先说一下,这个其实是我为实现PantaRay或者是类似Dreamworks的Out of Core点云GI的技术储备,为大规模点云光线跟踪所准备的第一步。在实际的应用中,int类型会被64bit的uint64_t所代替,代表空间中的一个hash键。所有的代码全部使用STL+boost实现了足够高层次的抽象,读者完全可以根据自己的需要改写。

This is the first step to implement the PantaRay or the GI solution from Dreamworks about Out-Core point cloud sorting. Actually the int type in the code would be replaced by he uint64_t which indices a hash key in space. All fragments code are using the STL+Boost, user can modify the code by yourself.

我们先来准备测试数据。这个测试数据有尺寸大小的限制,就是在现在x86_64环境下malloc/new分配的单个数组有1G尺寸的限制,这样就意味着内排序一次操作的数据不可能大于1G,造成了测试上的限制,所以我只生成了一个尺寸大约962M的文件测试,包含了246324610个int。

First of all, let’s prepare the test data. But as we know, there is the 1G array size limitation in x86_64, so that we can only apply qsort or std::stable_sort to a < 1G array. For this test I generate a 962M file which contains the 246324610 integers.

如下程序生成测试数据,均匀分布的Mersenne Twister 19937序列。

The following program generates the test data, using the MT19937 uniform distribution.

#include <iostream>

#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp> int main(int argc, char *argv[])
{
-- argc, ++ argv;
if (argc != )
{
return ;
}
char * szPath = argv[];
int iCount = atoi(argv[]);
std::cout << szPath << " " << iCount << std::endl; boost::random::mt19937 cGen;
boost::random::uniform_int_distribution<> cDist(, ); FILE * pFile = fopen(szPath, "wb");
if (pFile)
{
for (int i = ; i < iCount; ++ i)
{
int iRandom = cDist(cGen);
fwrite(& iRandom, sizeof(int), , pFile);
} fclose(pFile);
}
return ;
}

然后生成内排序的结果,储存为外部独立文件为了比较。

Generate the internal sorted result to verify the data.

int main(int argc, char * argv[])
{
PlaySTL(); -- argc, ++ argv;
if (argc != )
{
return EXIT_FAILURE;
} FILE * pOriginalFile = fopen(argv[], "rb");
fseek(pOriginalFile, , SEEK_END);
long lSize = ftell(pOriginalFile);
fseek(pOriginalFile, , SEEK_SET); int iNumItems = lSize / ;
int * pData = new int[iNumItems];
fread(pData, sizeof(int), iNumItems, pOriginalFile);
fclose(pOriginalFile);
std::stable_sort(pData, pData + iNumItems, std::less<int>()); FILE * pSortedFile = fopen(argv[], "wb");
fwrite(pData, sizeof(int), iNumItems, pSortedFile);
fclose(pSortedFile); delete [] pData; return EXIT_SUCCESS;
}

从设计的思路上,由于操作系统在磁盘IO上都是单线程的,每次只允许一个线程读写,所以把读取的工作部分都放在主线程中,排序线程为了让磁盘写入的时间占据总共处理的时间尽可能地小,所以尽可能的让一个工作线程处理更多的数据。

Because the disk access is synchronized at low-level IO, so that we will read the data in the main thread, the working thread process as much as data as possible to reduce the percent  of time on disk writing.

先让我们定义一个名字叫做Job的类,顾名思义,代表一个计算任务,每个计算任务都有一个自己的索引,以及一堆乱序的整数int数据。

Let’s define a Job class, each Job has a index and unsorted data.

class Job
{
public: Job()
:
m_iIndex(),
m_iNumItems()
{
} Job(int iIndex, int iNumItems, const boost::shared_array<int> & aData)
:
m_iIndex(iIndex),
m_iNumItems(iNumItems),
m_aData(aData)
{
} Job(const Job & cCopy)
:
m_iIndex(cCopy.m_iIndex),
m_iNumItems(cCopy.m_iNumItems),
m_aData(cCopy.m_aData)
{
} public: int m_iIndex;
int m_iNumItems;
boost::shared_array<int> m_aData;
};

然后再来一个Context,负责存储用于计算的共享数据,比如工作队列,以及Mutex等为了同步所需要的对象。

Later the Context class, to keep the queue and mutex objects.

class Context
{
public: Context(int iNumSortingThread)
:
m_iNumSortingThread(iNumSortingThread),
m_bHasMoreData(true)
{
} public: int m_iNumSortingThread; bool m_bHasMoreData; boost::mutex m_cMutex;
boost::condition_variable m_cEvent; std::list<Job > m_lJobQueue;
};

这里是工作线程,其中有工作代码的实现。当访问Context中的队列时必须要加锁,抓一个工作包出来,当作局部数据,接下来再排序和写出为Cache,末了尽可能贪婪的告诉主线程我们需要更多的数据,如果真的是没有任何数据了则直接退出。

Here is the working thread, it will get a Job from the queue, sort the data, and write out, at the end, tell the main thread it needs more data to process, if there is no more data it will return.

class SortingThread : public boost::thread
{
public: SortingThread(const boost::shared_ptr<Context> & pContext)
:
m_pContext(pContext),
boost::thread(boost::bind(& SortingThread::Sort, this))
{
} void Sort()
{
while ()
{
if (! m_pContext->m_bHasMoreData)
{
if (! m_pContext->m_lJobQueue.size())
{
break;
}
} Job cJob;
{
boost::unique_lock<boost::mutex> cLock(m_pContext->m_cMutex);
if (m_pContext->m_lJobQueue.size())
{
// Get a job.
//
cJob = m_pContext->m_lJobQueue.front();
m_pContext->m_lJobQueue.pop_front();
}
} if (cJob.m_iNumItems)
{
std::stable_sort(cJob.m_aData.get(), cJob.m_aData.get() + cJob.m_iNumItems, std::less<int>()); // Write out the sorted data.
//
char aBuffer[];
sprintf(aBuffer, "%.06d.tmp", cJob.m_iIndex);
std::ofstream cOutput(aBuffer, std::ios_base::binary);
cOutput.write(reinterpret_cast<const char *>(cJob.m_aData.get()), cJob.m_iNumItems * sizeof(int));
} // Tell the main thread we need more data here.
//
m_pContext->m_cEvent.notify_one();
}
} private: boost::shared_ptr<Context> m_pContext;
};

把所有的线程都放入线程池,这样就可以一股脑的执行了。

The simple thread pool.

class SortingThreadGroup : public boost::thread_group
{
public: SortingThreadGroup(const boost::shared_ptr<Context> & pContext)
:
m_pContext(pContext)
{
for (int i = ; i < m_pContext->m_iNumSortingThread; ++ i)
{
SortingThread * pSortingThread = new SortingThread(pContext);
add_thread(pSortingThread);
}
} private: boost::shared_ptr<Context> m_pContext;
};

主线程从外部文件读取数据填充Job对象,尽可能的把整个队列的数据控制在一定得范围内,这样内存的占用可以小一些,否则就失去了外排序的意义。

Main thread reads data from file, fills the Job, and keep the memory usage minimal.

bool Sort(const char * szPath, int iNumSortingThreads, int iNumLocalItems)
{
try
{
// Calculate real size.
//
std::ifstream cUnSortedFile(szPath, std::ios_base::binary);
boost::uintmax_t ullSize = boost::filesystem::file_size(szPath);
boost::uintmax_t ullNumItems = ullSize / ; int iNumBatches = ullNumItems / iNumLocalItems;
std::vector<int> vNumItemsPerBatch(iNumBatches, iNumLocalItems);
int iNumRestItems = ullNumItems % iNumLocalItems;
if (iNumRestItems)
{
vNumItemsPerBatch.push_back(iNumRestItems);
}
std::cout << "Number of Items : " << ullNumItems << std::endl
<< "Number of Batches : " << vNumItemsPerBatch.size() << std::endl; boost::shared_ptr<Context> pContext(new Context(iNumSortingThreads));
boost::scoped_ptr<SortingThreadGroup> pSortingThreadGroup(new SortingThreadGroup(pContext)); boost::timer::auto_cpu_timer cTimer;
for (int i = ; i < vNumItemsPerBatch.size(); ++ i)
{
boost::shared_array<int> aData(new int[vNumItemsPerBatch[i]]);
cUnSortedFile.read(reinterpret_cast<char *>(aData.get()), vNumItemsPerBatch[i] * sizeof(int)); Job cJob(i, vNumItemsPerBatch[i], aData); //
boost::unique_lock<boost::mutex> cLock(pContext->m_cMutex);
if (pContext->m_lJobQueue.size() > iNumSortingThreads * )
{
pContext->m_cEvent.wait(cLock);
}
pContext->m_lJobQueue.push_back(cJob);
}
std::cout << std::endl;
pContext->m_bHasMoreData = false; pSortingThreadGroup->join_all(); return true;
}
catch(const std::exception & cE)
{
std::cerr << cE.what() << std::endl;
}
catch(...)
{
std::cerr << __LINE__ << std::endl;
} return false;
}

第二遍就是k Way Merge Sorting了。这里的思路很简单,直接读取外部的一坨文件,以及维护一个队列,每次从活的最小数字的那一列输出候选者,然后读出下一个放入队列。如果文件读完了,则说明那一路文件流可以丢弃了,队列也相应的变小了。这里当然是单线程的。

The second pass is the single-threaded classical k-Way Merging Sorting.

bool Merge(const char * szPath, int iNumBatches)
{
try
{
//TODO : There is the limitation about the max number of opened file in process.
//
std::vector<boost::shared_ptr<std::ifstream> > vTempFiles;
for (int i = ; i < iNumBatches; ++ i)
{
char aBuffer[];
sprintf(aBuffer, "%.06d.tmp", i);
boost::shared_ptr<std::ifstream> pTempFile(new std::ifstream(aBuffer, std::ios_base::binary));
assert(pTempFile->is_open());
vTempFiles.push_back(pTempFile);
} std::ofstream cSortedFile(szPath, std::ios_base::binary);
if (! cSortedFile)
{
std::cerr << "Can't open " << szPath << " to write. " << std::endl;
return false;
} //
boost::timer::auto_cpu_timer cTimer; std::vector<int> vCache;
vCache.reserve( * * ); std::vector<int> vQueue;
std::vector<boost::shared_ptr<std::ifstream> >::iterator iFile = vTempFiles.begin();
for (; iFile != vTempFiles.end(); ++ iFile)
{
int iNumber = - ;
if ((* iFile)->read(reinterpret_cast<char *>(& iNumber), sizeof(int)))
{
vQueue.push_back(iNumber);
}
}
do
{
std::vector<int>::iterator iMinPos = std::min_element(vQueue.begin(), vQueue.end());
vCache.push_back(* iMinPos);
if (vCache.size() == vCache.capacity())
{
cSortedFile.write(reinterpret_cast<const char *>(& vCache[]), vCache.size() * sizeof(int));
vCache.clear();
} iFile = vTempFiles.begin() + (iMinPos - vQueue.begin());
int iNumber = - ;
if ((* iFile)->read(reinterpret_cast<char *>(& iNumber), sizeof(int)))
{
(* iMinPos) = iNumber;
}
else
{
vTempFiles.erase(iFile);
vQueue.erase(iMinPos);
} } while (vQueue.size());
cSortedFile.write(reinterpret_cast<const char *>(& vCache[]), vCache.size() * sizeof(int)); return true;
}
catch(const std::exception & cE)
{
std::cerr << cE.what() << std::endl;
}
catch(...)
{
std::cerr << __LINE__ << std::endl;
} return false;
}

测试的环境为Xeon E5-2603@1.8G,4个硬件线程,测试设置的Job中的数据长度为80M,每次工作线程需要排序20M个int。西部数据的蓝盘,非SSD,也不是混合硬盘,纯机械硬盘。

Tested by single Xeon E5-2603 CPU at 1.8G with 4 hardware threads, each thread process 20M integers. Using WD blue disk, not SSD,.

第一个Sort遍的时间为19.111468s wall, 52.369536s user + 4.243227s system = 56.612763s CPU (296.2%),CPU效率为296.2%/300% = 98.7%,几乎所有时间都在STL中的std::stable_sort里。

Sorting pass used total 19.11 seconds with 98.7% CPU usage.

第二个Merge遍的时间为33.082600s wall, 29.874191s user + 3.010819s system = 32.885011s CPU (99.4%),主要还是都在磁盘写入和排序。当然这里可以为每个文件流构造一个Cache,也可以显著地提高性能,不过这里有一个问题,一旦牵涉到了Cache,则必然又有内存的占用提升,如果占用过大则又失去了Merge的意义。

这里读者可能有个问题,关于主线程中的不停new,其实从Vista开始Windows的内存分配其实已经是池化的,而且这里根本不是性能瓶颈,只有磁盘IO才是,所以这里可以不需要优化。至于架构上的提升其实也不大,因为这里不是传统的多读取者+单写入着(Multiple Reader+Single Writer)而是多读取者写入者+单写入者(Multiple Reader and Writer + Single Writer),所以在结构上和传统的消费者/生产者的多线程工作方式还是有些不同。未来会尝试Lock-Free的工作方式而不用Mutex,这个是以后的内容了。

The memory allocation in the main thread is not a bottleneck compared with the disk IO and sorting, and the memory allocation is based on pool since Vista, so here we might discard the optimization. Later the Lock-Free architecture might be implemented.

这里有全套代码。

Here is the full code.

 /**
* Multithreading C++ Out of Core Sotring for Massive Data
*
* Copyright (c) 2013 Bo Zhou<Bo.Schwarzstein@gmail.com>
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University of California, Berkeley nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*/ #include <fstream>
#include <list>
#include <iostream>
#include <queue> #include <boost/filesystem.hpp>
#include <boost/smart_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/timer/timer.hpp> class Job
{
public: Job()
:
m_iIndex(),
m_iNumItems()
{
} Job(int iIndex, int iNumItems, const boost::shared_array<int> & aData)
:
m_iIndex(iIndex),
m_iNumItems(iNumItems),
m_aData(aData)
{
} Job(const Job & cCopy)
:
m_iIndex(cCopy.m_iIndex),
m_iNumItems(cCopy.m_iNumItems),
m_aData(cCopy.m_aData)
{
} public: int m_iIndex;
int m_iNumItems;
boost::shared_array<int> m_aData;
}; class Context
{
public: Context(int iNumSortingThread)
:
m_iNumSortingThread(iNumSortingThread),
m_bHasMoreData(true)
{
} public: int m_iNumSortingThread; bool m_bHasMoreData; boost::mutex m_cMutex;
boost::condition_variable m_cEvent; std::list<Job > m_lJobQueue;
}; class SortingThread : public boost::thread
{
public: SortingThread(const boost::shared_ptr<Context> & pContext)
:
m_pContext(pContext),
boost::thread(boost::bind(& SortingThread::Sort, this))
{
} void Sort()
{
while ()
{
if (! m_pContext->m_bHasMoreData)
{
if (! m_pContext->m_lJobQueue.size())
{
break;
}
} Job cJob;
{
boost::unique_lock<boost::mutex> cLock(m_pContext->m_cMutex);
if (m_pContext->m_lJobQueue.size())
{
// Get a job.
//
cJob = m_pContext->m_lJobQueue.front();
m_pContext->m_lJobQueue.pop_front();
}
} if (cJob.m_iNumItems)
{
std::stable_sort(cJob.m_aData.get(), cJob.m_aData.get() + cJob.m_iNumItems, std::less<int>()); // Write out the sorted data.
//
char aBuffer[];
sprintf(aBuffer, "%.06d.tmp", cJob.m_iIndex);
std::ofstream cOutput(aBuffer, std::ios_base::binary);
cOutput.write(reinterpret_cast<const char *>(cJob.m_aData.get()), cJob.m_iNumItems * sizeof(int));
} // Tell the main thread we need more data here.
//
m_pContext->m_cEvent.notify_one();
}
} private: boost::shared_ptr<Context> m_pContext;
}; class SortingThreadGroup : public boost::thread_group
{
public: SortingThreadGroup(const boost::shared_ptr<Context> & pContext)
:
m_pContext(pContext)
{
for (int i = ; i < m_pContext->m_iNumSortingThread; ++ i)
{
SortingThread * pSortingThread = new SortingThread(pContext);
add_thread(pSortingThread);
}
} private: boost::shared_ptr<Context> m_pContext;
}; /////////////////////////////////////////////////////////////////////////////////////////////////// bool Sort(const char * szPath, int iNumSortingThreads, int iNumLocalItems)
{
try
{
// Calculate real size.
//
std::ifstream cUnSortedFile(szPath, std::ios_base::binary);
boost::uintmax_t ullSize = boost::filesystem::file_size(szPath);
boost::uintmax_t ullNumItems = ullSize / ; int iNumBatches = ullNumItems / iNumLocalItems;
std::vector<int> vNumItemsPerBatch(iNumBatches, iNumLocalItems);
int iNumRestItems = ullNumItems % iNumLocalItems;
if (iNumRestItems)
{
vNumItemsPerBatch.push_back(iNumRestItems);
}
std::cout << "Number of Items : " << ullNumItems << std::endl
<< "Number of Batches : " << vNumItemsPerBatch.size() << std::endl; boost::shared_ptr<Context> pContext(new Context(iNumSortingThreads));
boost::scoped_ptr<SortingThreadGroup> pSortingThreadGroup(new SortingThreadGroup(pContext)); boost::timer::auto_cpu_timer cTimer;
for (int i = ; i < vNumItemsPerBatch.size(); ++ i)
{
boost::shared_array<int> aData(new int[vNumItemsPerBatch[i]]);
cUnSortedFile.read(reinterpret_cast<char *>(aData.get()), vNumItemsPerBatch[i] * sizeof(int)); Job cJob(i, vNumItemsPerBatch[i], aData); //
boost::unique_lock<boost::mutex> cLock(pContext->m_cMutex);
if (pContext->m_lJobQueue.size() > iNumSortingThreads * )
{
pContext->m_cEvent.wait(cLock);
}
pContext->m_lJobQueue.push_back(cJob);
}
std::cout << std::endl;
pContext->m_bHasMoreData = false; pSortingThreadGroup->join_all(); return true;
}
catch(const std::exception & cE)
{
std::cerr << cE.what() << std::endl;
}
catch(...)
{
std::cerr << __LINE__ << std::endl;
} return false;
} /////////////////////////////////////////////////////////////////////////////////////////////////// bool Merge(const char * szPath, int iNumBatches)
{
try
{
//TODO : There is the limitation about the max number of opened file in process.
//
std::vector<boost::shared_ptr<std::ifstream> > vTempFiles;
for (int i = ; i < iNumBatches; ++ i)
{
char aBuffer[];
sprintf(aBuffer, "%.06d.tmp", i);
boost::shared_ptr<std::ifstream> pTempFile(new std::ifstream(aBuffer, std::ios_base::binary));
assert(pTempFile->is_open());
vTempFiles.push_back(pTempFile);
} std::ofstream cSortedFile(szPath, std::ios_base::binary);
if (! cSortedFile)
{
std::cerr << "Can't open " << szPath << " to write. " << std::endl;
return false;
} //
boost::timer::auto_cpu_timer cTimer; std::vector<int> vCache;
vCache.reserve( * * ); std::vector<int> vQueue;
std::vector<boost::shared_ptr<std::ifstream> >::iterator iFile = vTempFiles.begin();
for (; iFile != vTempFiles.end(); ++ iFile)
{
int iNumber = - ;
if ((* iFile)->read(reinterpret_cast<char *>(& iNumber), sizeof(int)))
{
vQueue.push_back(iNumber);
}
}
do
{
std::vector<int>::iterator iMinPos = std::min_element(vQueue.begin(), vQueue.end());
vCache.push_back(* iMinPos);
if (vCache.size() == vCache.capacity())
{
cSortedFile.write(reinterpret_cast<const char *>(& vCache[]), vCache.size() * sizeof(int));
vCache.clear();
} iFile = vTempFiles.begin() + (iMinPos - vQueue.begin());
int iNumber = - ;
if ((* iFile)->read(reinterpret_cast<char *>(& iNumber), sizeof(int)))
{
(* iMinPos) = iNumber;
}
else
{
vTempFiles.erase(iFile);
vQueue.erase(iMinPos);
} } while (vQueue.size());
cSortedFile.write(reinterpret_cast<const char *>(& vCache[]), vCache.size() * sizeof(int)); return true;
}
catch(const std::exception & cE)
{
std::cerr << cE.what() << std::endl;
}
catch(...)
{
std::cerr << __LINE__ << std::endl;
} return false;
} int main(int argc, char * argv[])
{
int iRet = EXIT_FAILURE; //
char * szPath = NULL; int iNumSortingThreads = ;
int iNumLocalItems = ; int iNumBatches = ; //
-- argc, ++ argv;
if (argc == )
{
szPath = argv[];
iNumSortingThreads = atoi(argv[]);
iNumLocalItems = atoi(argv[]) * * ;
if (Sort(szPath, iNumSortingThreads, iNumLocalItems))
{
iRet = EXIT_SUCCESS;
}
}
else if (argc == )
{
szPath = argv[];
iNumBatches = atoi(argv[]);
if (Merge(szPath, iNumBatches))
{
iRet = EXIT_SUCCESS;
}
} return iRet;
}

View Full Code

Multithreading C++ Out of Core Sotring for Massive Data|多线程C++的大规模数据外部排序的更多相关文章

  1. 微软云计算 Massive Data 处理语言Scope 1

    Massive Data处理一直是云计算中很重要的一个环节.目前像Google,Yahoo在相关方面都有自己专有的技术.例如Google的基于MapReduce的Sawzall语言.和Yahoo基于H ...

  2. [ASP.NET Core 3框架揭秘] 配置[1]:读取配置数据[上篇]

    提到"配置"二字,我想绝大部分.NET开发人员脑海中会立即浮现出两个特殊文件的身影,那就是我们再熟悉不过的app.config和web.config,多年以来我们已经习惯了将结构化 ...

  3. [ASP.NET Core 3框架揭秘] 配置[2]:读取配置数据[下篇]

    [接上篇]提到“配置”二字,我想绝大部分.NET开发人员脑海中会立即浮现出两个特殊文件的身影,那就是我们再熟悉不过的app.config和web.config,多年以来我们已经习惯了将结构化的配置定义 ...

  4. EF core (code first) 通过自动迁移实现多租户数据分离 :按Schema分离数据

    前言 本文是多租户系列文章的附加操作文章,如果想查看系列中的其他文章请查看下列文章 主线文章 Asp.net core下利用EF core实现从数据实现多租户(1) Asp.net core下利用EF ...

  5. 使用SignalR ASP.NET Core来简单实现一个后台实时推送数据给Echarts展示图表的功能

    什么是 SignalR ASP.NET Core ASP.NET Core SignalR 是一种开放源代码库,可简化将实时 web 功能添加到应用程序的功能. 实时 web 功能使服务器端代码可以立 ...

  6. 正确使用Core Data多线程的3种方式

    在#Pragma Conference 2015会议上,Marcus Zarra,撰写过关于Core Data和Core Animation的书,叙述了三种在多线程环境下使用Core Data的方法并 ...

  7. .NET Core采用的全新配置系统[1]: 读取配置数据

    提到“配置”二字,我想绝大部分.NET开发人员脑海中会立马浮现出两个特殊文件的身影,那就是我们再熟悉不过的app.config和web.config,多年以来我们已经习惯了将结构化的配置定义在这两个文 ...

  8. 《驾驭Core Data》 第三章 数据建模

    本文由海水的味道编译整理,请勿转载,请勿用于商业用途.    当前版本号:0.1.2 第三章数据建模 Core Data栈配置好之后,接下来的工作就是设计对象图,在Core Data框架中,对象图被表 ...

  9. iOS Core data多线程并发访问的问题

    大家都知道Core data本身并不是一个并发安全的架构:不过针对多线程访问带来的问题,Apple给出了很多指导:同时很多第三方的开发者也贡献了很多解决方法.不过最近碰到的一个问题很奇怪,觉得有一定的 ...

随机推荐

  1. Axure安装、破解、汉化全套

    最近公司准备使用敏捷开发流程,然后刚好需要Axure这个软件,就去找了些资源分享给大家,希望对大家有所帮助: 全套安装,破解,汉化下载地址: 链接: https://pan.baidu.com/s/1 ...

  2. 如何在 Linux 中查看可用的网络接口

    在我们安装完一个 Linux 系统后最为常见的任务便是网络配置了.当然,你可以在安装系统时进行网络接口的配置.但是,对于某些人来说,他们更偏爱在安装完系统后再进行网络的配置或者更改现存的设置.众所周知 ...

  3. VueJs(7)---计算属性和侦听器

    计算属性和侦听器 一. 概述 计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div id="exampl ...

  4. RabbitMQ集群简介

    一个RabbitMQ消息代理是一个由一个或多个Erlang节点组成的逻辑组,其中的每个节点都共享users, virtual hosts, queues, exchanges, bindings, a ...

  5. 古典音乐 (java基础 继承)

    摘要: 原创出处: http://www.cnblogs.com/Alandre/ 泥沙砖瓦浆木匠 希望转载,保留摘要,谢谢! 一.前言 小朽不才,最近爱上了听古典音乐收录了,mozart ,贝多芬… ...

  6. Servlet & JSP系列文章总结

    前言 谢谢大家的捧场,真心感谢我的阅读者. @all 下一期,重点在  数据结构和算法  ,希望给大家带来开心.已经出了几篇,大家爱读就是我的开心. Servlet & JSP系列总结 博客, ...

  7. [java]创建一个默认TreeMap() key为什么不能为null

    本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 先看一下 TreeMap 的 put(K key, V value) public TreeMap() ...

  8. MongoDB分片详解

    分片是MongoDB的扩展方式,通过分片能够增加更多的机器来用对不断增加的负载和数据,还不影响应用. 1.分片简介    分片是指将数据拆分,将其分散存在不同机器上的过程.有时也叫分区.将数据分散在不 ...

  9. mysql字符串查找(统计客源)

    如客源状态为1:2:3:5:6:9,其中6代表成交状态 如果要统计查询出有6这个状态的客源,可以用函数LOCATE(字符,搜索的字符串)来, 示例:统计每个分组下全部客源数total,成交客源数dea ...

  10. Tomcat8源码笔记(八)明白Tomcat怎么部署webapps下项目

    以前没想过这么个问题:Tomcat怎么处理webapps下项目,并且我访问浏览器ip: port/项目名/请求路径,以SSM为例,Tomcat怎么就能将请求找到项目呢,项目还是个文件夹类型的? Tom ...