http://poj.org/problem?id=1821

当我们在考虑内层循环j以及决策k的时候,我们可以把外层变量i看作定值,以此来优化dp状态转移方程。

题意 有n个工人准备铺m个连续的墙,每个工人有他必须图的一面墙壁Si,最多连续铺Li,每铺一个就花费Ci的钱,问最多要多少钱;

朴素算法很好想,就dp[i][j]维护i工人到这j层墙壁的最大值,对于每个工人去枚举他涂墙壁的开头和结尾然后更新即可。

时间复杂度O(NMM) M的范围是16000,很显然会T,我们考虑状态转移方程。

对于每个工人,dp[i][j]的更新是寻找一个k使得dp[i - 1][k - 1] + (j - k + 1 ) * P 最大;

在这个转移方程里,我们将i看作定值,除了状态变量j之外还有一个决策j,看似很难处理,我们将方程变形.

dp[i][j]的更新变为 max(dp[i - 1][k - 1] - (k - 1) * P) + j * P;

在这一层中,最大值的寻找仅和k有关,而k事实上对每一个i都是可以预处理出来的,在j查询的时候只有范围变动,问题就变成了常规的优化区间最大值的问题。

这里附上用ST表优化和单调队列优化的两种方法。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K;
inline int read()
{
int now=;register char c=getchar();
for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());
return now;
}
struct Node{
int L,P,S;
}node[maxn];
int dp[][maxm];
bool cmp(Node a,Node b){
return a.S < b.S;
}
int DP[maxm][];
int mm[maxm];
int num[maxm];
void initRMQ(int n,int b[]){
mm[] = -;
for(int i = ; i <= n ; i ++){
mm[i] = ((i & (i - )) == ) ? mm[i - ] + :mm[i - ];
DP[i][] = b[i];
}
for(int j = ; j <= mm[n]; j ++){
for(int i = ; i + ( << j) - <= n ; i++){
DP[i][j] = max(DP[i][j - ],DP[i + ( << (j - ))][j - ]);
}
}
}
int rmq(int x,int y){
int k = mm[y - x + ];
return max(DP[x][k],DP[y - ( << k) + ][k]);
}
int main()
{
while(~Sca2(N,K)){
For(i,,K){
scanf("%d%d%d",&node[i].L,&node[i].P,&node[i].S);
}
sort(node + ,node + + K,cmp);
Mem(dp,);
For(i,,K){
Mem(num,);
Mem(dp[i & ],);
for(int k = max(node[i].S - node[i].L + ,); k <= node[i].S; k ++){
num[k] = dp[i - & ][k - ] - node[i].P * (k - );
}
initRMQ(node[i].S,num);
For(j,,N){
dp[i & ][j] = max(dp[i - & ][j],dp[i & ][j - ]);
if(j >= node[i].S && j <= node[i].S + node[i].L - ){
dp[i & ][j] = max(dp[i & ][j],rmq(max(j - node[i].L + ,),node[i].S) + node[i].P * j);
}
}
}
Pri(dp[K & ][N]);
}
#ifdef VSCode
system("pause");
#endif
return ;
}

ST表优化

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = ;
const int maxm = ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K;
inline int read()
{
int now=;register char c=getchar();
for(;!isdigit(c);c=getchar());
for(;isdigit(c);now=now*+c-'',c=getchar());
return now;
}
struct Node{
int L,P,S;
}node[maxn];
int dp[][maxm];
bool cmp(Node a,Node b){
return a.S < b.S;
}
int Queue[maxm];
int head,tail;
int main()
{
while(~Sca2(N,K)){
For(i,,K){
scanf("%d%d%d",&node[i].L,&node[i].P,&node[i].S);
}
sort(node + ,node + + K,cmp);
Mem(dp,);
For(i,,K){
head = ; tail = ;
Mem(dp[i & ],);
for(int k = max(node[i].S - node[i].L + ,); k <= node[i].S; k ++){
int ans = dp[i - & ][k - ] - node[i].P * (k - );
while(head <= tail && dp[i - & ][Queue[tail] - ] - node[i].P * (Queue[tail] - )<= ans) tail--;
Queue[++tail] = k;
}
For(j,,N){
dp[i & ][j] = max(dp[i - & ][j],dp[i & ][j - ]);
if(j >= node[i].S){
while(head <= tail && Queue[head] < j - node[i].L + ) head++;
if(head <= tail) dp[i & ][j] = max(dp[i & ][j],dp[i - & ][Queue[head] - ] + (j - Queue[head] + ) * node[i].P);
}
}
}
Pri(dp[K & ][N]);
}
#ifdef VSCode
system("pause");
#endif
return ;
}

单调队列优化

值得一提的是单调队列的查询和处理的时间都是线性的,总时间复杂度为O(NM),而ST表的预处理要用到nlnn,所以用时会比ST表快一些

POJ1821 单调队列//ST表 优化dp的更多相关文章

  1. P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表

    P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...

  2. HDU 4123 Bob's Race:树的直径 + 单调队列 + st表

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 题意: 给你一棵树,n个节点,每条边有长度. 然后有m个询问,每个询问给定一个q值. 设dis[ ...

  3. Luogu P1198 [JSOI2008]最大数 单调队列/ST表

    开一个单调队列,下标递增,值递减. 然后在上面二分最大数. 如果加上并查集可以做到接近线性. 还有一种是插入一个数然后,从后向前更新ST表. #include<cstdio> #inclu ...

  4. Codevs 4373 窗口(线段树 单调队列 st表)

    4373 窗口 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题目描述 Description 给你一个长度为N的数组,一个长为K的滑动的窗体从最左移至最右端,你只 ...

  5. APIO2010特别行动队(单调队列、斜率优化)

    其实这题一看知道应该是DP,再一看数据范围肯定就是单调队列了. 不过我还不太懂神马单调队列.斜率优化…… 附上天牛的题解:http://www.cnblogs.com/neverforget/arch ...

  6. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  7. Max answer(单调栈+ST表)

    Max answer https://nanti.jisuanke.com/t/38228 Alice has a magic array. She suggests that the value o ...

  8. BZOJ3879:SvT(后缀数组,单调栈,ST表)

    Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始 ...

  9. BZOJ4199 [Noi2015]品酒大会 【后缀数组 + 单调栈 + ST表】

    题目 一年一度的"幻影阁夏日品酒大会"隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发"首席品 酒家"和"首席猎手"两个奖项,吸 ...

随机推荐

  1. gauss——seidel迭代

    转载:https://blog.csdn.net/wangxiaojun911/article/details/6890282 Gauss–Seidelmethod 对应于形如Ax = b的方程(A为 ...

  2. 给dom对象添加事件

  3. EUV光刻!宇宙最强DDR4内存造出

    三星电子宣布开发出业内首款基于第三代10nm级工艺的DRAM内存芯片,将服务于高端应用场景,这距离三星量产1y nm 8Gb DDR4内存芯片仅过去16个月. 第三代10nm级工艺即1z nm(在内存 ...

  4. Android 模块化/热修复/插件化 框架选用

    概念汇总 动态加载:在程序运行的时候,加载一些程序自身原本不存在的文件并运行这些文件里的代码逻辑.动态加载是热修复与插件化实现的基础. 热修复:修改部分代码,不用重新发包,在用户不知情的情况下,给ap ...

  5. 【BZOJ1565】【NOI2009】植物大战僵尸 网络流 最大权闭合子图

    题目大意 ​ 给你一个\(n\times m\)的地图,每个格子上都有一颗植物,有的植物能保护其他植物.僵尸从右往左进攻,每吃掉一颗植物就可以得到\(a_{i,j}\)的收益(\(a_{i,j}\)可 ...

  6. os x && linux 文件传输基础命令

    一.从服务器下载文件到本机 1.修改文件所属 由于只能下载文件所属为自己的文件,所以要做修改文件所属的操作. chown hudelei /opt/logs/tomcat/app/tomcat_stk ...

  7. Eclipse中项目Project Explorer视图与Package Explorer视图

    Package Explorer视图: Project Explorer视图 两种视图的切换:

  8. Android assets res 文件夹的区别

    大家都知道建立一个Android项目后会产生assets与res的两个文件夹,理论上他们都是存放资源的文件夹,那么他们到底有什么区别呢? 1.assets:不会在R.java文件下生成相应的标记,存放 ...

  9. 每天一个linux命令(1):wc命令

    Linux系统中的wc(Word Count)命令的功能为统计指定文件中的字节数.字数.行数,并将统计结果显示输出. 1.命令格式: wc [选项]文件... 2.命令功能: 统计指定文件中的字节数. ...

  10. 通过pycharm将代码push到远程仓库

    现在使用pycharm作为python编辑器的人还是不少,而且,也可以通过pycharm将代码push到远程仓库. 步骤见下面截图: 填上远程仓库地址及克隆到本地的目录 输入远程仓库的账号和密码 修改 ...