原文链接https://www.cnblogs.com/zhouzhendong/p/9781060.html

题目传送门 - NowCoder Wannafly 26D

题意

  放一放这一题原先的题面:

阿尔法城

空间限制 512MB
时间限制 2s

题目描述

听说遥远的α城里神仙题横行,毒瘤题占道,zzd 决定来送一道温暖。

zzd 现在正距离α城很远处(可以理解成无穷远),通过望远镜看到了 α 城里的景象。

α城中有 n 座高楼,排成一条直线,其中第 i 座高楼的高度为 a[i] ,颜色为 c[i] 。任意两个高楼不同,即使他们的高度和颜色都相同。

zzd 惊喜地发现这些高楼排成的直线恰好与 zzd 的视线重合,且离 zzd 最近的是第 1 座高楼。

如果一座大楼之前没有高度不小于它的高楼遮挡,那么 zzd 就能看见它。于是 zzd 很快就数出了他看到的颜色种数。

α城里的神仙陈老爷想要阻止 zzd 送温暖,立马联合神仙 cly 发动了魔法:不断将高楼重新排列。

这么多的变换,让 zzd 眼花缭乱。于是,zzd 决定,在去找 Mangoyang 并对陈老爷实施 α 行动之前,先问问你:对于所有排列,zzd 看到的颜色种数之和为多少?

答案对 998244353 取模。

输入描述

第一行一个整数 n 。
接下来 n 行,每行两个整数 a[i] 和 c[i] 。
1<=n<=500000,
1<=a[i],c[i]<=100000000

输出描述

一个整数,表示答案对 998244353 取模后的值。

示例
输入1
4
1 5
4 3
5 2
3 1

输出1
50

输入2
10
5 6
1 2
2 2
10 9
10 7
8 6
10 6
1 2
1 1
8 3

输出2
6664320

  不过后来由于 ACM 赛制,样例 2 就没了。

题解

  首先我们把这个总方案数转化成期望。

  根据期望的线性性,总答案可以分解成各个颜色被看见的概率之和。

  现在考虑如何求一个颜色被看见的概率。

  这里有一个结论——

如果对于一个楼,高度不低于它的(包括它自己)有 $t$ 个,那么它被看见的概率就是 $\frac 1t$ 。

  (证明:将当前楼插入比他高的楼的空隙中,有 $t$ 个方法,但是只有插在最前面的是能看见的)

  那么,一种颜色被看见的概率就是 $1-$ 每一个楼都没被看见的概率。注意到可能存在同种颜色有多个相同高度的楼的情况,需要将上面的结论升级一下——

对于 $k$ 个相同高度的楼,如果高度不低于他们的楼有 $t$ 个,则他们中至少一个被看见的概率就是 $\frac kt$

  (证明基于之前的结论,推导一下即可)

  于是就解决了这个问题。

  所以这个通过率是怎么回事……是不是都被某毒瘤出题人的 B 题拦住了?

代码

加了个hash表,成功把时限开到了标程4倍。

#include <bits/stdc++.h>
using namespace std;
const int N=500005,mod=998244353;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=1LL*x*x%mod)
if (y&1)
ans=1LL*ans*x%mod;
return ans;
}
int read(){
int x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
int n,Fac[N],Inv[N],Ha[N],tax[N],hs=0,tot=0;
struct Building{
int a,c;
}x[N];
struct hash_map{
static const int Ti=233,mod=1<<19;
int cnt,k[mod+1],v[mod+1],nxt[mod+1],fst[mod+1];
int Hash(int x){
unsigned t=x;
int v=(t<<3^t)&(mod-1);
return v==0?mod:v;
}
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void update(int x,int a){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x){
v[p]=a;
return;
}
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt,v[cnt]=a;
return;
}
int find(int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
return 0;
}
int &operator [] (int x){
int y=Hash(x);
for (int p=fst[y];p;p=nxt[p])
if (k[p]==x)
return v[p];
k[++cnt]=x,nxt[cnt]=fst[y],fst[y]=cnt;
return v[cnt]=0;
}
}Map;
vector <int> v[N];
int main(){
//freopen("city9.in","r",stdin);
//freopen("city9.out","w",stdout);
//int st=clock();
n=read();
for (int i=Fac[0]=1;i<=n;i++){
Fac[i]=1LL*Fac[i-1]*i%mod;
v[i].clear();
}
Inv[n]=Pow(Fac[n],mod-2);
for (int i=n;i>=1;i--)
Inv[i-1]=1LL*Inv[i]*i%mod;
for (int i=1;i<=n;i++)
Inv[i]=1LL*Inv[i]*Fac[i-1]%mod;
Map.clear();
for (int i=1;i<=n;i++){
x[i].a=read(),x[i].c=read();
if (!Map[x[i].c])
Map[x[i].c]=++tot;
x[i].c=Map[x[i].c];
Ha[++hs]=x[i].a;
}
sort(Ha+1,Ha+hs+1);
hs=unique(Ha+1,Ha+hs+1)-Ha-1;
memset(tax,0,sizeof tax);
for (int i=1;i<=n;i++){
x[i].a=lower_bound(Ha+1,Ha+hs+1,x[i].a)-Ha;
tax[x[i].a]++;
v[x[i].c].push_back(x[i].a);
}
for (int i=hs;i>=1;i--)
tax[i]+=tax[i+1];
int ans=0;
for (int i=1;i<=tot;i++){
vector <int> &a=v[i];
sort(a.begin(),a.end());
a.push_back(a.back()+1);
int h=a[0],cnt=1,now=1;
for (int j=1;j<a.size();j++){
if (a[j]!=a[j-1]){
int t=tax[a[j-1]];
now=1LL*now*(mod+1-1LL*cnt*Inv[t]%mod)%mod;
cnt=0;
}
cnt++;
}
ans=(ans+mod+1-now)%mod;
}
ans=1LL*ans*Fac[n]%mod;
printf("%d",ans);
//cerr << "user time = " << clock()-st << endl;
return 0;
}

  

数据生成器

里面有参数自行调整。

#include <bits/stdc++.h>
using namespace std;
typedef unsigned uint;
const int N=1000005;
int n=500000,m=1000,A[N],C[N];
int Rand(int n){
uint a=rand(),b=rand();
return (a<<16|b)%n;
}
int main(){
srand(time(NULL));
freopen("city9.in","w",stdout);
printf("%d\n",n);
A[0]=C[0]=1;
for (int i=1;i<=n;i++){
int a,c;
int p1=Rand(20),p2=Rand(20);
if (p1)
a=Rand(m)+1;
else
a=A[Rand(i)];
if (p2)
c=Rand(m)+1;
else
c=C[Rand(i)];
printf("%d %d\n",A[i]=a,C[i]=c);
}
return 0;
}

  

牛客 Wannafly 挑战赛26D 禁书目录 排列组合 概率期望的更多相关文章

  1. 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)

    牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...

  2. 牛客~~wannafly挑战赛19~A 队列

    链接:https://www.nowcoder.com/acm/contest/131/A来源:牛客网 题目描述 ZZT 创造了一个队列 Q.这个队列包含了 N 个元素,队列中的第 i 个元素用 Qi ...

  3. 牛客Wannafly挑战赛23 B.游戏

    游戏 题目描述 小N和小O在玩游戏.他们面前放了n堆石子,第i堆石子一开始有ci颗石头.他们轮流从某堆石子中取石子,不能不取.最后无法操作的人就输了这个游戏.但他们觉得这样玩太无聊了,更新了一下规则. ...

  4. nowcoder牛客wannafly挑战赛20

    A---染色 签到题,设最终颜色为x,一次操作就需要把一个不是x的点变为x,所以最终颜色为x时需要操作 总结点个数-颜色为x的节点个数,然后枚举所有颜色就行了 #include <iostrea ...

  5. 牛客Wannafly挑战赛26E 蚂蚁开会(树链剖分+线段树)

    传送门 题面描述 一颗n个节点的树,m次操作,有点权(该节点蚂蚁个数)和边权(相邻节点的距离). 三种操作: 操作1:1 i x将节点i的点权修改为x.(1 <= i <= n; 1 &l ...

  6. 牛客Wannafly挑战赛11E 白兔的刁难

    传送门 如果大力推单位根反演就可以获得一个 \(k^2logn\) 的好方法 \[ans_{t}=\frac{1}{k}\sum_{i=0}^{k-1}(w_k^{-t})^i(w_k^i+1)^n\ ...

  7. 牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)

    传送门 直接的想法就是设 \(x^k\) 为边权,矩阵树定理一波后取出 \(x^{nk}\) 的系数即可 也就是求出模 \(x^k\) 意义下的循环卷积的常数项 考虑插值出最后多项式,类比 \(DFT ...

  8. 牛客 Wannafly挑战赛27 D 绿魔法师

    传送门 \(\color{green}{solution}\) 分析下,在\(1e5+1\)内,一个数的约数个数最多为\(2^{6}\)个,所以我们可以考虑枚举约数 复杂度\(O(N^{2^{6 \t ...

  9. [牛客Wannafly挑战赛27D]绿魔法师

    description newcoder 给你一个空的可重集合\(S\). \(n\)次操作,每次操作给出\(x\),\(k\),\(p\),执行以下操作: \(opt\ 1\):在S中加入x. \( ...

随机推荐

  1. HTML网页背景图很长要有滚动条滑动

    1 前言 由于网页背景图非常长,然后会出现只显示当前页面,后面部分看不到,也不能滑动,开始以为不能滑动应该是没有加overflow-y: auto(scroll),结果加上去也是无效的. 2 代码 & ...

  2. 11)django-ORM(操作增删改查)

    ORM从增删改查等方面说明 一:创建数据 #创建数据两种方式1,推荐方式1 UserInfo.objects.create(username=") #方式1变种 user_dict={&qu ...

  3. 在Amazon FreeRTOS V10中使用运行时统计信息

    在MCU on Eclipse网站上看到Erich Styger在8月2日发的博文,一篇关于在Amazon FreeRTOS V10中使用运行时统计信息的文章,本人觉得很有启发,特将其翻译过来以备参考 ...

  4. day07 元组类型 字典类型 集合

    元组:元组就是一个不可变的列表 1.用途:当我们需要记录多个同种属性的值,并且只有读的需求,没有改的需求,应该用元组. 2.定义方式:在()内用逗号分隔开多个任意类型的元素 t=(‘egon’)#注意 ...

  5. Best Cow Line(POJ3617)

    Description FJ is about to take his N (1 ≤ N ≤ 2,000) cows to the annual"Farmer of the Year&quo ...

  6. HTML&javaSkcript&CSS&jQuery&ajax(二)

    一.HTML 1.标签<a href="http:www.baidu.com">This is a link </a>         <img sr ...

  7. hdu4044 依赖背包变形 好题!

    由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...

  8. Python笔记记录

    python2和python3的不同: Unicode(统一码.万国码),在3里面可以直接写中文了. python2里rae_input与python3中的input效果一样 在计算机内存中,统一用U ...

  9. Oracle索引(Index)介绍使用

    1.什么是引 索引是建立在表的一列或多个列上的辅助对象,目的是加快访问表中的数据:Oracle存储索引的数据结构是B*树,位图索引也是如此,只不过是叶子节点不同B*数索引:索引由根节点.分支节点和叶子 ...

  10. js 对象(object)合并

    var obj1 = { name:'lisi', checked:'true' }; var obj2 = { name:'zhangsan', age:18 }; Object.assign(ob ...