HDU5692 Snacks DFS序 线段树
去博客园看该题解
题目
HDU5692 Snacks
Problem Description
百度科技园内有n个零食机,零食机之间通过n−1条路相互连通。每个零食机都有一个值v,表示为小度熊提供零食的价值。
由于零食被频繁的消耗和补充,零食机的价值v会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。
为小度熊规划一个路线,使得路线上的价值总和最大。
Input
输入数据第一行是一个整数T(T≤10),表示有T组测试数据。
对于每组数据,包含两个整数n,m(1≤n,m≤100000),表示有n个零食机,m次操作。
接下来n−1行,每行两个整数x和y(0≤x,y<n),表示编号为x的零食机与编号为y的零食机相连。
接下来一行由n个数组成,表示从编号为0到编号为n−1的零食机的初始价值v(|v|<100000)。
接下来m行,有两种操作:0 x y,表示编号为x的零食机的价值变为y;1 x,表示询问从编号为0的零食机出发,必须经过编号为x零食机的路线中,价值总和的最大值。
本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:
`#pragma comment(linker, "/STACK:1024000000,1024000000") `
Output
对于每组数据,首先输出一行”Case #?:”,在问号处应填入当前数据的组数,组数从1开始计算。
对于每次询问,输出从编号为0的零食机出发,必须经过编号为x零食机的路线中,价值总和的最大值。
Sample Input
1
6 5
0 1
1 2
0 3
3 4
5 3
7 -5 100 20 -5 -7
1 1
1 3
0 2 -1
1 1
1 5
Sample Output
Case #1:
102
27
2
20
题目概括
给定一棵n个点的有根树,每个点有一个点权。根节点为0,节点标号为0~n-1。
定义最大路径为:从根出发走到某个点,点权和最大的路径。
现在有Q次操作,每种是以下两种之一:
(1).将点x的点权变成v。
(2).求经过某一个点的最大路径的点权和。
题解
线段树。
我们设:
w[x]为节点x的权值
Dis[x]为从根节点到达当前节点的权值
那么,一开始,dis[x]可以通过一遍dfs全部求出来。
如何处理更改和询问呢?那么我们从询问入手。
题目询问的是经过一个点的最大路径的点权和,那么其实就是到达这个节点或者其子孙节点的最大dis[x], 其实就是查询整个子树的max(dis[x])。
那么我们想到了什么?因为在树的dfs序中,同一个子树节点的所对应的序号一定是整个dfs序中的连续的一段!具体详见 关于dfs序的思考 。
那么我们就可以把询问转化成“求区间最大值”的问题了。然而同理思考,那么修改其实就是修改整个子树的最大值!对于0 x y, 其实就是子树x的所有节点都增加y-w[x]!那么最大值也增加y-w[x]。
问题就变成了一个询问区间最大值和区间修改(同增或者同减)的问题了。
于是,我们就可以用线段树来维护。一棵线段树就好了吧。
剧情还是有波折的!
代码1 - TLE
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <vector>
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
typedef long long LL;
const LL Inf=1e18;
const int N=+;
vector <int> son[N];
int T,n,m,time;
int in[N],out[N];
LL dis[N],w[N];
struct Tree{
LL add,v;
}t[N*];
void dfs(int prev,int rt){
in[rt]=++time;
dis[in[rt]]=dis[in[prev]]+w[rt];
for (int i=;i<son[rt].size();i++)
if (son[rt][i]!=prev)
dfs(rt,son[rt][i]);
out[rt]=time;
}
void build(int rt,int le,int ri){
t[rt].add=;
if (le==ri){
t[rt].v=dis[le];
return;
}
int mid=(le+ri)>>,ls=rt<<,rs=ls|;
build(ls,le,mid);
build(rs,mid+,ri);
t[rt].v=max(t[ls].v,t[rs].v);
}
void pushdown(int rt){
if (t[rt].add==)
return;
int ls=rt<<,rs=ls|;
LL v=t[rt].add;
t[ls].v+=v,t[ls].add+=v;
t[rs].v+=v,t[rs].add+=v;
t[rt].add=;
}
void update(int rt,int le,int ri,int xle,int xri,LL d){
if (le>xri||xle>ri)
return;
if (xle<=le&&ri<=xri){
t[rt].v+=d,t[rt].add+=d;
return;
}
pushdown(rt);
int mid=(le+ri)>>,ls=rt<<,rs=ls|;
update(ls,le,mid,xle,xri,d);
update(rs,mid+,ri,xle,xri,d);
t[rt].v=max(t[ls].v,t[rs].v);
}
LL query(int rt,int le,int ri,int xle,int xri){
if (le>xri||xle>ri)
return -Inf;
if (xle<=le&&ri<=xri)
return t[rt].v;
pushdown(rt);
int mid=(le+ri)>>,ls=rt<<,rs=ls|;
LL ans=-Inf;
ans=max(ans,query(ls,le,mid,xle,xri));
ans=max(ans,query(rs,mid+,ri,xle,xri));
return ans;
}
int main(){
scanf("%d",&T);
for (int cas=;cas<=T;cas++){
scanf("%d%d",&n,&m);
for (int i=;i<N;i++)
son[i].clear();
for (int i=,a,b;i<n;i++){
scanf("%d%d",&a,&b),a++,b++;
son[a].push_back(b);
son[b].push_back(a);
}
for (int i=;i<=n;i++)
scanf("%lld",&w[i]);
time=in[]=dis[]=;
dfs(,);
build(,,n);
printf("Case #%d:\n",cas);
while (m--){
int type,x;
LL y;
scanf("%d%d",&type,&x),x++;
if (type==){
scanf("%lld",&y);
update(,,n,in[x],out[x],y-w[x]);
w[x]=y;
}
else
printf("%lld\n",query(,,n,in[x],out[x]));
}
}
return ;
}
代码2 - AC
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
const int N=+;
const LL Inf=1e18;
vector <int> son[N];
int T,n,m,in[N],out[N],time;
LL w[N],dis[N];
struct Tree{
LL v,add;
}t[N*];
void dfs(int prev,int rt){
in[rt]=++time;
dis[in[rt]]=dis[in[prev]]+w[rt];
for (int i=;i<son[rt].size();i++)
if (son[rt][i]!=prev)
dfs(rt,son[rt][i]);
out[rt]=time;
}
void pushup(int rt){
t[rt].v=max(t[rt<<].v,t[rt<<|].v);
}
void build(int rt,int le,int ri){
t[rt].add=;
if (le==ri){
t[rt].v=dis[le];
return;
}
int mid=(le+ri)>>;
build(rt<<,le,mid);
build(rt<<|,mid+,ri);
pushup(rt);
}
void pushdown(int rt){
if (t[rt].add==)
return;
int ls=rt<<,rs=ls|;
LL v=t[rt].add;
t[ls].v+=v,t[ls].add+=v;
t[rs].v+=v,t[rs].add+=v;
t[rt].add=;
}
void update(int rt,int le,int ri,int xle,int xri,LL d){
if (le>xri||ri<xle)
return;
if (xle<=le&&ri<=xri){
t[rt].v+=d,t[rt].add+=d;
return;
}
pushdown(rt);
int mid=(le+ri)>>;
update(rt<<,le,mid,xle,xri,d);
update(rt<<|,mid+,ri,xle,xri,d);
pushup(rt);
}
LL query(int rt,int le,int ri,int xle,int xri){
if (le>xri||ri<xle)
return -Inf;
if (xle<=le&&ri<=xri)
return t[rt].v;
pushdown(rt);
int mid=(le+ri)>>;
return max(query(rt<<,le,mid,xle,xri),query(rt<<|,mid+,ri,xle,xri));
}
int main(){
scanf("%d",&T);
for (int cas=;cas<=T;cas++){
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
son[i].clear();
for (int i=,a,b;i<n;i++){
scanf("%d%d",&a,&b);a++,b++;
son[a].push_back(b);
son[b].push_back(a);
}
for (int i=;i<=n;i++)
scanf("%lld",&w[i]);
time=in[]=dis[]=;
dfs(,);
build(,,n);
printf("Case #%d:\n",cas);
while (m--){
int type,x;
LL y;
scanf("%d%d",&type,&x);x++;
if (type==){
scanf("%lld",&y);
update(,,n,in[x],out[x],y-w[x]);
w[x]=y;
}
else
printf("%lld\n",query(,,n,in[x],out[x]));
}
}
return ;
}
找不同~
就是一句话的不同!
!
#define max(a,b) ((a)>(b)?(a):(b))
这句话!
是的,我由于这句话苦苦寻找了10个小时,后来莫名其妙的过了~
然后又找了1个小时,才发现是这句话……
(UPD 2018-04-22):具体原因:如果你对宏定义有那么些了解,只需要把宏定义的内容代入到询问部分的return max(query(L),query(R))中,你就知道为什么是$O(n^2)$的了QAQ。代入结果为:return query(L)>query(R)?query(L):query(R)。这样的话,在第$k$层的询问就会被执行$O(2^k)$,而$2^k$的上限是$O(n)$级别的。所以单词询问就变成了$O(n)$的QAQ
同时提醒同学们,千万不要傻傻的干这种事情了。
附上一组数据:
4
9 5
1 0
1 2
2 3
4 1
5 3
6 5
7 5
7 8
23182 80368 7060 -50161 81799 8841 90480 3016 -4312
1 0
0 8 -438497
0 4 -188568
1 4
0 6 -176104
9 4
0 1
0 2
3 0
3 4
3 5
6 1
7 6
0 8
61060 -24449 -72783 -77927 -33421 80849 8262 -24364 90327
0 2 116045
0 5 404857
1 2
1 5
7 8
1 0
0 2
2 3
4 2
2 5
6 1
16405 -88702 4022 40275 80451 68322 78648
0 3 -39689
1 3
0 3 100112
0 2 109684
1 6
1 2
0 3 -345744
0 3 144465
7 2
0 1
2 0
0 3
1 4
5 0
4 6
-31521 32600 -32746 -67252 40896 94763 99624
0 5 372906
0 5 -118828
ans:
Case #1:
185349
-85018
Case #2:
177105
387990
Case #3:
-19262
6351
226201
Case #4:
HDU5692 Snacks DFS序 线段树的更多相关文章
- hdu-5692 Snacks(dfs序+线段树)
题目链接: Snacks Problem Description 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的 ...
- HDU.5692 Snacks ( DFS序 线段树维护最大值 )
HDU.5692 Snacks ( DFS序 线段树维护最大值 ) 题意分析 给出一颗树,节点标号为0-n,每个节点有一定权值,并且规定0号为根节点.有两种操作:操作一为询问,给出一个节点x,求从0号 ...
- HDU 5692 Snacks(DFS序+线段树)
Snacks Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- Educational Codeforces Round 6 E dfs序+线段树
题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...
- 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心
3252: 攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 339 Solved: 130[Submit][Status][Discuss] D ...
- Codeforces 343D Water Tree(DFS序 + 线段树)
题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...
- BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)
题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...
- POJ 3321 DFS序+线段树
单点修改树中某个节点,查询子树的性质.DFS序 子树序列一定在父节点的DFS序列之内,所以可以用线段树维护. 1: /* 2: DFS序 +线段树 3: */ 4: 5: #include < ...
- 【XSY2667】摧毁图状树 贪心 堆 DFS序 线段树
题目大意 给你一棵有根树,有\(n\)个点.还有一个参数\(k\).你每次要删除一条长度为\(k\)(\(k\)个点)的祖先-后代链,问你最少几次删完.现在有\(q\)个询问,每次给你一个\(k\), ...
随机推荐
- HBase Snapshot简介
一.简介 HBase 从0.95开始引入了Snapshot,可以对table进行Snapshot,也可以Restore到Snapshot.Snapshot可以在线做,也可以离线做.Snapshot的实 ...
- 41)django-admin
一:介绍 通过django admin可以快速生成后台管理功能. 二:设置 工程同名下settings.py 1)在INSTALLED_APPS中增加django.contrib.admin 2)在I ...
- 37)django-单例模式
一:单例模式 单例模式,是一种常用的软件设计模式.在它的核心结构中只包含一个被称为单例的特殊类. 通过单例模式可以保证系统中一个类只有一个实例.即一个类只有一个对象实例. 常用例子:数据库连接串,只保 ...
- AGC 014 E Blue and Red Tree [树链剖分]
传送门 思路 官方题解是倒推,这里提供一种正推的做法. 不知道你们是怎么想到倒推的--感觉正推更好想啊QwQ就是不好码 把每一条红边,将其转化为蓝树上的一条路径.为了连这条红边,需要保证这条路径仍然完 ...
- SqlBulkCopy 之 Received an invalid column length from the bcp client for colid 5.
SqlBulkCopy 批量复制报错: Received an invalid column length from the bcp client for colid 5. 翻译:从bcp客户端收到一 ...
- Confluence 6 使用 Apache 和 mod_proxy
Atlassian 应用允许用户使用反向代理,但是 Atlassian 并不会为这个功能的配置提供支持.因此,Atlassian 也不能保证能够为这些配置提供任何支持. 如果你在配置上有任何需求,请参 ...
- 使用 Apache 来限制访问 Confluence 6 的管理员界面
限制特定的 IP 地址可以访问管理员后台 Confluence 的管理员控制台界面对整个应用来说是非常重要的,任何人访问 Confluence 的控制台不仅仅可以访问 Confluence 安装实例, ...
- 限制 Confluence 6 WebDAV 客户端的写入权限
在早期的 WebDAV 插件中分离了 WebDAV 客户端的写入权限(不能使用,创建/修改,编辑和删除操作)是分开配置的.但是在新版版本的插件中,我们将这些权限合并到了一起. WebDAV 客户端现在 ...
- java多线程快速入门(十七)
多线程通讯实例(必须要有多个线程.必须要管理同一个变量:线程A生产一个变量,线程B消费一个变量) package com.cppdy; class User { public String usern ...
- cf1042d 树状数组逆序对+离散化
/* 给定一个数组,要求和小于t的段落总数 求前缀和 dp[i]表示以第i个数为结尾的小于t的段落总数,sum[i]-sum[l]<t; sum[i]-t<sum[l],所以只要找到满足条 ...