NLP入门(四)命名实体识别(NER)
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER)。
命名实体识别(Named Entity Recognition,简称NER)是信息提取、问答系统、句法分析、机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位。一般来说,命名实体识别的任务就是识别出待处理文本中三大类(实体类、时间类和数字类)、七小类(人名、机构名、地名、时间、日期、货币和百分比)命名实体。
举个简单的例子,在句子“小明早上8点去学校上课。”中,对其进行命名实体识别,应该能提取信息
人名:小明,时间:早上8点,地点:学校。
本文将会介绍几个工具用来进行命名实体识别,后续有机会的话,我们将会尝试着用HMM、CRF或深度学习来实现命名实体识别。
首先我们来看一下NLTK和Stanford NLP中对命名实体识别的分类,如下图:
在上图中,LOCATION和GPE有重合。GPE通常表示地理—政治条目,比如城市,州,国家,洲等。LOCATION除了上述内容外,还能表示名山大川等。FACILITY通常表示知名的纪念碑或人工制品等。
下面介绍两个工具来进行NER的任务:NLTK和Stanford NLP。
首先是NLTK,我们的示例文档(介绍FIFA,来源于维基百科)如下:
FIFA was founded in 1904 to oversee international competition among the national associations of Belgium,
Denmark, France, Germany, the Netherlands, Spain, Sweden, and Switzerland. Headquartered in Zürich, its
membership now comprises 211 national associations. Member countries must each also be members of one of
the six regional confederations into which the world is divided: Africa, Asia, Europe, North & Central America
and the Caribbean, Oceania, and South America.
实现NER的Python代码如下:
import re
import pandas as pd
import nltk
def parse_document(document):
document = re.sub('\n', ' ', document)
if isinstance(document, str):
document = document
else:
raise ValueError('Document is not string!')
document = document.strip()
sentences = nltk.sent_tokenize(document)
sentences = [sentence.strip() for sentence in sentences]
return sentences
# sample document
text = """
FIFA was founded in 1904 to oversee international competition among the national associations of Belgium,
Denmark, France, Germany, the Netherlands, Spain, Sweden, and Switzerland. Headquartered in Zürich, its
membership now comprises 211 national associations. Member countries must each also be members of one of
the six regional confederations into which the world is divided: Africa, Asia, Europe, North & Central America
and the Caribbean, Oceania, and South America.
"""
# tokenize sentences
sentences = parse_document(text)
tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in sentences]
# tag sentences and use nltk's Named Entity Chunker
tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_sentences]
ne_chunked_sents = [nltk.ne_chunk(tagged) for tagged in tagged_sentences]
# extract all named entities
named_entities = []
for ne_tagged_sentence in ne_chunked_sents:
for tagged_tree in ne_tagged_sentence:
# extract only chunks having NE labels
if hasattr(tagged_tree, 'label'):
entity_name = ' '.join(c[0] for c in tagged_tree.leaves()) #get NE name
entity_type = tagged_tree.label() # get NE category
named_entities.append((entity_name, entity_type))
# get unique named entities
named_entities = list(set(named_entities))
# store named entities in a data frame
entity_frame = pd.DataFrame(named_entities, columns=['Entity Name', 'Entity Type'])
# display results
print(entity_frame)
输出结果如下:
Entity Name Entity Type
0 FIFA ORGANIZATION
1 Central America ORGANIZATION
2 Belgium GPE
3 Caribbean LOCATION
4 Asia GPE
5 France GPE
6 Oceania GPE
7 Germany GPE
8 South America GPE
9 Denmark GPE
10 Zürich GPE
11 Africa PERSON
12 Sweden GPE
13 Netherlands GPE
14 Spain GPE
15 Switzerland GPE
16 North GPE
17 Europe GPE
可以看到,NLTK中的NER任务大体上完成得还是不错的,能够识别FIFA为组织(ORGANIZATION),Belgium,Asia为GPE, 但是也有一些不太如人意的地方,比如,它将Central America识别为ORGANIZATION,而实际上它应该为GPE;将Africa识别为PERSON,实际上应该为GPE。
接下来,我们尝试着用Stanford NLP工具。关于该工具,我们主要使用Stanford NER 标注工具。在使用这个工具之前,你需要在自己的电脑上安装Java(一般是JDK),并将Java添加到系统路径中,同时下载英语NER的文件包:stanford-ner-2018-10-16.zip(大小为172MB),下载地址为:https://nlp.stanford.edu/software/CRF-NER.shtml。以笔者的电脑为例,Java所在的路径为:C:\Program Files\Java\jdk1.8.0_161\bin\java.exe, 下载Stanford NER的zip文件解压后的文件夹的路径为:E://stanford-ner-2018-10-16,如下图所示:
在classifer文件夹中有如下文件:
它们代表的含义如下:
3 class: Location, Person, Organization
4 class: Location, Person, Organization, Misc
7 class: Location, Person, Organization, Money, Percent, Date, Time
可以使用Python实现Stanford NER,完整的代码如下:
import re
from nltk.tag import StanfordNERTagger
import os
import pandas as pd
import nltk
def parse_document(document):
document = re.sub('\n', ' ', document)
if isinstance(document, str):
document = document
else:
raise ValueError('Document is not string!')
document = document.strip()
sentences = nltk.sent_tokenize(document)
sentences = [sentence.strip() for sentence in sentences]
return sentences
# sample document
text = """
FIFA was founded in 1904 to oversee international competition among the national associations of Belgium,
Denmark, France, Germany, the Netherlands, Spain, Sweden, and Switzerland. Headquartered in Zürich, its
membership now comprises 211 national associations. Member countries must each also be members of one of
the six regional confederations into which the world is divided: Africa, Asia, Europe, North & Central America
and the Caribbean, Oceania, and South America.
"""
sentences = parse_document(text)
tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in sentences]
# set java path in environment variables
java_path = r'C:\Program Files\Java\jdk1.8.0_161\bin\java.exe'
os.environ['JAVAHOME'] = java_path
# load stanford NER
sn = StanfordNERTagger('E://stanford-ner-2018-10-16/classifiers/english.muc.7class.distsim.crf.ser.gz',
path_to_jar='E://stanford-ner-2018-10-16/stanford-ner.jar')
# tag sentences
ne_annotated_sentences = [sn.tag(sent) for sent in tokenized_sentences]
# extract named entities
named_entities = []
for sentence in ne_annotated_sentences:
temp_entity_name = ''
temp_named_entity = None
for term, tag in sentence:
# get terms with NE tags
if tag != 'O':
temp_entity_name = ' '.join([temp_entity_name, term]).strip() #get NE name
temp_named_entity = (temp_entity_name, tag) # get NE and its category
else:
if temp_named_entity:
named_entities.append(temp_named_entity)
temp_entity_name = ''
temp_named_entity = None
# get unique named entities
named_entities = list(set(named_entities))
# store named entities in a data frame
entity_frame = pd.DataFrame(named_entities, columns=['Entity Name', 'Entity Type'])
# display results
print(entity_frame)
输出结果如下:
Entity Name Entity Type
0 1904 DATE
1 Denmark LOCATION
2 Spain LOCATION
3 North & Central America ORGANIZATION
4 South America LOCATION
5 Belgium LOCATION
6 Zürich LOCATION
7 the Netherlands LOCATION
8 France LOCATION
9 Caribbean LOCATION
10 Sweden LOCATION
11 Oceania LOCATION
12 Asia LOCATION
13 FIFA ORGANIZATION
14 Europe LOCATION
15 Africa LOCATION
16 Switzerland LOCATION
17 Germany LOCATION
可以看到,在Stanford NER的帮助下,NER的实现效果较好,将Africa识别为LOCATION,将1904识别为时间(这在NLTK中没有识别出来),但还是对North & Central America识别有误,将其识别为ORGANIZATION。
值得注意的是,并不是说Stanford NER一定会比NLTK NER的效果好,两者针对的对象,预料,算法可能有差异,因此,需要根据自己的需求决定使用什么工具。
本次分享到此结束,以后有机会的话,将会尝试着用HMM、CRF或深度学习来实现命名实体识别。
注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~
NLP入门(四)命名实体识别(NER)的更多相关文章
- NLP入门(八)使用CRF++实现命名实体识别(NER)
CRF与NER简介 CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...
- pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...
- 『深度应用』NLP命名实体识别(NER)开源实战教程
近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...
- 【NLP学习其一】什么是命名实体识别NER?
命名实体识别 概念 命名实体识别(Named Entity Recognition,简称NER) , 是指识别文本中具有特定意义的词(实体),主要包括人名.地名.机构名.专有名词等等,并把我们需要识别 ...
- 命名实体识别(NER)
一.任务 Named Entity Recognition,简称NER.主要用于提取时间.地点.人物.组织机构名. 二.应用 知识图谱.情感分析.机器翻译.对话问答系统都有应用.比如,需要利用命名实体 ...
- 零基础入门--中文命名实体识别(BiLSTM+CRF模型,含代码)
自己也是一个初学者,主要是总结一下最近的学习,大佬见笑. 中文分词说到命名实体抽取,先要了解一下基于字标注的中文分词.比如一句话 "我爱北京天安门”. 分词的结果可以是 “我/爱/北京/天安 ...
- NLP入门(五)用深度学习实现命名实体识别(NER)
前言 在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...
- NLP(二十四)利用ALBERT实现命名实体识别
本文将会介绍如何利用ALBERT来实现命名实体识别.如果有对命名实体识别不清楚的读者,请参考笔者的文章NLP入门(四)命名实体识别(NER) . 本文的项目结构如下: 其中,albert_ ...
- 神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...
随机推荐
- 从今天开始慢慢阅读java9源码决心的声明。
我从很早的时候就好奇java的源码了,因为有使用者就有制作者. 在校期间使用了java两年多的我却不知道java里面的任何东西. 这个寒假前我无意之间看到了java9出现的新闻,网上查询到原来源码就隐 ...
- 网络操作系统 第六章 Window Server 2008 活动目录
本章小结 在企业网络中,活动目录是必不可少的,它将网络中各种对象组织起来进行管理,方便了网络对象的查找,增强了网络的安全性,为用户的物流管理提供了极大的便利,本章首先介绍了活动目录的基本概念,然后通过 ...
- ios uibutton加数字角标
http://www.jianshu.com/p/0c7fae1cadac 第一种:https://github.com/mikeMTOL/UIBarButtonItem-Badge第二种:https ...
- day20_雷神_django第三天
django第三天 动态路由,实现统一删除功能 urls url(r'^host_del/(host|user|group)/(\d+)$',views.host_del,name='del'), t ...
- day_12函数默认值,数据类型的补充,函数对象名称空间与作用域,函数的嵌套定义
复习, 昨天讲了字符串的比较,按照从左往右比较每一个字符,通过字符对应的ASCII码进行比较 函数的参数,‘ 实参与形参 形参:在函数定义时()中出现的参数 实参,在函数调用时()中出现的参数 实参的 ...
- EmpireCMS_V7.5的一次审计
i春秋作家:Qclover 原文来自:EmpireCMS_V7.5的一次审计 EmpireCMS_V7.5的一次审计 1概述 最近在做审计和WAF规则的编写,在CNVD和CNNVD等漏洞平台寻找 ...
- JavaScript原生实现观察者模式
观察者模式又叫做发布订阅模式,它定义了一种一对多的关系,让多个观察者对象同时监听某一个主题对象,这个主题对象的状态发生改变时就会通知所有观察着对象. 它是由两类对象组成,主题和观察者,主题负责发布事件 ...
- extends的使用
继承extends的使用 继承(extends): 继承让我们可以更好的实现类的扩展. 继承的使用要点: 1.父类也称作超类.基类. ...
- 关于PHP中拿到MySQL中数据中的中文在网页上显示为?的解决办法!
问题: 解决方案: 在PHP 代码中 输入 : //$connection 是链接数据库返回的变量名: mysqli_set_charset($connection,'utf8'); 完美解决:
- mac中:不能完成此操作,因为找不到一个或多个需要的项目。(错误代码 -43)
今天使用mac删除某文件时,遇到此错误: 不能完成此操作,因为找不到一个或多个需要的项目.(错误代码 -43) 于是采用命令行删除可以正确删除:在要删除的文件夹坐在目录下执行 rm -rf tes ...