表示我这种蒟蒻面对这种递推第一思想显然是打表啊

先贴个用来打表的暴力:

#include <cstdio>
struct node
{
    int l,r;
}p[];
bool used[];
int f[];
int n,cnt,cct;
int findf(int x)
{
    if(x==f[x])
    {
        return x;
    }
    return f[x]=findf(f[x]);
}
bool check()
{
    for(int i=;i<=n+;i++)
    {
        f[i]=i;
    }
    for(int i=;i<=cct;i++)
    {
        if(used[i])
        {
            int f1=findf(p[i].l);
            int f2=findf(p[i].r);
            f[f2]=f1;
        }
    }
    int ff=;
    for(int i=;i<=n+;i++)
    {
        int f1=findf(i);
        if(!ff)
        {
            ff=f1;
        }else if(ff!=f1)
        {
            return ;
        }
    }
    return ;
}
void dfs(int dep,int tot)
{
    if(dep==cct+)
    {
        if(tot==n)
        {
            if(check())
            {
                cnt++;
            }
        }
        return;
    }
    used[dep]=;
    dfs(dep+,tot+);
    used[dep]=;
    dfs(dep+,tot);
}
int main()
{
    scanf("%d",&n);    
    for(int i=;i<=n+;i++)
    {
        p[++cct].l=;
        p[cct].r=i;    
    }
    for(int i=;i<=n+;i++)
    {
        if(i==n+)
        {
            p[++cct].l=i;
            p[cct].r=;
        }else
        {
            p[++cct].l=i;
            p[cct].r=i+;
        }
    }
    dfs(,);
    printf("%d\n",cnt);
    return ;
}
/*
1 1
2 5
3 16
4 45
5 121
6 320
*/

实测这个打表程序是正确的(可以获得30分)

接下来是本人心路历程:

观察一下:1-1,2-5,3-16,4-45...找一下前后项吧!

观察前后项的倍数关系应该在2~3之间,那先定一个基础表达式

f[i]=2f[i-1]+...或f[i]=3f[i-1]+...

如果系数用2,发现剩下的部分长这样啊...

f[3]=2f[2]+6

f[4]=2f[3]+13

f[5]=2f[4]+31

...

好像后面的没啥规律...

那换系数用3!

f[4]=3f[3]-3

f[5]=3f[4]-14

...

好像也没啥啊...

等一下!

-3=-5+2

-14=-16+2

如果下面再写下来,应该是-43=-45+2!

这不就找出来了吗!

f[i]=3f[i-1]-f[i-2]+2!

于是敲个高精度这题就结束了...

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
struct Bignum
{
int a[10005];
int ilen;
}f[105],zero;
int n;
Bignum add(Bignum x)
{
Bignum ret=x;
ret.a[1]+=2;
int i=1;
while(ret.a[i]>=10)
{
ret.a[i+1]+=ret.a[i]/10;
ret.a[i]%=10;
i++;
}
if(ret.a[ret.ilen+1])
{
ret.ilen++;
}
return ret;
}
Bignum mul(Bignum x)
{
Bignum ret=zero;
for(int i=1;i<=x.ilen;i++)
{
ret.a[i]+=3*x.a[i];
ret.a[i+1]+=ret.a[i]/10;
ret.a[i]%=10;
}
ret.ilen=x.ilen;
while(ret.a[ret.ilen+1])
{
ret.ilen++;
}
return ret;
}
Bignum sub(Bignum x,Bignum y)
{
Bignum ret=zero;
for(int i=1;i<=y.ilen;i++)
{
ret.a[i]+=x.a[i]-y.a[i];
if(ret.a[i]<0)
{
ret.a[i]+=10;
ret.a[i+1]--;
}
}
for(int i=y.ilen+1;i<=x.ilen;i++)
{
ret.a[i]+=x.a[i];
}
ret.ilen=x.ilen;
while(!ret.a[ret.ilen]&&ret.ilen>1)
{
ret.ilen--;
}
return ret;
}
int main()
{
scanf("%d",&n);
f[1].a[1]=1;
f[1].ilen=1;
f[2].a[1]=5;
f[2].ilen=1;
f[3].a[1]=6;
f[3].a[2]=1;
f[3].ilen=2;
for(int i=4;i<=n;i++)
{
f[i]=mul(f[i-1]);
f[i]=add(f[i]);
f[i]=sub(f[i],f[i-2]);
}
for(int i=f[n].ilen;i>=1;i--)
{
printf("%d",f[n].a[i]);
}
printf("\n");
return 0;
}

  

bzoj 1002的更多相关文章

  1. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

  2. BZOJ 1002 轮状病毒

    Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同的n轮状病毒数输出 Sample Inpu ...

  3. 生成树的计数(基尔霍夫矩阵):BZOJ 1002 [FJOI2007]轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3928  Solved: 2154[Submit][Statu ...

  4. BZOJ 1002 [FJOI2007]轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3106  Solved: 1724[Submit][Statu ...

  5. BZOJ 1002: [FJOI2007]轮状病毒【生成树的计数与基尔霍夫矩阵简单讲解+高精度】

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5577  Solved: 3031[Submit][Statu ...

  6. BZOJ 1002 - 轮状病毒 - [基尔霍夫矩阵(待补)+高精度]

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1002 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生 ...

  7. bzoj 1002 [FJOI2007]轮状病毒——打表找规律

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1002 看 Zinn 的博客:https://www.cnblogs.com/Zinn/p/9 ...

  8. BZOJ 1002 轮状病毒 矩阵树定理

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1002 题目大意: 给定n(N<=100),编程计算有多少个不同的n轮状病毒 思路 ...

  9. AC日记——[FJOI2007]轮状病毒 bzoj 1002

    1002 思路: 打表找规律: dp[i]=dp[i-1]*3-dp[i-2]+2; 套个高精就a了: 代码: #include <cstdio> #include <cstring ...

  10. BZOJ 1002 [ FJOI 2007 ]

    -------------------------萌萌哒分割线------------------------- 题目很容易看懂,数据范围也不大.当然可以卡过暴力的人了. 在n=1时很明显是一种,如下 ...

随机推荐

  1. call 和 apply 的区别

    call 和 apply 都是为了改变某个函数运行时的 context 即上下文而存在的,换句话说,就是为了改变函数体内部 this 的指向.因为 JavaScript 的函数存在「定义时上下文」和「 ...

  2. proxysql 系列 ~ 读写分离核心功能

    一 相关表介绍 1 mysql_user 列表配置    1 username && password 账号密码    2 default_hostgroup 默认的组ID2 mysq ...

  3. CF1096E The Top Scorer

    题目地址:洛谷CF1096E 本场AC数最少 (最难) 的题目 题目大意:给出三个数p , s,r,表示有p人,每个人都有一个非负得分,所有人的得分和为s,Hasan的得分至少为r,求Hasan是第一 ...

  4. SpringSecurity实现记住我功能

    ⒈表单添加 <form action="/authentication/form" method="post"> <table> < ...

  5. 在 sql server 中,查询 数据库的大小 和 数据库中各表的大小

    其实本来只想找一个方法能查询一下 数据库 的大小,没想到这个方法还能查询数据库中 各个数据表 的大小,嗯,挺好玩的,记录一下. MSDN资料:https://msdn.microsoft.com/zh ...

  6. 【上载虚拟机】XX是一个Workstations 12.X虚拟机,不受XX支持。请选择其他主机或将虚拟机的硬件版本更改为以下选项之一。

    背景 由于搭建集群时,要使用Ubuntu系统,还有一点就是咱们使用的Ubuntu系统是定制的,但是它是一个虚拟机,需要通过VMware Workstations这款软件,把咱们定制好的Ubuntu系统 ...

  7. Tensorflow的Queue读取数据机制

    参考链接:http://www.sohu.com/a/148245200_115128

  8. MySQL之路 ——2、步履维艰的建表

    1.首先,在windows下,不区分大小写.Linux下可能要区分,具体参考下面文章 mysql表名忽略大小写问题记录 2.用command line client 每句以分号结尾. 3.Navica ...

  9. 001_谈阿里核心业务监控平台SunFire的技术架构

    <1>阿里全球运行指挥中心(GOC)的SunFire出品 <2>在2016年双11全球购物狂欢节中,天猫全天交易额1207亿元,前30分钟每秒交易峰值17.5万笔,每秒支付峰值 ...

  10. Directory 中user Var 如何添加到通道变量中?

    FS默认的配置,ACL 是 拒绝的,只能通过 Digest 的方式进行认证,一旦认证成功之后,directory 中的 var 就能在通道中通过${} 的方式获取到. 如果ACL 认证通过 ,就直接走 ...