Hard!

题目描述:

给定一个数组,它的第 i 个元素是一支给定的股票在第 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
  随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。  
  注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。  
  因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。

解题思路:

这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道Best Time to Buy and Sell Stock 买卖股票的最佳时间Best Time to Buy and Sell Stock II 买股票的最佳时间之二的思路都非常的简洁明了,算法也很简单。

而这道是要求最多交易两次,找到最大利润,还是需要用动态规划Dynamic Programming来解,而这里我们需要两个递推公式来分别更新两个变量local和global,参见https://blog.csdn.net/linhuanmars/article/details/23236995,

我们其实可以求至少k次交易的最大利润,找到通解后可以设定 k = 2,即为本题的解答。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值中取较大值,而全局最优比较局部最优和前一天的全局最优。

C++解法一:

 class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int n = prices.size(), g[n][] = {}, l[n][] = {};
for (int i = ; i < prices.size(); ++i) {
int diff = prices[i] - prices[i - ];
for (int j = ; j <= ; ++j) {
l[i][j] = max(g[i - ][j - ] + max(diff, ), l[i - ][j] + diff);
g[i][j] = max(l[i][j], g[i - ][j]);
}
}
return g[n - ][];
}
};

下面这种解法用一维数组来代替二维数组,可以极大地节省空间,由于覆盖的顺序关系,我们需要j从2到1,这样可以取到正确的g[j-1]值,而非已经被覆盖过的值。

C++解法二:

 class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.empty()) return ;
int g[] = {};
int l[] = {};
for (int i = ; i < prices.size() - ; ++i) {
int diff = prices[i + ] - prices[i];
for (int j = ; j >= ; --j) {
l[j] = max(g[j - ] + max(diff, ), l[j] + diff);
g[j] = max(l[j], g[j]);
}
}
return g[];
}
};

我们如果假设prices数组为1, 3, 2, 9, 那么我们来看每次更新时local 和 global 的值:

第一天两次交易:      第一天一次交易:

local:    0 0 0       local:    0 0 0

global:  0 0 0       global:  0 0 0

第二天两次交易:      第二天一次交易:

local:    0 0 2       local:    0 2 2

global:  0 0 2       global:  0 2 2

第三天两次交易:      第三天一次交易:

local:    0 2 2       local:    0 1 2

global:  0 2 2       global:  0 2 2

第四天两次交易:      第四天一次交易:

local:    0 1 9       local:    0 8 9

global:  0 2 9       global:  0 8 9

在网友@loveahneehttps://home.cnblogs.com/u/1221269/的提醒下,发现了其实上述的递推公式关于local[i][j]的可以稍稍化简一下,我们之前定义的local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,然后网友@fgvltyhttps://home.cnblogs.com/u/985421/解释了一下第 i 天卖第 j 支股票的话,一定是下面的一种:

1. 今天刚买的
那么 Local(i, j) = Global(i-1, j-1)
相当于啥都没干

2. 昨天买的
那么 Local(i, j) = Global(i-1, j-1) + diff
等于Global(i-1, j-1) 中的交易,加上今天干的那一票

3. 更早之前买的
那么 Local(i, j) = Local(i-1, j) + diff
昨天别卖了,留到今天卖

但其实第一种情况是不需要考虑的,因为当天买当天卖不会增加利润,完全是重复操作,这种情况可以归纳在global[i-1][j-1]中,所以我们就不需要max(0, diff)了,那么由于两项都加上了diff,所以我们可以把diff抽到max的外面,所以更新后的递推公式为:

local[i][j] = max(global[i - 1][j - 1], local[i - 1][j]) + diff

global[i][j] = max(local[i][j], global[i - 1][j])

LeetCode(123):买卖股票的最佳时机 III的更多相关文章

  1. Java实现 LeetCode 123 买卖股票的最佳时机 III(三)

    123. 买卖股票的最佳时机 III 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你最多可以完成 两笔 交易. 注意: 你不能同时参与 ...

  2. Leetcode 123.买卖股票的最佳时机III

    买卖股票的最佳时机III 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你最多可以完成 两笔 交易. 注意: 你不能同时参与多笔交易(你 ...

  3. leetcode 123. 买卖股票的最佳时机 III JAVA

    题目: 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你最多可以完成 两笔 交易. 注意: 你不能同时参与多笔交易(你必须在再次购买前出 ...

  4. leetcode 123. 买卖股票的最佳时机 III

    使用动态规划的解法,空间复杂度O(2*2)如果交易k次则为O(2*k),时间复杂度O(2n),交易k次为O(n*k), 因此本题实际上可以退化为买卖一次的情况:去掉buy2和sell2,即leetco ...

  5. Leetcode之动态规划(DP)专题-123. 买卖股票的最佳时机 III(Best Time to Buy and Sell Stock III)

    Leetcode之动态规划(DP)专题-123. 买卖股票的最佳时机 III(Best Time to Buy and Sell Stock III) 股票问题: 121. 买卖股票的最佳时机 122 ...

  6. 【力扣】123. 买卖股票的最佳时机 III

    给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你最多可以完成 两笔 交易. 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的 ...

  7. [Leetcode]123.买卖股票的最佳时机3

    [原题链接][https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii/] 分析:动态规划+二分法.以第i天为分界线,计 ...

  8. 每日一题-——LeetCode(121)买卖股票的最佳时机

    题目描述: 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格.如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润.注意你不能在买入股票前卖出股票 ...

  9. lintcode:买卖股票的最佳时机 III

    买卖股票的最佳时机 III 假设你有一个数组,它的第i个元素是一支给定的股票在第i天的价格.设计一个算法来找到最大的利润.你最多可以完成两笔交易. 样例 给出一个样例数组 [4,4,6,1,1,4,2 ...

  10. Java实现 LeetCode 188 买卖股票的最佳时机 IV

    188. 买卖股票的最佳时机 IV 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你最多可以完成 k 笔交易. 注意: 你不能同时参与多 ...

随机推荐

  1. webpack 配置全局 jQuery 对象

    将 lodash 添加到当前模块的上下文中 import _ from 'lodash' 但是你想每个模块都引入的话就特别麻烦,这里有插件可以帮助到您,只需在 webpack.config.js 中配 ...

  2. GitHub贡献第一的公司是谁?微软开源软件列表

    参考:http://www.infoq.com/cn/news/2017/03/GitHub-first-Microsoft-open-sour 提起微软公司,不少人第一反应是老牌巨头专注于私有化软件 ...

  3. 【Git】在GitHub或OSChina上新建项目后,如何在本地第一次push代码到服务器

    场景1:将本地代码push到远程仓库上的master主分支 #初始化git,执行init命令后,默认新建本地分支master git init #关联远程仓库 git remote add origi ...

  4. 省市联动-获取资源文件xml 获取nodes的方法要学会

    try { SAXReader reader = new SAXReader(); InputStream input = this.getClass().getResourceAsStream(&q ...

  5. java汇总

    BeanUtils 操作Javabean 需要导入jar包,并且加入到构建路径里面去,选择右键--加入到****,jar包的图标变成奶瓶: => 位置会变成上一层: ======== 原来已经配 ...

  6. python - 编程规范问题

    软件目录结构规范alex_老男孩:为什么要设计好目录结构?“设计项目目录结构”,就和“胆码编码风格”一样,属于个人风格问题.对于这种风格上的规范,一直都存在两种态度:    1.一类同学认为,这种个人 ...

  7. 20165234 《Java程序设计》第十周课下作业

    相关知识点的总结 泛型 Java 泛型的主要目的是可以建立具有类型安全的集合框架,如链表.散列映射等数据结构. 可以使用“class 名称<泛型列表>”声明一个类,为了和普通的类有所区别, ...

  8. python,练习乌龟吃鱼

    ''' 1.首先要有一个画布 2.随机乌龟和鱼的位置 3.移动 ''' import random as r list_x = [0,10] list_y = [0,10] class Turtle: ...

  9. Python3-lamba表达式、zip函数

    lambda表达式 学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即: # 普通条件语句 == : name = 'wupeiqi' else: name = 'alex' ...

  10. dmp文件的导入导出

    一.dmp文件的导入 方法一(需安装PLSQL) 1.运行PLSQL,在oracle登陆窗口输入用户名和密码登陆到数据库 2.运行工具>导入表,弹出导入对话框 3.单击下方选择文件按钮,在弹出对 ...