBB3LO7yiYeeONN2LhwoU5xw4fPhznnntuTJ06Nef45MmTI0mS+OCDD3KOv/feezmRUPt5H374Yc55CxYsiCRJ4o033sgea2xsjEGDBkWSJDFz5szIZDLR2toa27ZtiyRJoqioqMMZ3nvvvZzjpaWlebdXO9FzBgAAAAAAgK9DJETB27ZjZ5S/si6mPlMc9z80zbLO2Jo4dVaUlK2NzTX10XrwUNofBehy2iOh3r17R79+/aJfv35x7rnnxvXXXx8LFiyII0eO5Jz/VYKZq6++OkaOHJn976NHj8bFF18cl112Wd65R44ciTfffDPnvIEDB+adV1NTE0mS5MRHdXV1MWjQoOjfv392t7b2ayZJEhMmTMib4eKLL867dnNzcyRJEsOGDfvazxkAAAAAAABORiREwdpcUy8MsrrMmjh1Vrxa9aZYCI5xotuNnUhHwczBgwdj3rx5ccMNN8SFF16YjY2SJImbb745e97evXsjSZK48cYbT/oY7eclSZK91rGrd+/eMXr06Oz51dXVMWjQoBgwYEBkMpmorq7O/qxfv34xduzYvGtff/31eY975MiROOecc+Lyyy//0ucMAAAAAAAAX4dIiILT9ElzPD936UlijdkxpWiBZZ229cgTJ47TJk6dFZtr6tP+mECXcCoiofvuuy+SJInS0tI4cOBA9vg111zTYSTUUaBzrM6e1y6TycSgQYNi4MCBkclkoqGhIfuzE0VC1113Xd51REIAAAAAAACcbiIhCsq2HTtj4tRZOVHG+Eefi2kvrogFS9+IzLoGyzpja0nmnZi9sCImTp2dFwuVv7Iu7Y8LpO6bRkJ//OMfI0mSuOmmm/LOPT4SOtmtvo4ePRq7du2Kw4cPn/S8iIgPPvggdu7cGRERLS0teZFQS0tL9tzjI6HO3G5s+PDhJ33OAAAAAAAA8HWJhCgYm2vq8+KgGXMzsaKyPvVYxLKKl7yeFwuVlK1N+2MDqfqmkdChQ4eid+/e8atf/SrnvMOHD0f//v1zIqGIiMmTJ0eSJPHee+/lHH/rrbfi3HPPjT/+8Y8RETF16tRIkiTeeeednPM+++yzuOCCC6KqqioiIrZv354XCbW1tWXPPz4SOnaGmpqanOOlpaWRJEksWbLkpM+53dq1a6Ouru4bHwcAAAAAAKDnEAlRELbt2Jl3S7ElmXdSD0Ms69i1orI+Hp/+slAI/uRU3G7s3nvvjSRJYuHChfHZZ5/F7t27Y+LEiZEkSV4ktGfPnhg0aFDcfPPN8emnn0ZExEcffRTXXnttzJgxI3ve3r17Y/DgwXHDDTfERx99FBERu3fvjrvvvjtGjhwZR44ciYiI2tranEiosrIy5/E6ioTaZxgyZEjs2rUrIiJ+97vfxYABA2LYsGE5kdGJnvN7770XSZLEBRdcEEePHv3axwEAAAAAAOhZREJ0e02fNOfcYuyRJ4rtHmR16fXUzNKcUGhzTX3aHyM44/r16xd9+vSJJEmid+/e0a9fv5g7d26H586dOzf69esXSZLEOeecE/369YstW7ZERMT+/fvjscceiwEDBkTfvn3j6quvjpdffjmuvvrqSJIk59yIL24RNmnSpLjiiivi0ksvjWuuuSYWLlyYDX/a7d69O6ZMmZI976qrrorp06dndxuKiJg9e3b2OSRJEn379o0tW7bEqlWr8uY99jZkx88wePDgeO6556K1tbVTz7m5uTkGDBgQo0ePzpn5qx4HAAAAAACgZxEJ0e0VzVqUs4OQQMjqDuv4UGj3nn1pf5SAr6CtrS0ymUzO2r59e9pjAQAAAAAAwAmJhOjWNtfUZyOL8Y8+5xZjVrdajzxRnH3/LllekfbHCfgKWlpa8iKhY3cLAgAAAAAAgK5GJES3NvWZ/4ssZszNpB59WNZXWUsy7+TsJrRtx860P1JAJzU0NORFQgAAAAAAANCViYTotuq2/j5nFyG3GbPO6Kr6IDJV78fqY1Zm3Qdf+TrH3nbMbkLQfVRXV+cEQtXV1WmPBAAAAAAAACclEqLbWvnKumxcMe3FFelHI1bPWFXvx+qqrZF5/SSr6v1OX+/Y3YSmPlOc9scK6KSKioqcSKiuri7tkQAAAAAAAOCkREJ0W8feamzRyjfTj0esgl+rq94/Lgb6UxDUvo7/WSevO/7R57Lv5aZPmtP+aAFforW1Ne9WY42NjWmPBQAAAAAAACclEqLbao8q7n9oWurxiNUDVke7B1VtjdXrGmL1uobIrPsg7+erOxkKHXvLsc019Wl/tIAv0djYmBcJtba2pj0WAAAAAAAAnJRIiG6p6ZPmbFTxyBPF6QckVmGv43cJ6mQk9EUo9OW3HpsxN5N9P699fVPaHy/osfbu3Rs7duyI+vr62LhxY1RVVUUmk4nS0tIvXWVlZVFVVRUbN26M+vr6aGhoiL1796b9lAAAAAAAACBLJES3tG3HzmxUMaVoQfoRiVXQa3VHuwh1MhL64rwPTnp9kRCk48CBA9HQ0BBVVVVRVlbWqRjo66yqqqqor68XDQEAAAAAAJAqkRDdkkjIOmOr6mTxT+cioS/bTWjRyjez7+d5L5en/fGCgnb48OFoaGiItWvXnrYo6GQrk8lEbW1tHDhwIO2XAgAAAAAAgB5GJES31JlIaPJTL8a946dESWZz+qFJF1tn4rW5ZcSdkSRJdpVXbk39eX+dtbr9VmNVHa33s5HQ6nUfdHzO61u/2InoJI9xbCT0/NylaX+8oCAdOHAg3n777S8NeDZu3Bh1dXWxY8eOaG5u7nTMc+DAgWhubo4dO3ZEXV1dbNy48UtvVfb222+LhQAAAAAAADhjREJ0S52JhK674eZIkiTmlryeemjS1daZeG2WV/w2SjKb45LLBnTrSKg99MkNgjq3cnYXOsljiITg9Kqvrz9hqLNx48bYsWPHaYt1Dh8+HE1NTfHWW2+d8JZmtbW1p+WxAQAAAAAA4FgiIbolkdA3W2fytbn0sp+LhERCkIrDhw9HVVVVXpRTVVUVO3bsiMOHD5/xmZqamjqcae3atXYVAgAAAAAA4LQSCdEtiYS+2RIJfYV1TCSUWfdBzlq97oP8KChnvS8SghStXbs2Lw5qbm5Oe6yI+OL2ZBs3bsy73Vka4RIAAAAAAAA9g0iIbulkkdDDj82KJEk6XP97460xc255zrHxDz8dc15+NW741a1xXv/zs8fHPfR0znnHBjWj7noge7xP3745j9/R9V9YuCau/d+bol+/c6P/+RfGsF/fHUtfqTlhNPLsC8vihl/dGv3PvzD69O0bl1w2IP73xlvjwcnTY9ma2ux5KyvrY/JTL8avhv46LrlsQPTp2zf6978grv/l0Jg2uzTvul/22hx77rTZpXH9L4fGef3Pjz59+sbPLrk8Ro4aEwuXb8i7bvnr78eER6fFFT+/Mvr07RsXXnxJ3HbH2Fi6puYbRUKn4rWc/uLy/3st+3zxWo66a3y8vPLNL32sOS+/GjfcmPu+WFHx2/8Lf6q2drxr0PGrSiQEZ1pdXV1OgNPQ0JD2SB1qamrKuQ3Zxo0b0x4JAAAAAACAAiUSols6WSS04rW6KMlsjl9c96tIkiSen5+JkszmKMlsjqVramLJqs3x6BMvxNDhd0SSJHHbHWPj4ksuizvvnRgPTp4eg6+6LpIkiaWra3Kuc2wktHzte1GS2ZyNeI59/OOvP/L2MXHZ5T+Pe8ZOigceKcpe/1c3/7rDYGTsg09GkiQxdPgdsXD5hih7dUu88NKa+MX1QyJJkpjw6LT/i0tWVH9xraG/jnklVbHi1bqYX7oubh15VyRJEpOeeOErvTbHzzBq9Ph4qWxjLFtTG9Nml8Yll14R5/U/P15ctDbnusNvuycbGj37wvKYNW9V3DN2Ulxz3Y3xs0su/9qR0Dd9Lcc//EXodcuIO2Ph8g2x4rW6ePaF5fGzSy6PCy/6WcxdUnnCx8p5X0yaFoOvuvbrR0LrPhAJwRl2bCC0Y8eOtMc5qaamppx59+7dm/ZIAAAAAAAAFCCREN3Sqbjd2IRHp32xE1CfvjmxyPzSddHv3PNixWt1X3qdjiKh46/f79zz4qWyjTmBUf/+F0SSJFGS2Zy7m828L3azGTDwqih//f2cn5Wufjf6nXteTiS0uPytuOLnV8byte/l7exz+YDBcf4FF3UY55zsOc2atyqSJInrf3nLCXf2GXTltdljT89cEkmSxOUDBmdfs2xsNPHJ7A483+R2Y1/ntXx+fibOOeec+Pmgq/Ney+fnZ/70Ol+Z97MO3xdVW2P+ksov3hdr3/tKkdDqL9lFSCQEp15zc3M2uFm7dm3a43TKsbce6+pREwAAAAAAAN2TSIhu6VRGQkOG3nbSgOObRkI3DxuV97Prf3lLJEkSs+atyjnevovN2IlPdnjN8Q8/Hc++sKxTYc3QYbdHkiRRvPi1r/Sc2mc4fhei9tV+6615JVWRWdcQQ265LZIkiTETHs87d9ma2lMaCX2V1/KWEXee9LW87IqBkSRJFD1f0qn3xeqqjm8j9qU7CVWdfBchkRCceg0NDd3u9l3H3h6trq4u7XEAAAAAAAAoQCIhuqVTGQndff+k0xoJ3TM2//rtAc/0F5fnHL/ksgGRJEk89dyiTgc0c15+NYbfdk9cPmBw9D//wjiv//lxXv/zo3fvPpEkSTxXvOIrPaf2Gfqde172Wseuc845J5IkiSemvxSZdQ3Z24mdaObzL7jolEVCp/K1/NXNI7+45rjJnXtfVH2QHwpVtd9K7IPIrHu/g0Do/U49P5EQnFrH7iSUyWTSHqdT1q5dm525qakp7XEAAAAAAAAoQCIhuqVTGQmNf/jp0xoJdXT99l1ujt8VqH2XnmdfWH7SmdrXsy8siz59+sYFF14UDz82K4oXvxYLl2+Ihcs3ZCOY5+aUfaXn1D7DlKeLs9fqaLXf4uzLZr70sp+fskjoVL6Wt4wYHUmSxKi7xn+190VHOwp1dIuxTuwgJBKC06esrCwb3bz99ttpj3NSx+58VFpaGgcOHEh7JAAAAAAAAAqQSIhuKY1IaF4H1+nbt98pjYS+6k5Cg6+6LpIkiclPzTnhY3zVSKh9hsemze/UDGdyJ6FT+Vp+2U5CJ31fVH3QcSxU1fndg0RCcHodH95s3LgxDh8+nPZYOQ4fPhy1tbU5c7rVGAAAAAAAAKeLSIhu6UxGQr+8aUQkSRIvLFyTc7x09TuRJMkpjYSGDr8jkiSJsQ8+2eE1pzwzNyd66d//gkiSfMXwxwAACzlJREFUJOa8/GreuUNuue1rRULts9015pETzvCL64fEsjW1OY8zZsLjeecuXVMTSZKkEgm1v5b3P/hEh9e87IqBkSRJFD1f8rXeF3nR0Nd8biIhOH3eeuutnAAnk8lEQ0NDl4iFduzYEZlMJme+tWvXpj0WAAAAAAAABUwkRLfUmUjopltHRZIk8eKiisisa4i5Sypj4OBrsjsCdTYGueOeiZEkSTz6xAs5xx+aMuOUR0Kz5q2KJEni54OujvLXc3ekeXnlpujdu088OOnZ7LGBg6+JJEli0pO5sy1f+15cdPGlJ4yETvbaPD8/E0mSxMU/uyx7S7H2teK1uhgw8Kr45U0jsseenrkkkiSJywcMjpWV9Tnnj534VGqRUPtrOWDglXmvZfvPrvh5/s++7H3x+LT5MezXd8f80nWn7GciITh96urqckKc0tLSKCsri9ra2ti7d+8ZnWXv3r1RX1+fFweVlpbGW2+9dUZnAQAAAAAAoOcRCdEtdSYSGv/w09ldeZavfS9uv3tCXHDhRbG84r1Y+kpN3P/gE3/aAeexWPpKTV4Q075eXLQ2zundOy65bEA8N6csXirbGJOfmhO/HDI8+ve/IPr07fvFv6/4bWTWNUT56+93eP1VVR9EeeXWWPpKTdw87PbsrbDad+TJhjUPPhlJksQtI+6Mhcs3xIpX62LWvFUxcPAv4upf3BArXq3Lnjv1mbmRJEmcf8FFMeXp4nipbGM8v2B1XP/LW+Kcc3pHkiTx9MzFsXRNTadem/Zrt//8uhtujjkvvxYrXquLOS+/Fr8cMjwuuvjSWLSiOud6w2+7J5Ikif+98dZ4bk5ZPD8/E/eOnxKXXHpFXHDhF7cbK139Tt5z/bJ1ql7LocNu/+K1fK0upr+4PH52yeVxwYUXx5yXX/vSxzr+fdGv37nZ/z/Hz/t1fyYSgtOrqampwzCnfXeh2traaGpqigMHDpzSxz18+HA0NTVFbW3tSR+/qanplD4uAAAAAAAAdEQkRLfUmUho+dr3Yvht98QFF14cffv2i8FXXRczilfG/KXrsrvbHLs6ijfa11PPLYqBg6+JPn36xgUXXhy33TE2lq2pjf7nX5j997+4fkhk1jWc8PqLy9+KZ19Ylnf8vP7n5z3etNlL439vvPWLCKlP37h8wOC4Z9zkDiObabNL45prb8yeO3DwNfHgpGezt9tKkiT6n39hp16bY8959oXlccOQYdH//AujT5++cdkVA2PU6PHx8so3O4x5HnikKC4fMPhPr9FFMXT4HbGorDouvezn2TkGDLzyK0VCp/q17N27T1xy6RVx253jYvFxz6Oz74tht90d557XPx6bNj/vsb7uz0RCcGZ0dIuvjqKdqqqqqK2tjfr6+mhqaorm5uacFRF5x5qamqK+vj7q6+ujqqqqU4+zY8eOlF8RAAAAAAAAehKREN1SZyIhy+oua8HSN7Lv53kvl6f98YKC19TUFG+99VaUlZWdNOQ51ausrCzeeustOwcBAAAAAACQCpEQ3ZJIyCqkNWNuJvt+Xvv6prQ/XtCjNDU1RV1dXVRVVZ2WMKiqqipqamqEQQAAAAAAAKROJES3tHvPvmxU8eDU2alHHpb1TZZICLqOvXv3RnNzc9TV1WXjoeNXe/xz/Gr/N83NzbF37960nwoAAAAAAADkEAnRbbVHFfc/NC31yMOyvsl6fPrL2fdy3dbfp/3RAgAAAAAAAKAAiYTotopmvpQNKxYsfSP10MPq3Bp01bWdWg8/NjP1Wc/UGv/ojOx7efeefWl/tAAAAAAAAAAoQCIhuq2Vr6zLhhVPzSxNPfSwrK+zFix9I/s+nvpMcdofKwAAAAAAAAAKlEiIbqvpk+acW44tW1ObevBhWV91TSlakH0Pr3xlXdofKwAAAAAAAAAKlEiIbu35uUvtJmR127Vo5Zs5oZtbjQEAAAAAAABwuoiE6Na27diZE1ksWPpG6uGHZXVmraisj/GPzrCLEAAAAAAAAABnhEiIbu/Y3YTGPzojlmTeST0AsawvW488WZx9306cMjNaDx5K+6MEAAAAAAAAQAETCdHttR48FEUzXxIKWd1iraisjylFC3J2wNq2Y2faHyMAAAAAAAAACpxIiILQ9ElzTJwyMycUKl7yeupBiGUdu5Zk3snZQej+h6bF5pr6tD8+AAAAAAAAAPQAIiEKxvGh0P0PTYspRQvsKmSlvlZU1sezL67IeW/e/9C0WPv6prQ/NgAAAAAAAAD0ECIhCsruPftybj3Wvh55sjhmv7Q2Fq14M/VgxOoZa0nmnShe8no8Pv3lGP/ojJz348QpM6Nu6+/T/rgAAAAAAAAA0IOIhCg4rQcPxZLlFXmhkGV1hfX83KXR9Elz2h8TAAAAAAAAAHoYkRAFa/eefWIhq8usqc8Ux7YdO9P+WAAAAAAAAADQQ4mEKHitBw/F5pr6WLK8Ip6fuzT1WMTqGato5kvx/Nyl8Ub1u7F7z760PwYAAAAAAAAA9HAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHAiIQAAAAAAAAAAKHD/H4GUF3YRXxnVAAAAAElFTkSuQmCCAA==" alt="" />
0x2: 前馈神经网络(feed-forward neural network):full connected MINST
1. 构建图表 (Build the Graph)
在为数据创建占位符之后,就可以运行mnist.py
文件,经过三阶段的模式函数操作:inference()
, loss()
,和training()
。图表就构建完成了
.inference() —— 尽可能地构建好图表,满足促使神经网络向前反馈并做出预测的要求
.loss() —— 往inference图表中添加生成损失(loss)所需要的操作(ops)
.training() —— 往损失图表中添加计算并应用梯度(gradients)所需的操作
推理(Inference)
inference()函数会尽可能地构建图表,做到返回包含了预测结果(output prediction)的Tensor。
它接受图像占位符为输入,在此基础上借助ReLu(Rectified Linear Units)激活函数,构建一对完全连接层(layers),以及一个有着十个节点(node)、指明了输出logtis模型的线性层。
每一层都创建于一个唯一的tf.name_scope之下,创建于该作用域之下的所有元素都将带有其前缀。
with tf.name_scope('hidden1') as scope:
在定义的作用域中,每一层所使用的权重和偏差都在tf.Variable实例中生成,并且包含了各自期望的shape
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
例如,当这些层是在hidden1作用域下生成时,赋予权重变量的独特名称将会是"hidden1/weights"。
每个变量在构建时,都会获得初始化操作(initializer ops)。
在这种最常见的情况下,通过tf.truncated_normal函数初始化权重变量,给赋予的shape则是一个二维tensor,其中第一个维度代表该层中权重变量所连接(connect from)的单元数量,第二个维度代表该层中权重变量所连接到的(connect to)单元数量。对于名叫hidden1的第一层,相应的维度则是[IMAGE_PIXELS, hidden1_units](显然,第一层的输入是图像像素维度),因为权重变量将图像输入连接到了hidden1层。tf.truncated_normal初始函数将根据所得到的均值和标准差,生成一个随机分布。
然后,通过tf.zeros函数初始化偏差变量(biases),确保所有偏差的起始值都是0,而它们的shape则是其在该层中所接到的(connect to)单元数量。
图表的三个主要操作,分别是两个tf.nn.relu操作,它们中嵌入了隐藏层所需的tf.matmul;以及logits模型所需的另外一个tf.matmul。三者依次生成,各自的tf.Variable实例则与输入占位符或下一层的输出tensor所连接
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
logits = tf.matmul(hidden2, weights) + biases
最后,程序会返回包含了输出结果的logits
Tensor
损失(Loss)
loss()函数通过添加所需的损失操作,进一步构建图表。
首先,labels_placeholer中的值,将被编码为一个含有1-hot values的Tensor。例如,如果类标识符为“3”,那么该值就会被转换为:
[, , , , , , , , , ]
code
batch_size = tf.size(labels)
labels = tf.expand_dims(labels, )
indices = tf.expand_dims(tf.range(, batch_size, ), )
concated = tf.concat(, [indices, labels])
onehot_labels = tf.sparse_to_dense(
concated, tf.pack([batch_size, NUM_CLASSES]), 1.0, 0.0)
之后,又添加一个tf.nn.softmax_cross_entropy_with_logits操作,用来比较inference()函数与1-hot标签所输出的logits Tensor。
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits,
onehot_labels,
name='xentropy')
然后,使用tf.reduce_mean函数,计算batch维度(第一维度)下交叉熵(cross entropy)的平均值,将将该值作为总损失。
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
最后,程序会返回包含了损失值的Tensor。
注意:交叉熵是信息理论中的概念,可以让我们描述如果基于已有事实,相信神经网络所做的推测最坏会导致什么结果
训练
training()函数添加了通过梯度下降(gradient descent)将损失最小化所需的操作。
首先,该函数从loss()函数中获取损失Tensor,将其交给tf.scalar_summary,后者在与SummaryWriter(见下文)配合使用时,可以向事件文件(events file)中生成汇总值(summary values)。在实验中,每次写入汇总值时,它都会释放损失Tensor的当前值(snapshot value)
tf.scalar_summary(loss.op.name, loss)
接下来,我们实例化一个tf.train.GradientDescentOptimizer,负责按照所要求的学习效率(learning rate)应用梯度下降法(gradients)。
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
之后,我们生成一个变量用于保存全局训练步骤(global training step)的数值,并使用minimize()函数更新系统中的三角权重(triangle weights)、增加全局步骤的操作。根据惯例,这个操作被称为 train_op,是TensorFlow会话(session)诱发一个完整训练步骤所必须运行的操作
global_step = tf.Variable(, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
最后,程序返回包含了训练操作(training op)输出结果的Tensor
2. 训练模型
一旦图表构建完毕,就通过fully_connected_feed.py
文件中的用户代码进行循环地迭代式训练和评估
3. 训练循环
完成会话中变量的初始化之后,就可以开始训练了。
训练的每一步都是通过用户代码控制,而能实现有效训练的最简单循环就是:
for step in xrange(max_steps):
sess.run(train_op)
向图表提供反馈(根据误差逐级传递)
执行每一步时,我们的代码会生成一个反馈字典(feed dictionary),其中包含对应步骤中训练所要使用的例子,这些例子的哈希键就是其所代表的占位符操作。
fill_feed_dict函数会查询给定的DataSet,索要下一批次batch_size的图像和标签,与占位符相匹配的Tensor则会包含下一批次的图像和标签。
images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size)
然后,以占位符为哈希键,创建一个Python字典对象,键值则是其代表的反馈Tensor
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
这个字典随后作为feed_dict
参数,传入sess.run()
函数中,为这一步的训练提供输入样例
这里简单理解一下前向反馈
前馈就是信号向前传递的意思。BP网络的前馈表现为输入信号从输入层(输入层不参加计算)开始,每一层的神经元计算出该层各神经元的输出并向下一层传递直到输出层计算出网络的输出结果,前馈只是用于计算出网络的输出,不对网络的参数进行调整。误差反向传播用于训练时网络权值和阈值的调整。网络前向传播计算出来的结果与实际的结果存在误差,在离线训练时,这时网络采用批量训练方法计算出整个样本数据的总误差,然后从输出层开始向前推,一般采用梯度下降法逐层求出每一层神经元的阈值和权值的调增量,循环迭代到网络参数符合要求停止
检查状态
在运行sess.run函数时,要在代码中明确其需要获取的两个值:[train_op, loss]
for step in xrange(FLAGS.max_steps):
feed_dict = fill_feed_dict(data_sets.train,
images_placeholder,
labels_placeholder)
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
因为要获取这两个值,sess.run()会返回一个有两个元素的元组。其中每一个Tensor对象,对应了返回的元组中的numpy数组,而这些数组中包含了当前这步训练中对应Tensor的值。由于train_op并不会产生输出,其在返回的元祖中的对应元素就是None,所以会被抛弃。但是,如果模型在训练中出现偏差,loss Tensor的值可能会变成NaN,所以我们要获取它的值,并记录下来。
假设训练一切正常,没有出现NaN,训练循环会每隔100个训练步骤,就打印一行简单的状态文本,告知用户当前的训练状态
if step % == :
print 'Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration)
状态可视化
为了释放TensorBoard所使用的事件文件(events file),所有的即时数据(在这里只有一个)都要在图表构建阶段合并至一个操作(op)中
summary_op = tf.merge_all_summaries()
在创建好会话(session)之后,可以实例化一个tf.train.SummaryWriter,用于写入包含了图表本身和即时数据具体值的事件文件
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
graph_def=sess.graph_def)
最后,每次运行summary_op时,都会往事件文件中写入最新的即时数据,函数的输出会传入事件文件读写器(writer)的add_summary()函数。
summary_str = sess.run(summary_op, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
事件文件写入完毕之后,可以就训练文件夹打开一个TensorBoard,查看即时数据的情况
保存检查点(checkpoint)
为了得到可以用来后续恢复模型以进一步训练或评估的检查点文件(checkpoint file),我们实例化一个tf.train.Saver
saver = tf.train.Saver()
在训练循环中,将定期调用saver.save()方法,向训练文件夹中写入包含了当前所有可训练变量值得检查点文件
saver.save(sess, FLAGS.train_dir, global_step=step)
这样,我们以后就可以使用saver.restore()方法,重载模型的参数,继续训练
saver.restore(sess, FLAGS.train_dir)
4. 评估模型
每隔一千个训练步骤,我们的代码会尝试使用训练数据集与测试数据集,对模型进行评估。do_eval函数会被调用三次,分别使用训练数据集、验证数据集合测试数据集
print 'Training Data Eval:'
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.train)
print 'Validation Data Eval:'
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.validation)
print 'Test Data Eval:'
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.test)
5. fully_connected_feed.py
# Copyright The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Trains and Evaluates the MNIST network using a feed dictionary."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function # pylint: disable=missing-docstring
import argparse
import os.path
import sys
import time from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.examples.tutorials.mnist import mnist # Basic model parameters as external flags.
FLAGS = None def placeholder_inputs(batch_size):
"""Generate placeholder variables to represent the input tensors.
These placeholders are used as inputs by the rest of the model building
code and will be fed from the downloaded data in the .run() loop, below.
Args:
batch_size: The batch size will be baked into both placeholders.
Returns:
images_placeholder: Images placeholder.
labels_placeholder: Labels placeholder.
"""
# Note that the shapes of the placeholders match the shapes of the full
# image and label tensors, except the first dimension is now batch_size
# rather than the full size of the train or test data sets.
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
mnist.IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder def fill_feed_dict(data_set, images_pl, labels_pl):
"""Fills the feed_dict for training the given step.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
Args:
data_set: The set of images and labels, from input_data.read_data_sets()
images_pl: The images placeholder, from placeholder_inputs().
labels_pl: The labels placeholder, from placeholder_inputs().
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
# Create the feed_dict for the placeholders filled with the next
# `batch size` examples.
images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
"""Runs one evaluation against the full epoch of data.
Args:
sess: The session in which the model has been trained.
eval_correct: The Tensor that returns the number of correct predictions.
images_placeholder: The images placeholder.
labels_placeholder: The labels placeholder.
data_set: The set of images and labels to evaluate, from
input_data.read_data_sets().
"""
# And run one epoch of eval.
true_count = # Counts the number of correct predictions.
steps_per_epoch = data_set.num_examples // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in xrange(steps_per_epoch):
feed_dict = fill_feed_dict(data_set,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = float(true_count) / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
(num_examples, true_count, precision)) def run_training():
"""Train MNIST for a number of steps."""
# Get the sets of images and labels for training, validation, and
# test on MNIST.
data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data) # Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
# Generate placeholders for the images and labels.
images_placeholder, labels_placeholder = placeholder_inputs(
FLAGS.batch_size) # Build a Graph that computes predictions from the inference model.
logits = mnist.inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2) # Add to the Graph the Ops for loss calculation.
loss = mnist.loss(logits, labels_placeholder) # Add to the Graph the Ops that calculate and apply gradients.
train_op = mnist.training(loss, FLAGS.learning_rate) # Add the Op to compare the logits to the labels during evaluation.
eval_correct = mnist.evaluation(logits, labels_placeholder) # Build the summary Tensor based on the TF collection of Summaries.
summary = tf.summary.merge_all() # Add the variable initializer Op.
init = tf.global_variables_initializer() # Create a saver for writing training checkpoints.
saver = tf.train.Saver() # Create a session for running Ops on the Graph.
sess = tf.Session() # Instantiate a SummaryWriter to output summaries and the Graph.
summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph) # And then after everything is built: # Run the Op to initialize the variables.
sess.run(init) # Start the training loop.
for step in xrange(FLAGS.max_steps):
start_time = time.time() # Fill a feed dictionary with the actual set of images and labels
# for this particular training step.
feed_dict = fill_feed_dict(data_sets.train,
images_placeholder,
labels_placeholder) # Run one step of the model. The return values are the activations
# from the `train_op` (which is discarded) and the `loss` Op. To
# inspect the values of your Ops or variables, you may include them
# in the list passed to sess.run() and the value tensors will be
# returned in the tuple from the call.
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict) duration = time.time() - start_time # Write the summaries and print an overview fairly often.
if step % == :
# Print status to stdout.
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
# Update the events file.
summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
summary_writer.flush() # Save a checkpoint and evaluate the model periodically.
if (step + ) % == or (step + ) == FLAGS.max_steps:
checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=step)
# Evaluate against the training set.
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.train)
# Evaluate against the validation set.
print('Validation Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.validation)
# Evaluate against the test set.
print('Test Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.test) def main(_):
if tf.gfile.Exists(FLAGS.log_dir):
tf.gfile.DeleteRecursively(FLAGS.log_dir)
tf.gfile.MakeDirs(FLAGS.log_dir)
run_training() if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--learning_rate',
type=float,
default=0.01,
help='Initial learning rate.'
)
parser.add_argument(
'--max_steps',
type=int,
default=,
help='Number of steps to run trainer.'
)
parser.add_argument(
'--hidden1',
type=int,
default=,
help='Number of units in hidden layer 1.'
)
parser.add_argument(
'--hidden2',
type=int,
default=,
help='Number of units in hidden layer 2.'
)
parser.add_argument(
'--batch_size',
type=int,
default=,
help='Batch size. Must divide evenly into the dataset sizes.'
)
parser.add_argument(
'--input_data_dir',
type=str,
default='MNIST_data/',
help='Directory to put the input data.'
)
parser.add_argument(
'--log_dir',
type=str,
default='./mnist_logs',
help='Directory to put the log data.'
)
parser.add_argument(
'--fake_data',
default=False,
help='If true, uses fake data for unit testing.',
action='store_true'
) FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[]] + unparsed)
Relevant Link:
http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html
http://www.tensorfly.cn/tfdoc/tutorials/mnist_tf.html
4. 卷积神经网络:CIFAR-10 数据集分类(将像素空间通卷积扩展到高维空间,输入CNN进行计算)
对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组32x32RGB的图像进行分类,这些图像涵盖了10个类别:
飞机, 汽车, 鸟, 猫, 鹿, 狗, 青蛙, 马, 船以及卡车
0x1: 模型架构
本教程中的模型是一个多层架构,由卷积层和非线性层(nonlinearities)交替多次排列后构成。这些层最终通过全连通层对接到softmax分类器上
1. 模型输入
输入模型是通过 inputs() 和distorted_inputs()函数建立起来的,这2个函数会从CIFAR-10二进制文件中读取图片文件,由于每个图片的存储字节数是固定的,因此可以使用tf.FixedLengthRecordReader函数
图片文件的处理流程如下
图片会被统一裁剪到24x24像素大小,裁剪中央区域用于评估或随机裁剪用于训练;
图片会进行近似的白化处理,使得模型对图片的动态范围变化不敏感(让识别模型对图像的亮度等因素不敏感)
对于训练,我们另外采取了一系列随机变换的方法来人为的增加数据集的大小
对图像进行随机的左右翻转;
随机变换图像的亮度;
随机变换图像的对比度;
2. 模型预测
模型的预测流程由inference()
构造,该函数会添加必要的操作步骤用于计算预测值的 logits,其对应的模型组织方式如下所示:
conv1 实现卷积 以及 rectified linear activation.
pool1 max pooling.
norm1 局部响应归一化.
conv2 卷积 and rectified linear activation.
norm2 局部响应归一化.
pool2 max pooling.
local3 基于修正线性激活的全连接层.
local4 基于修正线性激活的全连接层.
softmax_linear 进行线性变换以输出 logits.
0x2: 模型训练
训练一个可进行N维分类的网络的常用方法是使用多项式逻辑回归,又被叫做softmax 回归。Softmax 回归在网络的输出层上附加了一个softmax nonlinearity,并且计算归一化的预测值和label的1-hot encoding的交叉熵。在正则化过程中,我们会对所有学习变量应用权重衰减损失(和手写文字识别类似,图像识别的本质就是对应某个形状的物理对应该区域的权重相应较高,这也是人识别图像甚至畸形图像的本质道理)。模型的目标函数是求交叉熵损失和所有权重衰减项的和,loss()函数的返回值就是这个值。
train() 函数会添加一些操作使得目标函数最小化,这些操作包括计算梯度、更新学习变量(GradientDescentOptimizer)。train() 函数最终会返回一个用以对一批图像执行所有计算的操作步骤,以便训练并更新模型。
0x3: 开始执行并训练模型
cifar10_train.py输出的终端信息中提供了关于模型如何训练的一些信息,比如
损失是真的在减小还是看到的只是噪声数据?
为模型提供的图片是否合适?
梯度、激活、权重的值是否合理?
当前的学习率是多少?
相比于总损失,在训练过程中的单项损失尤其值得人们的注意。但是由于训练中使用的数据批量比较小,损失值中夹杂了相当多的噪声。在实践过程中,我们也发现相比于原始值,损失值的移动平均值显得更为有意义
cifar10.py
# Copyright Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Builds the CIFAR-10 network. Summary of available functions: # Compute input images and labels for training. If you would like to run
# evaluations, use inputs() instead.
inputs, labels = distorted_inputs() # Compute inference on the model inputs to make a prediction.
predictions = inference(inputs) # Compute the total loss of the prediction with respect to the labels.
loss = loss(predictions, labels) # Create a graph to run one step of training with respect to the loss.
train_op = train(loss, global_step)
"""
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import gzip
import os
import re
import sys
import tarfile from six.moves import urllib
import tensorflow as tf import cifar10_input FLAGS = tf.app.flags.FLAGS # Basic model parameters.
tf.app.flags.DEFINE_integer('batch_size', ,
"""Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_dir', './cifar10_data',
"""Path to the CIFAR-10 data directory.""") # Global constants describing the CIFAR- data set.
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL # Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.1 # Initial learning rate. # If a model is trained with multiple GPU's prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower' DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' def _activation_summary(x):
"""Helper to create summaries for activations. Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations. Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory. Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable Returns:
Variable Tensor
"""
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified. Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable. Returns:
Variable Tensor
"""
var = _variable_on_cpu(name, shape,
tf.truncated_normal_initializer(stddev=stddev))
if wd:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var def distorted_inputs():
"""Construct distorted input for CIFAR training using the Reader ops. Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, ] size.
labels: Labels. 1D tensor of [batch_size] size. Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
return cifar10_input.distorted_inputs(data_dir=data_dir,
batch_size=FLAGS.batch_size) def inputs(eval_data):
"""Construct input for CIFAR evaluation using the Reader ops. Args:
eval_data: bool, indicating if one should use the train or eval data set. Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, ] size.
labels: Labels. 1D tensor of [batch_size] size. Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
return cifar10_input.inputs(eval_data=eval_data, data_dir=data_dir,
batch_size=FLAGS.batch_size) def inference(images):
"""Build the CIFAR-10 model. Args:
images: Images returned from distorted_inputs() or inputs(). Returns:
Logits.
"""
# We instantiate all variables using tf.get_variable() instead of
# tf.Variable() in order to share variables across multiple GPU training runs.
# If we only ran this model on a single GPU, we could simplify this function
# by replacing all instances of tf.get_variable() with tf.Variable().
#
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights', shape=[, , , ],
stddev=1e-, wd=0.0)
conv = tf.nn.conv2d(images, kernel, [, , , ], padding='SAME')
biases = _variable_on_cpu('biases', [], tf.constant_initializer(0.0))
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv1) # pool1
pool1 = tf.nn.max_pool(conv1, ksize=[, , , ], strides=[, , , ],
padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, , bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1') # conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights', shape=[, , , ],
stddev=1e-, wd=0.0)
conv = tf.nn.conv2d(norm1, kernel, [, , , ], padding='SAME')
biases = _variable_on_cpu('biases', [], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv2) # norm2
norm2 = tf.nn.lrn(conv2, , bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
# pool2
pool2 = tf.nn.max_pool(norm2, ksize=[, , , ],
strides=[, , , ], padding='SAME', name='pool2') # local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
dim =
for d in pool2.get_shape()[:].as_list():
dim *= d
reshape = tf.reshape(pool2, [FLAGS.batch_size, dim]) weights = _variable_with_weight_decay('weights', shape=[dim, ],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3) # local4
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights', shape=[, ],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4) # softmax, i.e. softmax(WX + b)
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [, NUM_CLASSES],
stddev=/192.0, wd=0.0)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear) return softmax_linear def loss(logits, labels):
"""Add L2Loss to all the trainable variables. Add summary for for "Loss" and "Loss/avg".
Args:
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). -D tensor
of shape [batch_size] Returns:
Loss tensor of type float.
"""
# Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss') def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model. Generates moving average for all losses and associated summaries for
visualizing the performance of the network. Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.summary.scalar(l.op.name +' (raw)', l)
tf.summary.scalar(l.op.name, loss_averages.average(l)) return loss_averages_op def train(total_loss, global_step):
"""Train CIFAR-10 model. Create an optimizer and apply to all trainable variables. Add moving
average for all trainable variables. Args:
total_loss: Total loss from loss().
global_step: Integer Variable counting the number of training steps
processed.
Returns:
train_op: op for training.
"""
# Variables that affect learning rate.
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY) # Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
global_step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)
tf.summary.scalar('learning_rate', lr) # Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss) # Compute gradients.
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer(lr)
grads = opt.compute_gradients(total_loss) # Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var) # Add histograms for gradients.
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad) # Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
train_op = tf.no_op(name='train') return train_op def maybe_download_and_extract():
"""Download and extract the tarball from Alex's website."""
dest_directory = FLAGS.data_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath,
reporthook=_progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
cifar10_train.py
# Copyright Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """A binary to train CIFAR-10 using a single GPU. Accuracy:
cifar10_train.py achieves ~% accuracy after 100K steps ( epochs of
data) as judged by cifar10_eval.py. Speed: With batch_size . System | Step Time (sec/batch) | Accuracy
------------------------------------------------------------------
Tesla K20m | 0.35-0.60 | ~% at 60K steps ( hours)
Tesla K40m | 0.25-0.35 | ~% at 100K steps ( hours) Usage:
Please see the tutorial and website for how to download the CIFAR-
data set, compile the program and train the model. http://tensorflow.org/tutorials/deep_cnn/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function from datetime import datetime
import os.path
import time import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf import cifar10 FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_dir', './cifar10_train',
"""Directory where to write event logs """
"""and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', ,
"""Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""") def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
global_step = tf.Variable(, trainable=False) # Get images and labels for CIFAR-.
images, labels = cifar10.distorted_inputs() # Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images) # Calculate loss.
loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and
# updates the model parameters.
train_op = cifar10.train(loss, global_step) # Create a saver.
saver = tf.train.Saver(tf.global_variables()) # Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all() # Build an initialization operation to run below.
init = tf.global_variables_initializer() # Start running operations on the Graph.
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement))
sess.run(init) # Start the queue runners.
tf.train.start_queue_runners(sess=sess) summary_writer = tf.summary.FileWriter(FLAGS.train_dir,
graph=sess.graph) for step in xrange(FLAGS.max_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, loss])
duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % == :
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch)) if step % == :
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically.
if step % == or (step + ) == FLAGS.max_steps:
checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step) def main(argv=None): # pylint: disable=unused-argument
cifar10.maybe_download_and_extract()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
train() if __name__ == '__main__':
tf.app.run()
cifar10_input.py
# Copyright Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """Routine for decoding the CIFAR-10 binary file format.""" from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import os from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf # Process images of this size. Note that this differs from the original CIFAR
# image size of x . If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
IMAGE_SIZE = # Global constants describing the CIFAR- data set.
NUM_CLASSES =
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN =
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = def read_cifar10(filename_queue):
"""Reads and parses examples from CIFAR10 data files. Recommendation: if you want N-way read parallelism, call this function
N times. This will give you N independent Readers reading different
files & positions within those files, which will give better mixing of
examples. Args:
filename_queue: A queue of strings with the filenames to read from. Returns:
An object representing a single example, with the following fields:
height: number of rows in the result ()
width: number of columns in the result ()
depth: number of color channels in the result ()
key: a scalar string Tensor describing the filename & record number
for this example.
label: an int32 Tensor with the label in the range ...
uint8image: a [height, width, depth] uint8 Tensor with the image data
""" class CIFAR10Record(object):
pass
result = CIFAR10Record() # Dimensions of the images in the CIFAR- dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
label_bytes = # for CIFAR-
result.height =
result.width =
result.depth =
image_bytes = result.height * result.width * result.depth
# Every record consists of a label followed by the image, with a
# fixed number of bytes for each.
record_bytes = label_bytes + image_bytes # Read a record, getting filenames from the filename_queue. No
# header or footer in the CIFAR- format, so we leave header_bytes
# and footer_bytes at their default of .
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long.
record_bytes = tf.decode_raw(value, tf.uint8) # The first bytes represent the label, which we convert from uint8->int32.
result.label = tf.cast(
tf.slice(record_bytes, [], [label_bytes]), tf.int32) # The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
[result.depth, result.height, result.width])
# Convert from [depth, height, width] to [height, width, depth].
result.uint8image = tf.transpose(depth_major, [, , ]) return result def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size):
"""Construct a queued batch of images and labels. Args:
image: -D Tensor of [height, width, ] of type.float32.
label: -D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch. Returns:
images: Images. 4D tensor of [batch_size, height, width, ] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
num_preprocess_threads =
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + * batch_size,
min_after_dequeue=min_queue_examples) # Display the training images in the visualizer.
tf.summary.image('images', images) return images, tf.reshape(label_batch, [batch_size]) def distorted_inputs(data_dir, batch_size):
"""Construct distorted input for CIFAR training using the Reader ops. Args:
data_dir: Path to the CIFAR- data directory.
batch_size: Number of images per batch. Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, ] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in xrange(, )]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE
width = IMAGE_SIZE # Image processing for training the network. Note the many random
# distortions applied to the image. # Randomly crop a [height, width] section of the image.
distorted_image = tf.random_crop(reshaped_image, [height, width, ]) # Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing
# randomize the order their operation.
distorted_image = tf.image.random_brightness(distorted_image,
max_delta=)
distorted_image = tf.image.random_contrast(distorted_image,
lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_standardization(distorted_image) # Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
min_fraction_of_examples_in_queue)
print ('Filling queue with %d CIFAR images before starting to train. '
'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size) def inputs(eval_data, data_dir, batch_size):
"""Construct input for CIFAR evaluation using the Reader ops. Args:
eval_data: bool, indicating if one should use the train or eval data set.
data_dir: Path to the CIFAR- data directory.
batch_size: Number of images per batch. Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, ] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
if not eval_data:
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in xrange(, )]
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
else:
filenames = [os.path.join(data_dir, 'test_batch.bin')]
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE
width = IMAGE_SIZE # Image processing for evaluation.
# Crop the central [height, width] of the image.
resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
width, height) # Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(resized_image) # Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(num_examples_per_epoch *
min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size)
0x4: 评估模型
现在可以在另一部分数据集上来评估训练模型的性能。脚本文件cifar10_eval.py对模型进行了评估,利用 inference()函数重构模型,并使用了在评估数据集所有10,000张CIFAR-10图片进行测试。最终计算出的精度为1:N,N=预测值中置信度最高的一项与图片真实label匹配的频次。(It calculates the precision at 1: how often the top prediction matches the true label of the image)。
为了监控模型在训练过程中的改进情况,评估用的脚本文件会周期性的在最新的检查点文件上运行,这些检查点文件是由cifar10_train.py产生。
cifar10_eval.py
# Copyright Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation for CIFAR-10.
Accuracy:
cifar10_train.py achieves 83.0% accuracy after 100K steps ( epochs
of data) as judged by cifar10_eval.py.
Speed:
On a single Tesla K40, cifar10_train.py processes a single batch of images
in 0.25-0.35 sec (i.e. - images /sec). The model reaches ~%
accuracy after 100K steps in hours of training time.
Usage:
Please see the tutorial and website for how to download the CIFAR-
data set, compile the program and train the model.
http://tensorflow.org/tutorials/deep_cnn/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
import tensorflow.python.platform
from tensorflow.python.platform import gfile
import numpy as np
import tensorflow as tf
import cifar10
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('eval_dir', './cifar10_eval',
"""Directory where to write event logs.""")
tf.app.flags.DEFINE_string('eval_data', 'test',
"""Either 'test' or 'train_eval'.""")
tf.app.flags.DEFINE_string('checkpoint_dir', './cifar10_train',
"""Directory where to read model checkpoints.""")
tf.app.flags.DEFINE_integer('eval_interval_secs', * ,
"""How often to run the eval.""")
tf.app.flags.DEFINE_integer('num_examples', ,
"""Number of examples to run.""")
tf.app.flags.DEFINE_boolean('run_once', False,
"""Whether to run eval only once.""")
def eval_once(saver, summary_writer, top_k_op, summary_op):
"""Run Eval once.
Args:
saver: Saver.
summary_writer: Summary writer.
top_k_op: Top K op.
summary_op: Summary op.
"""
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
# Restores from checkpoint
saver.restore(sess, ckpt.model_checkpoint_path)
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/cifar10_train/model.ckpt-,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-].split('-')[-]
else:
print('No checkpoint file found')
return
# Start the queue runners.
coord = tf.train.Coordinator()
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
start=True))
num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
true_count = # Counts the number of correct predictions.
total_sample_count = num_iter * FLAGS.batch_size
step =
while step < num_iter and not coord.should_stop():
predictions = sess.run([top_k_op])
true_count += np.sum(predictions)
step +=
# Compute precision @ .
precision = true_count / total_sample_count
print('%s: precision @ 1 = %.3f' % (datetime.now(), precision))
summary = tf.Summary()
summary.ParseFromString(sess.run(summary_op))
summary.value.add(tag='Precision @ 1', simple_value=precision)
summary_writer.add_summary(summary, global_step)
except Exception as e: # pylint: disable=broad-except
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=)
def evaluate():
"""Eval CIFAR-10 for a number of steps."""
with tf.Graph().as_default():
# Get images and labels for CIFAR-.
eval_data = FLAGS.eval_data == 'test'
images, labels = cifar10.inputs(eval_data=eval_data)
# Build a Graph that computes the logits predictions from the
# inference model.
logits = cifar10.inference(images)
# Calculate predictions.
top_k_op = tf.nn.in_top_k(logits, labels, )
# Restore the moving average version of the learned variables for eval.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
graph = tf.get_default_graph().as_graph_def()
summary_writer = tf.summary.FileWriter(FLAGS.eval_dir,
graph=graph)
while True:
eval_once(saver, summary_writer, top_k_op, summary_op)
if FLAGS.run_once:
break
time.sleep(FLAGS.eval_interval_secs)
def main(argv=None): # pylint: disable=unused-argument
cifar10.maybe_download_and_extract()
if gfile.Exists(FLAGS.eval_dir):
gfile.DeleteRecursively(FLAGS.eval_dir)
gfile.MakeDirs(FLAGS.eval_dir)
evaluate()
if __name__ == '__main__':
tf.app.run()
google的tensorflow api在1.0正式版本后变化很大,旧的代码在迁移到1.0后需要修改对应的api名字
0x5: 在GPU上运行
# Copyright Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== """A binary to train CIFAR-10 using multiple GPU's with synchronous updates. Accuracy:
cifar10_multi_gpu_train.py achieves ~% accuracy after 100K steps (
epochs of data) as judged by cifar10_eval.py. Speed: With batch_size . System | Step Time (sec/batch) | Accuracy
--------------------------------------------------------------------
Tesla K20m | 0.35-0.60 | ~% at 60K steps ( hours)
Tesla K40m | 0.25-0.35 | ~% at 100K steps ( hours)
Tesla K20m | 0.13-0.20 | ~% at 30K steps (2.5 hours)
Tesla K20m | 0.13-0.18 | ~% at 30K steps
Tesla K20m | ~0.10 | ~% at 30K steps Usage:
Please see the tutorial and website for how to download the CIFAR-
data set, compile the program and train the model. http://tensorflow.org/tutorials/deep_cnn/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function from datetime import datetime
import os.path
import re
import time import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import cifar10 FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_dir', './cifar10_train',
"""Directory where to write event logs """
"""and checkpoint.""")
tf.app.flags.DEFINE_integer('max_steps', ,
"""Number of batches to run.""")
tf.app.flags.DEFINE_integer('num_gpus', ,
"""How many GPUs to use.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""") def tower_loss(scope):
"""Calculate the total loss on a single tower running the CIFAR model. Args:
scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0' Returns:
Tensor of shape [] containing the total loss for a batch of data
"""
# Get images and labels for CIFAR-.
images, labels = cifar10.distorted_inputs() # Build inference Graph.
logits = cifar10.inference(images) # Build the portion of the Graph calculating the losses. Note that we will
# assemble the total_loss using a custom function below.
_ = cifar10.loss(logits, labels) # Assemble all of the losses for the current tower only.
losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower.
total_loss = tf.add_n(losses, name='total_loss') # Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.summary.scalar(loss_name +' (raw)', l)
tf.summary.scalar(loss_name, loss_averages.average(l)) with tf.control_dependencies([loss_averages_op]):
total_loss = tf.identity(total_loss)
return total_loss def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, ) # Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g) # Average over the 'tower' dimension.
grad = tf.concat(, grads)
grad = tf.reduce_mean(grad, ) # Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[][]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default(), tf.device('/cpu:0'):
# Create a variable to count the number of train() calls. This equals the
# number of batches processed * FLAGS.num_gpus.
global_step = tf.get_variable(
'global_step', [],
initializer=tf.constant_initializer(), trainable=False) # Calculate the learning rate schedule.
num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
FLAGS.batch_size)
decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY) # Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
global_step,
decay_steps,
cifar10.LEARNING_RATE_DECAY_FACTOR,
staircase=True) # Create an optimizer that performs gradient descent.
opt = tf.train.GradientDescentOptimizer(lr) # Calculate the gradients for each model tower.
tower_grads = []
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope) # Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables() # Retain the summaries from the final tower.
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) # Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss) # Keep track of the gradients across all towers.
tower_grads.append(grads) # We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads) # Add a summary to track the learning rate.
summaries.append(tf.summary.scalar('learning_rate', lr)) # Add histograms for gradients.
for grad, var in grads:
if grad is not None:
summaries.append(
tf.summary.histogram(var.op.name + '/gradients', grad)) # Apply the gradients to adjust the shared variables.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables.
for var in tf.trainable_variables():
summaries.append(tf.summary.histogram(var.op.name, var)) # Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables()) # Group all updates to into a single train op.
train_op = tf.group(apply_gradient_op, variables_averages_op) # Create a saver.
saver = tf.train.Saver(tf.global_variables()) # Build the summary operation from the last tower summaries.
summary_op = tf.summary.merge(summaries) #tf.summary.merge_all(summaries) # Build an initialization operation to run below.
init = tf.global_variables_initializer() # Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init) # Start the queue runners.
tf.train.start_queue_runners(sess=sess) summary_writer = tf.summary.FileWriter(FLAGS.train_dir,
graph=sess.graph) for step in xrange(FLAGS.max_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, loss])
duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % == :
num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
examples_per_sec = num_examples_per_step / duration
sec_per_batch = duration / FLAGS.num_gpus format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch)) if step % == :
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically.
if step % == or (step + ) == FLAGS.max_steps:
checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step) def main(argv=None): # pylint: disable=unused-argument
cifar10.maybe_download_and_extract()
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
train() if __name__ == '__main__':
tf.app.run()
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
export CUDA_HOME=/usr/local/cuda
export PATH=/usr/local/cuda-8.0//bin:$PATH screen python cifar10_multi_gpu_train.py --num_gpus=
python cifar10_eval.py
Relevant Link:
https://www.tensorflow.org/api_docs/python/tf/random_crop
https://github.com/tensorflow/models/commit/e5079c839058ff40dcbd15515a9cfb462fabbc2a#diff-5ae64cf077db8f00686ff8b5d7748604
https://github.com/tensorflow/tensorflow/tree/r0.7/tensorflow/models/image/cifar10
https://github.com/tensorflow/models/pull/864/commits/e93ec37201f5f2116933ae96e505f409ddbf344d
http://qiita.com/shu223/items/ef160cbe1e9d9f57c248
5. 单词的向量表示(Vector Representations of Words)
0x1: Word Embeddings
通常图像或音频系统处理的是由图片中所有单个原始像素点强度值(pix chanel)或者音频中功率谱密度的强度值,把它们编码成丰富、高纬度的向量数据集(卷积)。对于物体或语音识别这一类的任务,我们所需的全部信息已经都存储在原始数据中(显然人类本身就是依赖原始数据进行日常的物体或语音识别的)
然后,自然语言处理系统通常将词汇作为离散的单一符号,例如 "cat" 一词或可表示为 Id537 ,而 "dog" 一词或可表示为 Id143。这些符号编码毫无规律,无法提供不同词汇之间可能存在的关联信息。换句话说,在处理关于 "dogs" 一词的信息时,模型将无法利用已知的关于 "cats" 的信息(例如,它们都是动物,有四条腿,可作为宠物等等)。可见,将词汇表达为上述的独立离散符号将进一步导致数据稀疏,使我们在训练统计模型时不得不寻求更多的数据。而词汇的向量表示将克服上述的难题
向量空间模型 (VSMs)将词汇表达(嵌套)于一个连续的向量空间中,语义近似的词汇被映射为相邻的数据点。向量空间模型在自然语言处理领域中有着漫长且丰富的历史,不过几乎所有利用这一模型的方法都依赖于 分布式假设,其核心思想为出现于上下文情景中的词汇都有相类似的语义。采用这一假设的研究方法大致分为以下两类
基于计数的方法 (e.g. 潜在语义分析): 基于计数的方法计算某词汇与其邻近词汇在一个大型语料库中共同出现的频率及其他统计量,然后将这些统计量映射到一个小型且稠密的向量中
预测方法 (e.g. 神经概率化语言模型): 预测方法则试图直接从某词汇的邻近词汇对其进行预测,在此过程中利用已经学习到的小型且稠密的嵌套向量
Word2vec是一种可以进行高效率词嵌套学习的预测模型。其两种变体分别为
连续词袋模型(CBOW): 从算法角度看,这两种方法非常相似,其区别为CBOW根据源词上下文词汇('the cat sits on the')来预测目标词汇(例如,'mat')
Skip-Gram模型: Skip-Gram模型做法相反,它通过目标词汇来预测源词汇
Skip-Gram模型采取CBOW的逆过程的动机在于
) CBOW算法对于很多分布式信息进行了平滑处理(例如将一整段上下文信息视为一个单一观察量)。很多情况下,对于小型的数据集,这一处理是有帮助的
) 相形之下,Skip-Gram模型将每个"上下文-目标词汇"的组合视为一个新观察量,这种做法在大型数据集中会更为有效
0x2: 处理噪声对比训练
神经概率化语言模型通常使用极大似然法 (ML) 进行训练,其中通过 softmax function 来最大化当提供前一个单词 h (代表 "history"),后一个单词的概率 (代表 "target")
当 score(w_t,h) 计算了文字 w_t 和 上下文 h 的相容性(通常使用向量积)。我们使用对数似然函数来训练训练集的最大值,比如通过:
这里提出了一个解决语言概率模型的合适的通用方法。然而这个方法实际执行起来开销非常大,因为我们需要去计算并正则化当前上下文环境 h 中所有其他 V 单词 w' 的概率得分,在每一步训练迭代中
即每一个单词我们都要进行一次预测,在所有语料组合中,最优可能紧跟着地单词是什么
从另一个角度来说,当使用word2vec模型时,我们并不需要对概率模型中的所有特征进行学习。而CBOW模型和Skip-Gram模型为了避免这种情况发生,使用一个二分类器(逻辑回归)在同一个上下文环境里从 k 虚构的 (噪声) 单词 区分出真正的目标单词 。我们下面详细阐述一下CBOW模型,对于Skip-Gram模型只要简单地做相反的操作即可。
噪声对比训练的意义在于,我们假设随机产生的目标单词上下文都是噪声,它们不可能也不应该和我们的目标单词有语境关联,训练的目标就在于找到一组参数,使得尽可能大的区分目标单词的目标上下文和噪音上下文
从数学角度来说,我们的目标是对每个样本最大化:
其中代表的是数据集在当前上下文 h ,根据所学习的嵌套向量 ,目标单词 w 使用二分类逻辑回归计算得出的概率。在实践中,我们通过在噪声分布中绘制比对文字来获得近似的期望值(通过计算蒙特卡洛平均值)。
当真实地目标单词被分配到较高的概率,同时噪声单词的概率很低时,目标函数也就达到最大值了。从技术层面来说,这种方法叫做"负抽样",而且使用这个损失函数在数学层面上也有很好的解释:这个更新过程也近似于softmax函数的更新。这在计算上将会有很大的优势,因为当计算这个损失函数时,只是有我们挑选出来的 k 个 噪声单词,而没有使用整个语料库 V。这使得训练变得非常快。我们实际上使用了与noise-contrastive estimation (NCE)介绍的非常相似的方法,这在TensorFlow中已经封装了一个很便捷的函数tf.nn.nce_loss()
0x3: Skip-gram 模型
下面来看一下这个数据集
the quick brown fox jumped over the lazy dog
我们首先对一些单词以及它们的上下文环境建立一个数据集。我们可以以任何合理的方式定义'上下文',而通常上这个方式是根据文字的句法语境的(使用语法原理的方式处理当前目标单词可,比如说把目标单词左边的内容当做一个'上下文',或者以目标单词右边的内容,等等。现在我们把目标单词的左右单词视作一个上下文, 使用大小为1的窗口,这样就得到这样一个由(上下文, 目标单词) 组成的数据集
([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...
文提到Skip-Gram模型是把目标单词和上下文颠倒过来,所以在这个问题中,举个例子,就是用'quick'来预测 'the' 和 'brown' ,用 'brown' 预测 'quick' 和 'brown' 。因此这个数据集就变成由(输入, 输出)
组成的:
(quick, the), (quick, brown), (brown, quick), (brown, fox), ...
目标函数通常是对整个数据集建立的,但是本问题中要对每一个样本(或者是一个batch_size 很小的样本集,通常设置为16 <= batch_size <= 512)在同一时间执行特别的操作,称之为随机梯度下降 (SGD)。我们来看一下训练过程中每一步的执行。
假设用 t 表示上面这个例子中quick 来预测 the 的训练的单个循环。用 num_noise 定义从噪声分布中挑选出来的噪声(相反的)单词的个数,通常使用一元分布,P(w)。为了简单起见,我们就定num_noise=1,用 sheep 选作噪声词。接下来就可以计算每一对观察值和噪声值的损失函数了,每一个执行步骤就可表示为:
整个计算过程的目标是通过更新嵌套参数 来逼近目标函数(这个这个例子中就是使目标函数最大化)(即让模型向对目标值预测概率最高,而对噪音值预测概率最低)。为此我们要计算损失函数中嵌套参数的梯度。对于整个数据集,当梯度下降的过程中不断地更新参数,对应产生的效果就是不断地移动每个单词的嵌套向量,直到可以把真实单词和噪声单词很好得区分开。
我们可以把学习向量映射到2维中以便我们观察,其中用到的技术可以参考 t-SNE 降纬技术。当我们用可视化的方式来观察这些向量,就可以很明显的获取单词之间语义信息的关系,这实际上是非常有用的。当我们第一次发现这样的诱导向量空间中,展示了一些特定的语义关系,这是非常有趣的,比如文字中 male-female,gender 甚至还有 country-capital 的关系
这也解释了为什么这些向量在传统的NLP问题中可作为特性使用,比如用在对一个演讲章节打个标签,或者对一个专有名词的识别
0x4: 建立图形
先来定义一个嵌套参数矩阵。我们用唯一的随机值来初始化这个大矩阵
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
对噪声-比对的损失计算就使用一个逻辑回归模型。对此,我们需要对语料库中的每个单词定义一个权重值和偏差值。(也可称之为输出权重 与之对应的 输入嵌套值)。定义如下
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
我们有了这些参数之后,就可以定义Skip-Gram模型了。简单起见,假设我们已经把语料库中的文字整型化了,这样每个整型代表一个单词。Skip-Gram模型有两个输入。一个是一组用整型表示的上下文单词,另一个是目标单词。给这些输入建立占位符节点,之后就可以填入数据了
# 建立输入占位符
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, ])
然后我们需要对批数据中的单词建立嵌套向量
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
现在我们有了每个单词的嵌套向量,接下来就是使用噪声-比对的训练方式来预测目标单词(找到最有可能是和目标单词对应的上下文)
# 计算 NCE 损失函数, 每次使用负标签的样本.
loss = tf.reduce_mean(
tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
num_sampled, vocabulary_size))
我们对损失函数建立了图形节点,然后我们需要计算相应梯度和更新参数的节点,比如说在这里我们会使用随机梯度下降法,TensorFlow也已经封装好了该过程
# 使用 SGD 控制器.
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(loss)
0x5: 训练模型
训练的过程很简单,只要在循环中使用feed_dict不断给占位符填充数据,同时调用 session.run即可
for inputs, labels in generate_batch(...):
feed_dict = {training_inputs: inputs, training_labels: labels}
_, cur_loss = session.run([optimizer, loss], feed_dict=feed_dict)
0x6: 嵌套学习结果可视化
# Copyright The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================== from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import collections
import math
import os
import random
import zipfile import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf # Step : Download the data.
url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes):
"""Download a file if not present, and make sure it's the right size."""
if not os.path.exists(filename):
filename, _ = urllib.request.urlretrieve(url + filename, filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception(
'Failed to verify ' + filename + '. Can you get to it with a browser?')
return filename filename = maybe_download('text8.zip', ) # Read the data into a list of strings.
def read_data(filename):
"""Extract the first file enclosed in a zip file as a list of words"""
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[])).split()
return data words = read_data(filename)
print('Data size', len(words)) # Step : Build the dictionary and replace rare words with UNK token.
vocabulary_size = def build_dataset(words):
count = [['UNK', -]]
count.extend(collections.Counter(words).most_common(vocabulary_size - ))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count =
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = # dictionary['UNK']
unk_count +=
data.append(index)
count[][] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words)
del words # Hint to reduce memory.
print('Most common words (+UNK)', count[:])
print('Sample data', data[:], [reverse_dictionary[i] for i in data[:]]) data_index = # Step : Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips ==
assert num_skips <= * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, ), dtype=np.int32)
span = * skip_window + # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + ) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(, span - )
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, ] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + ) % len(data)
# Backtrack a little bit to avoid skipping words in the end of a batch
data_index = (data_index + len(data) - span) % len(data)
return batch, labels batch, labels = generate_batch(batch_size=, num_skips=, skip_window=)
for i in range():
print(batch[i], reverse_dictionary[batch[i]],
'->', labels[i, ], reverse_dictionary[labels[i, ]]) # Step : Build and train a skip-gram model. batch_size =
embedding_size = # Dimension of the embedding vector.
skip_window = # How many words to consider left and right.
num_skips = # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = # Random set of words to evaluate similarity on.
valid_window = # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, ])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), , keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer.
init = tf.global_variables_initializer() # Step : Begin training.
num_steps = with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print("Initialized") average_loss =
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val if step % == :
if step > :
average_loss /=
# The average loss is an estimate of the loss over the last batches.
print("Average loss at step ", step, ": ", average_loss)
average_loss = # Note that this is expensive (~% slowdown if computed every steps)
if step % == :
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[:top_k + ]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval() # Step : Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
assert low_dim_embs.shape[] >= len(labels), "More labels than embeddings"
plt.figure(figsize=(, )) # in inches
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(, ),
textcoords='offset points',
ha='right',
va='bottom') plt.savefig(filename) try:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt tsne = TSNE(perplexity=, n_components=, init='pca', n_iter=)
plot_only =
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels) except ImportError:
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")
0x7: 嵌套学习的评估: 类比推理
词嵌套在NLP的预测问题中是非常有用且使用广泛地。如果要检测一个模型是否是可以成熟地区分词性或者区分专有名词的模型,最简单的办法就是直接检验它的预测词性、语义关系的能力,比如让它解决形如king is to queen as father is to ?这样的问题。这种方法叫做类比推理
# Copyright Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Multi-threaded word2vec mini-batched skip-gram model.
Trains the model described in:
(Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space
ICLR .
http://arxiv.org/abs/1301.3781
This model does traditional minibatching.
The key ops used are:
* placeholder for feeding in tensors for each example.
* embedding_lookup for fetching rows from the embedding matrix.
* sigmoid_cross_entropy_with_logits to calculate the loss.
* GradientDescentOptimizer for optimizing the loss.
* skipgram custom op that does input processing.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import threading
import time
import tensorflow.python.platform
from six.moves import xrange # pylint: disable=redefined-builtin
import numpy as np
import tensorflow as tf
from tensorflow.models.embedding import gen_word2vec as word2vec
flags = tf.app.flags
flags.DEFINE_string("save_path", None, "Directory to write the model and "
"training summaries.")
flags.DEFINE_string("train_data", None, "Training text file. "
"E.g., unzipped file http://mattmahoney.net/dc/text8.zip.")
flags.DEFINE_string(
"eval_data", None, "File consisting of analogies of four tokens."
"embedding 2 - embedding 1 + embedding 3 should be close "
"to embedding 4."
"E.g. https://word2vec.googlecode.com/svn/trunk/questions-words.txt.")
flags.DEFINE_integer("embedding_size", , "The embedding dimension size.")
flags.DEFINE_integer(
"epochs_to_train", ,
"Number of epochs to train. Each epoch processes the training data once "
"completely.")
flags.DEFINE_float("learning_rate", 0.2, "Initial learning rate.")
flags.DEFINE_integer("num_neg_samples", ,
"Negative samples per training example.")
flags.DEFINE_integer("batch_size", ,
"Number of training examples processed per step "
"(size of a minibatch).")
flags.DEFINE_integer("concurrent_steps", ,
"The number of concurrent training steps.")
flags.DEFINE_integer("window_size", ,
"The number of words to predict to the left and right "
"of the target word.")
flags.DEFINE_integer("min_count", ,
"The minimum number of word occurrences for it to be "
"included in the vocabulary.")
flags.DEFINE_float("subsample", 1e-,
"Subsample threshold for word occurrence. Words that appear "
"with higher frequency will be randomly down-sampled. Set "
"to 0 to disable.")
flags.DEFINE_boolean(
"interactive", False,
"If true, enters an IPython interactive session to play with the trained "
"model. E.g., try model.analogy('france', 'paris', 'russia') and "
"model.nearby(['proton', 'elephant', 'maxwell']")
flags.DEFINE_integer("statistics_interval", ,
"Print statistics every n seconds.")
flags.DEFINE_integer("summary_interval", ,
"Save training summary to file every n seconds (rounded "
"up to statistics interval.")
flags.DEFINE_integer("checkpoint_interval", ,
"Checkpoint the model (i.e. save the parameters) every n "
"seconds (rounded up to statistics interval.")
FLAGS = flags.FLAGS
class Options(object):
"""Options used by our word2vec model."""
def __init__(self):
# Model options.
# Embedding dimension.
self.emb_dim = FLAGS.embedding_size
# Training options.
# The training text file.
self.train_data = FLAGS.train_data
# Number of negative samples per example.
self.num_samples = FLAGS.num_neg_samples
# The initial learning rate.
self.learning_rate = FLAGS.learning_rate
# Number of epochs to train. After these many epochs, the learning
# rate decays linearly to zero and the training stops.
self.epochs_to_train = FLAGS.epochs_to_train
# Concurrent training steps.
self.concurrent_steps = FLAGS.concurrent_steps
# Number of examples for one training step.
self.batch_size = FLAGS.batch_size
# The number of words to predict to the left and right of the target word.
self.window_size = FLAGS.window_size
# The minimum number of word occurrences for it to be included in the
# vocabulary.
self.min_count = FLAGS.min_count
# Subsampling threshold for word occurrence.
self.subsample = FLAGS.subsample
# How often to print statistics.
self.statistics_interval = FLAGS.statistics_interval
# How often to write to the summary file (rounds up to the nearest
# statistics_interval).
self.summary_interval = FLAGS.summary_interval
# How often to write checkpoints (rounds up to the nearest statistics
# interval).
self.checkpoint_interval = FLAGS.checkpoint_interval
# Where to write out summaries.
self.save_path = FLAGS.save_path
# Eval options.
# The text file for eval.
self.eval_data = FLAGS.eval_data
class Word2Vec(object):
"""Word2Vec model (Skipgram)."""
def __init__(self, options, session):
self._options = options
self._session = session
self._word2id = {}
self._id2word = []
self.build_graph()
self.build_eval_graph()
self.save_vocab()
self._read_analogies()
def _read_analogies(self):
"""Reads through the analogy question file.
Returns:
questions: a [n, ] numpy array containing the analogy question's
word ids.
questions_skipped: questions skipped due to unknown words.
"""
questions = []
questions_skipped =
with open(self._options.eval_data, "rb") as analogy_f:
for line in analogy_f:
if line.startswith(b":"): # Skip comments.
continue
words = line.strip().lower().split(b" ")
ids = [self._word2id.get(w.strip()) for w in words]
if None in ids or len(ids) != :
questions_skipped +=
else:
questions.append(np.array(ids))
print("Eval analogy file: ", self._options.eval_data)
print("Questions: ", len(questions))
print("Skipped: ", questions_skipped)
self._analogy_questions = np.array(questions, dtype=np.int32)
def forward(self, examples, labels):
"""Build the graph for the forward pass."""
opts = self._options
# Declare all variables we need.
# Embedding: [vocab_size, emb_dim]
init_width = 0.5 / opts.emb_dim
emb = tf.Variable(
tf.random_uniform(
[opts.vocab_size, opts.emb_dim], -init_width, init_width),
name="emb")
self._emb = emb
# Softmax weight: [vocab_size, emb_dim]. Transposed.
sm_w_t = tf.Variable(
tf.zeros([opts.vocab_size, opts.emb_dim]),
name="sm_w_t")
# Softmax bias: [emb_dim].
sm_b = tf.Variable(tf.zeros([opts.vocab_size]), name="sm_b")
# Global step: scalar, i.e., shape [].
self.global_step = tf.Variable(, name="global_step")
# Nodes to compute the nce loss w/ candidate sampling.
labels_matrix = tf.reshape(
tf.cast(labels,
dtype=tf.int64),
[opts.batch_size, ])
# Negative sampling.
sampled_ids, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
true_classes=labels_matrix,
num_true=,
num_sampled=opts.num_samples,
unique=True,
range_max=opts.vocab_size,
distortion=0.75,
unigrams=opts.vocab_counts.tolist()))
# Embeddings for examples: [batch_size, emb_dim]
example_emb = tf.nn.embedding_lookup(emb, examples)
# Weights for labels: [batch_size, emb_dim]
true_w = tf.nn.embedding_lookup(sm_w_t, labels)
# Biases for labels: [batch_size, ]
true_b = tf.nn.embedding_lookup(sm_b, labels)
# Weights for sampled ids: [num_sampled, emb_dim]
sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids)
# Biases for sampled ids: [num_sampled, ]
sampled_b = tf.nn.embedding_lookup(sm_b, sampled_ids)
# True logits: [batch_size, ]
true_logits = tf.reduce_sum(tf.mul(example_emb, true_w), ) + true_b
# Sampled logits: [batch_size, num_sampled]
# We replicate sampled noise lables for all examples in the batch
# using the matmul.
sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples])
sampled_logits = tf.matmul(example_emb,
sampled_w,
transpose_b=True) + sampled_b_vec
return true_logits, sampled_logits
def nce_loss(self, true_logits, sampled_logits):
"""Build the graph for the NCE loss."""
# cross-entropy(logits, labels)
opts = self._options
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
true_logits, tf.ones_like(true_logits))
sampled_xent = tf.nn.sigmoid_cross_entropy_with_logits(
sampled_logits, tf.zeros_like(sampled_logits))
# NCE-loss is the sum of the true and noise (sampled words)
# contributions, averaged over the batch.
nce_loss_tensor = (tf.reduce_sum(true_xent) +
tf.reduce_sum(sampled_xent)) / opts.batch_size
return nce_loss_tensor
def optimize(self, loss):
"""Build the graph to optimize the loss function."""
# Optimizer nodes.
# Linear learning rate decay.
opts = self._options
words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
lr = opts.learning_rate * tf.maximum(
0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train)
self._lr = lr
optimizer = tf.train.GradientDescentOptimizer(lr)
train = optimizer.minimize(loss,
global_step=self.global_step,
gate_gradients=optimizer.GATE_NONE)
self._train = train
def build_eval_graph(self):
"""Build the eval graph."""
# Eval graph
# Each analogy task is to predict the 4th word (d) given three
# words: a, b, c. E.g., a=italy, b=rome, c=france, we should
# predict d=paris.
# The eval feeds three vectors of word ids for a, b, c, each of
# which is of size N, where N is the number of analogies we want to
# evaluate in one batch.
analogy_a = tf.placeholder(dtype=tf.int32) # [N]
analogy_b = tf.placeholder(dtype=tf.int32) # [N]
analogy_c = tf.placeholder(dtype=tf.int32) # [N]
# Normalized word embeddings of shape [vocab_size, emb_dim].
nemb = tf.nn.l2_normalize(self._emb, )
# Each row of a_emb, b_emb, c_emb is a word's embedding vector.
# They all have the shape [N, emb_dim]
a_emb = tf.gather(nemb, analogy_a) # a's embs
b_emb = tf.gather(nemb, analogy_b) # b's embs
c_emb = tf.gather(nemb, analogy_c) # c's embs
# We expect that d's embedding vectors on the unit hyper-sphere is
# near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim].
target = c_emb + (b_emb - a_emb)
# Compute cosine distance between each pair of target and vocab.
# dist has shape [N, vocab_size].
dist = tf.matmul(target, nemb, transpose_b=True)
# For each question (row in dist), find the top words.
_, pred_idx = tf.nn.top_k(dist, )
# Nodes for computing neighbors for a given word according to
# their cosine distance.
nearby_word = tf.placeholder(dtype=tf.int32) # word id
nearby_emb = tf.gather(nemb, nearby_word)
nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True)
nearby_val, nearby_idx = tf.nn.top_k(nearby_dist,
min(, self._options.vocab_size))
# Nodes in the construct graph which are used by training and
# evaluation to run/feed/fetch.
self._analogy_a = analogy_a
self._analogy_b = analogy_b
self._analogy_c = analogy_c
self._analogy_pred_idx = pred_idx
self._nearby_word = nearby_word
self._nearby_val = nearby_val
self._nearby_idx = nearby_idx
def build_graph(self):
"""Build the graph for the full model."""
opts = self._options
# The training data. A text file.
(words, counts, words_per_epoch, self._epoch, self._words, examples,
labels) = word2vec.skipgram(filename=opts.train_data,
batch_size=opts.batch_size,
window_size=opts.window_size,
min_count=opts.min_count,
subsample=opts.subsample)
(opts.vocab_words, opts.vocab_counts,
opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
opts.vocab_size = len(opts.vocab_words)
print("Data file: ", opts.train_data)
print("Vocab size: ", opts.vocab_size - , " + UNK")
print("Words per epoch: ", opts.words_per_epoch)
self._examples = examples
self._labels = labels
self._id2word = opts.vocab_words
for i, w in enumerate(self._id2word):
self._word2id[w] = i
true_logits, sampled_logits = self.forward(examples, labels)
loss = self.nce_loss(true_logits, sampled_logits)
tf.scalar_summary("NCE loss", loss)
self._loss = loss
self.optimize(loss)
# Properly initialize all variables.
tf.initialize_all_variables().run()
self.saver = tf.train.Saver()
def save_vocab(self):
"""Save the vocabulary to a file so the model can be reloaded."""
opts = self._options
with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f:
for i in xrange(opts.vocab_size):
f.write("%s %d\n" % (tf.compat.as_text(opts.vocab_words[i]),
opts.vocab_counts[i]))
def _train_thread_body(self):
initial_epoch, = self._session.run([self._epoch])
while True:
_, epoch = self._session.run([self._train, self._epoch])
if epoch != initial_epoch:
break
def train(self):
"""Train the model."""
opts = self._options
initial_epoch, initial_words = self._session.run([self._epoch, self._words])
summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter(opts.save_path,
graph_def=self._session.graph_def)
workers = []
for _ in xrange(opts.concurrent_steps):
t = threading.Thread(target=self._train_thread_body)
t.start()
workers.append(t)
last_words, last_time, last_summary_time = initial_words, time.time(),
last_checkpoint_time =
while True:
time.sleep(opts.statistics_interval) # Reports our progress once a while.
(epoch, step, loss, words, lr) = self._session.run(
[self._epoch, self.global_step, self._loss, self._words, self._lr])
now = time.time()
last_words, last_time, rate = words, now, (words - last_words) / (
now - last_time)
print("Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r" %
(epoch, step, lr, loss, rate), end="")
sys.stdout.flush()
if now - last_summary_time > opts.summary_interval:
summary_str = self._session.run(summary_op)
summary_writer.add_summary(summary_str, step)
last_summary_time = now
if now - last_checkpoint_time > opts.checkpoint_interval:
self.saver.save(self._session,
opts.save_path + "model",
global_step=step.astype(int))
last_checkpoint_time = now
if epoch != initial_epoch:
break
for t in workers:
t.join()
return epoch
def _predict(self, analogy):
"""Predict the top 4 answers for analogy questions."""
idx, = self._session.run([self._analogy_pred_idx], {
self._analogy_a: analogy[:, ],
self._analogy_b: analogy[:, ],
self._analogy_c: analogy[:, ]
})
return idx
def eval(self):
"""Evaluate analogy questions and reports accuracy."""
# How many questions we get right at precision@.
correct =
total = self._analogy_questions.shape[]
start =
while start < total:
limit = start +
sub = self._analogy_questions[start:limit, :]
idx = self._predict(sub)
start = limit
for question in xrange(sub.shape[]):
for j in xrange():
if idx[question, j] == sub[question, ]:
# Bingo! We predicted correctly. E.g., [italy, rome, france, paris].
correct +=
break
elif idx[question, j] in sub[question, :]:
# We need to skip words already in the question.
continue
else:
# The correct label is not the precision@
break
print()
print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
correct * 100.0 / total))
def analogy(self, w0, w1, w2):
"""Predict word w3 as in w0:w1 vs w2:w3."""
wid = np.array([[self._word2id.get(w, ) for w in [w0, w1, w2]]])
idx = self._predict(wid)
for c in [self._id2word[i] for i in idx[, :]]:
if c not in [w0, w1, w2]:
return c
return "unknown"
def nearby(self, words, num=):
"""Prints out nearby words given a list of words."""
ids = np.array([self._word2id.get(x, ) for x in words])
vals, idx = self._session.run(
[self._nearby_val, self._nearby_idx], {self._nearby_word: ids})
for i in xrange(len(words)):
print("\n%s\n=====================================" % (words[i]))
for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]):
print("%-20s %6.4f" % (self._id2word[neighbor], distance))
def _start_shell(local_ns=None):
# An interactive shell is useful for debugging/development.
import IPython
user_ns = {}
if local_ns:
user_ns.update(local_ns)
user_ns.update(globals())
IPython.start_ipython(argv=[], user_ns=user_ns)
def main(_):
"""Train a word2vec model."""
if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path:
print("--train_data --eval_data and --save_path must be specified.")
sys.exit()
opts = Options()
with tf.Graph().as_default(), tf.Session() as session:
model = Word2Vec(opts, session)
for _ in xrange(opts.epochs_to_train):
model.train() # Process one epoch
model.eval() # Eval analogies.
# Perform a final save.
model.saver.save(session,
os.path.join(opts.save_path, "model.ckpt"),
global_step=model.global_step)
if FLAGS.interactive:
# E.g.,
# []: model.analogy('france', 'paris', 'russia')
# []: model.nearby(['proton', 'elephant', 'maxwell'])
_start_shell(locals())
if __name__ == "__main__":
tf.app.run()
curl http://mattmahoney.net/dc/text8.zip > text8.zip
unzip text8.zip
curl https://storage.googleapis.com/google-code-archive-source/v2/code.google.com/word2vec/source-archive.zip > source-archive.zip
unzip -p source-archive.zip word2vec/trunk/questions-words.txt > questions-words.txt
rm text8.zip source-archive.zip TF_INC=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_include())')
g++ -std=c++ -shared word2vec_ops.cc word2vec_kernels.cc -o word2vec_ops.so -fPIC -I $TF_INC -O2 -D_GLIBCXX_USE_CXX11_ABI= python word2vec_optimized.py \
--train_data=text8 \
--eval_data=questions-words.txt \
--save_path=./
Relevant Link:
http://www.cnblogs.com/rocketfan/p/4976806.html
https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
http://www.aclweb.org/anthology/N1
http://msr-waypoint.com/en-us/um/people/gzweig/Pubs/NAACL2013Regularities.pdf3-1090
http://www.tensorfly.cn/tfdoc/tutorials/word2vec.html
https://github.com/tensorflow/models/tree/master/tutorials/embedding
http://www.tensorfly.cn/tfdoc/tutorials/word2vec.html
6. 循环神经网络(RNN)、LSTM(Long-Short Term Memory, LSTM)
0x1: 语言模型
此教程将展示如何在高难度的语言模型中训练循环神经网络。该问题的目标是获得一个能确定语句概率的概率模型。为了做到这一点,通过之前已经给出的词语来预测后面的词语。我们将使用 PTB(Penn Tree Bank) 数据集,这是一种常用来衡量模型的基准,同时它比较小而且训练起来相对快速。
0x2: LSTM
模型的核心由一个 LSTM 单元组成,其可以在某时刻处理一个词语,以及计算语句可能的延续性的概率。网络的存储状态由一个零矢量初始化并在读取每一个词语后更新。而且,由于计算上的原因,我们将以 batch_size 为最小批量来处理数据。
基础的伪代码就像下面这样:
lstm = rnn_cell.BasicLSTMCell(lstm_size)
# 初始化 LSTM 存储状态.
state = tf.zeros([batch_size, lstm.state_size]) loss = 0.0
for current_batch_of_words in words_in_dataset:
# 每次处理一批词语后更新状态值.
output, state = lstm(current_batch_of_words, state) # LSTM 输出可用于产生下一个词语的预测
logits = tf.matmul(output, softmax_w) + softmax_b
probabilities = tf.nn.softmax(logits)
loss += loss_function(probabilities, target_words)
0x3: 截断反向传播
为使学习过程易于处理,通常的做法是将反向传播的梯度在(按时间)展开的步骤上照一个固定长度(num_steps)截断。 通过在一次迭代中的每个时刻上提供长度为 num_steps 的输入和每次迭代完成之后反向传导,这会很容易实现。
一个简化版的用于计算图创建的截断反向传播代码:
# 一次给定的迭代中的输入占位符.
words = tf.placeholder(tf.int32, [batch_size, num_steps]) lstm = rnn_cell.BasicLSTMCell(lstm_size)
# 初始化 LSTM 存储状态.
initial_state = state = tf.zeros([batch_size, lstm.state_size]) for i in range(len(num_steps)):
# 每处理一批词语后更新状态值.
output, state = lstm(words[:, i], state) # 其余的代码.
# ... final_state = state
迭代整个数据集
# 一个 numpy 数组,保存每一批词语之后的 LSTM 状态.
numpy_state = initial_state.eval()
total_loss = 0.0
for current_batch_of_words in words_in_dataset:
numpy_state, current_loss = session.run([final_state, loss],
# 通过上一次迭代结果初始化 LSTM 状态.
feed_dict={initial_state: numpy_state, words: current_batch_of_words})
total_loss += current_loss
0x4: 输入
在输入 LSTM 前,词语 ID 被嵌入到了一个密集的表示中(单词矢量表示可以在不同的单词之间建立关联性的依据)。这种方式允许模型高效地表示词语,也便于写代码
# embedding_matrix 张量的形状是: [vocabulary_size, embedding_size]
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, word_ids)
嵌入的矩阵会被随机地初始化,模型会学会通过数据分辨不同词语的意思
0x5: 损失函数
我们想使目标词语的平均负对数概率最小
论文中的典型衡量标准是每个词语的平均困惑度(perplexity),计算式为
同时我们会观察训练过程中的困惑度值(perplexity)
0x6: 多个 LSTM 层堆叠
要想给模型更强的表达能力,可以添加多层 LSTM 来处理数据。第一层的输出作为第二层的输入,以此类推。
类 MultiRNNCell 可以无缝的将其实现
lstm = rnn_cell.BasicLSTMCell(lstm_size)
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers) initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)
for i in range(len(num_steps)):
# 每次处理一批词语后更新状态值.
output, state = stacked_lstm(words[:, i], state) # 其余的代码.
# ... final_state = state
0x7: 在GPU上编译并运行
wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
python ptb_word_lm.py --data_path=./simple-examples/data/ --alsologtostderr --model large
Relevant Link:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://lib.csdn.net/article/deeplearning/59839
http://www.tensorfly.cn/tfdoc/tutorials/recurrent.html
7. 用深度学习网络搭建一个聊天机器人
python udc_train.py --num_gpus=
python udc_test.py --model_dir=./data
python udc_predict.py --model_dir=./data
import os
import time
import itertools
import sys
import numpy as np
import tensorflow as tf
import udc_model
import udc_hparams
import udc_metrics
import udc_inputs
from models.dual_encoder import dual_encoder_model
from models.helpers import load_vocab tf.flags.DEFINE_string("model_dir", None, "Directory to load model checkpoints from")
tf.flags.DEFINE_string("vocab_processor_file", "./data/vocab_processor.bin", "Saved vocabulary processor file")
FLAGS = tf.flags.FLAGS if not FLAGS.model_dir:
print("You must specify a model directory")
sys.exit() def tokenizer_fn(iterator):
return (x.split(" ") for x in iterator) # Load vocabulary
vp = tf.contrib.learn.preprocessing.VocabularyProcessor.restore(
FLAGS.vocab_processor_file) # Load your own data here
INPUT_CONTEXT = "how old are you!"
POTENTIAL_RESPONSES = ["fine, thanks", "twenty six yesrs old"] def get_features(context, utterance):
context_matrix = np.array(list(vp.transform([context])))
utterance_matrix = np.array(list(vp.transform([utterance])))
context_len = len(context.split(" "))
utterance_len = len(utterance.split(" "))
features = {
"context": tf.convert_to_tensor(context_matrix, dtype=tf.int64),
"context_len": tf.constant(context_len, shape=[,], dtype=tf.int64),
"utterance": tf.convert_to_tensor(utterance_matrix, dtype=tf.int64),
"utterance_len": tf.constant(utterance_len, shape=[,], dtype=tf.int64),
}
return features, None if __name__ == "__main__":
hparams = udc_hparams.create_hparams()
model_fn = udc_model.create_model_fn(hparams, model_impl=dual_encoder_model)
estimator = tf.contrib.learn.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir) # Ugly hack, seems to be a bug in Tensorflow
# estimator.predict doesn't work without this line
estimator._targets_info = tf.contrib.learn.estimators.tensor_signature.TensorSignature(tf.constant(, shape=[,])) print("Context: {}".format(INPUT_CONTEXT))
for r in POTENTIAL_RESPONSES:
prob = estimator.predict(input_fn=lambda: get_features(INPUT_CONTEXT, r))
print("{}: {:g}".format(r, prob[,]))
我们可以利用模型训练学习得到的模型和实际的场景进行对比,例如我们认为
INPUT_CONTEXT = "how old are you!"
POTENTIAL_RESPONSES = ["fine, thanks", "twenty six yesrs old"]
然后看模型是否得到和我们假定的一样的结果
Relevant Link:
http://naturali.io/deeplearning/chatbot/introduction/2016/04/28/chatbot-part1.html
http://naturali.io/deeplearning/chatbot/introduction/2016/05/16/chatbot-part2.html
https://arxiv.org/abs/1506.08909
https://github.com/dennybritz/chatbot-retrieval
Copyright (c) 2017 LittleHann All rights reserved
TensorFlow入门学习(让机器/算法帮助我们作出选择)的更多相关文章
- Tensorflow入门学习笔记汇总
一.环境准备 1.安装python:下载地址https://www.python.org/downloads/windows/下载并安装(推荐python3) 2.安装对应python版本的库:htt ...
- 知乎TensorFlow入门学习记录
知乎地址:https://zhuanlan.zhihu.com/p/30487008 import tensorflow as tf a=tf.placeholder(tf.int16) # 接受的数 ...
- 2019-04-11 python入门学习——配置机器及搭建开发环境
# 在windows操作系统中搭建python 3.x版本的开发环境,开发工具为 Anaconda 3. # 1.1 下载及安装Anaconda 3 Anaconda的特点:集成性高,包含很多常用的开 ...
- Egret入门学习日记 --- 第二篇 (书籍的选择 && 书籍目录 && 书中 3.3 节 内容)
第二篇 (书籍的选择 && 书籍目录 && 书中 3.3 节 内容) 既然选好了Egret,那我就要想想怎么学了. 开始第一步,先加个Q群先,这不,拿到了一本<E ...
- Egret入门学习日记 --- 第一篇 (引擎的选择)
第一篇 (引擎的选择) 我人比较笨,得慢慢学,我就一点一点来好了. 首先,我个人喜欢游戏.网页开发相对游戏开发来说,网页开发实在太枯燥了,没劲.所以打算转游戏开发了. 游戏开发要选择游戏引擎,我去看了 ...
- Aho-Corasick算法、多模正则匹配、Snort入门学习
希望解决的问题 . 在一些高流量.高IO的WAF中,是如何对规则库(POST.GET)中的字符串进行多正则匹配的,是单条轮询执行,还是多模式并发执行 . Snort是怎么组织.匹配高达上千条的正则规则 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法 二
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- 人工智能新手入门学习路线和学习资源合集(含AI综述/python/机器学习/深度学习/tensorflow)
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 1. 分享个人对于人工智能领域的算法综述:如果你想开始学习算法,不妨先了解人工 ...
随机推荐
- P2084 进制转换
原题链接 https://www.luogu.org/problemnew/show/P2084 这个题的思路就是先将输入的数字存到字符数组里,然后求出这一串数字中的非0元素的个数total,并记录最 ...
- [USACO12MAR] 花盆Flowerpot
类型:二分+单调队列 传送门:>Here< 题意:给出$N$个点的坐标,要求根据$x$轴选定一段区间$[L,R]$,使得其中的点的最大与最小的$y$值之差$\geq D$.求$Min\{R ...
- Codeforces Round #530 (Div. 2) F (树形dp+线段树)
F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...
- [USACO08DEC]在农场万圣节Trick or Treat on the Farm【Tarja缩点+dfs】
题目描述 每年,在威斯康星州,奶牛们都会穿上衣服,收集农夫约翰在N(1<=N<=100,000)个牛棚隔间中留下的糖果,以此来庆祝美国秋天的万圣节. 由于牛棚不太大,FJ通过指定奶牛必须遵 ...
- AXURE 8弄一个轮播图的步骤
这个图是网上找到,7.0可以使用. 如果是8.0.没有找到"动态面板"这个地方,如下图所示
- shell中,2>&1详解
我们在Linux下经常会碰到nohup command>/dev/null 2>&1 &这样形式的命令.首先我们把这条命令大概分解下,首先就是一个nohup表示当前用户和系 ...
- 单片机pwm控制基本原理详解
前言 PWM是Pulse Width Modulation的缩写,它的中文名字是脉冲宽度调制,一种说法是它利用微处理器的数字输出来对模拟电路进行控制的一种有效的技术,其实就是使用数字信号达到一个模拟信 ...
- JDK8中的并行流
1.IntStream.parallel():获取并行流处理 2. Collection中调用parallelStream()获取并行流 3.并行排序Arrays.parallelSort()
- codevs 2606 约数和(分块优化数学公式 )
题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X).现在的问题是 ...
- Git多个SSH KEYS解决方案(含windows自动化、TortoiseGit、SourceTree等)
工作过程中,经常会使用到多个git仓库,每个git仓库对应一个账号,可以理解为每个git仓库对应一个ssh key,因此我们需要管理多个ssh key. 一.快速创建ssh key 1. 创建 ...