【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description
求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m。n, m<=1e5。
Solution
f(n)为gcd正好是n的(x,y)的个数
F(n)为gcd是n的倍数的(x,y)的个数
我们要求的就是f(i)
然而这个不好直接算,可F(i)可以直接用(n/i)*(m/i)得到
那么有F(n)=sigma n|i f(i)
于是有f(n)=sigma n|i mu(i)*F(i)
这就是莫比乌斯反演,不过这道题直接用容斥的思想想也很容易得到上面那个式子
那么考虑每一个gcd的贡献
把n和m除以gcd后,就相当于要求n次f(1)
每次均摊logn
Code
也有不用反演的做法,大概是从后往前算,每一步都严格定义,用容斥做。
这道题是我做的BZOJ第三题,不过当时只会80/90暴力然后去看的题解的容斥,那时候觉得把每一个gcd分开考虑贡献真是神奇,不过对于现在是再自然不过的想法了。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=1e5+; int flag[maxn],prime[maxn],cnt;
int mu[maxn];
int N,M; int getmu(){
mu[]=;
for(int i=;i<=N;i++){
if(!flag[i]){
mu[i]=-;
prime[++cnt]=i;
}
for(int j=;i*prime[j]<=N&&j<=cnt;j++){
flag[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
} ll work(int x){
ll ret=;
int n=N/x,m=M/x;
for(int i=;i<=n;i++)
ret+=1ll*mu[i]*(n/i)*(m/i);
return ret;
} int main(){
scanf("%d%d",&N,&M);
if(N>M) swap(N,M);
getmu(); ll ans=;
for(int i=;i<=N;i++)
ans+=work(i)*(*i-);
printf("%lld\n",ans);
return ;
}
【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集的更多相关文章
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- BZOJ2005: [Noi2010]能量采集(欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...
- 【数论】【莫比乌斯反演】【线性筛】bzoj2005 [Noi2010]能量采集
http://blog.csdn.net/Clove_unique/article/details/51089272 Key:1.连接平面上某个整点(a,b)到原点的线段上有gcd(a,b)个整点. ...
随机推荐
- App 被拒 -- App Store Review Guidelines (2015)中英文对照
Introduction(简介) We're pleased that you want to invest your talents and time to develop applications ...
- Mongodb3.6 基操命令(二)——如何使用help
前言 在上一篇文章Mongodb3.6 快速入门(一)中,我们主要使用两个命令: 1.mongod #启动服务 2.mongo #连接mongodb 对于刚接触mongo的人来说,该怎么给命令传递参数 ...
- IT轮子系列(五)——MVC API 文件上传,总有一款是你需要的
前言 在对外提供的接口时,也常常需要提供上传文件的.在这篇文章中会描述三种上传方式. 1.第一款,通过Base64字符上传——PostFromBase64Str 首先,定义上传数据模型.对于模型的定义 ...
- innobackupex 简单使用笔记
innobackupex 选项介绍 --backup 备份 --apply-log 应用日志 --move-back --copy-back 恢复 --export 只导出单个表.前提是使用in ...
- complex figure
1/z ----direct by MATLAB exp(z) by QT logZ by QT 1/z 用QT画的 -----2018-03-17--------- ...
- AngularJs 学习笔记(三)依赖注入
一个对象可以通过三种方式来获取对依赖对象的控制权: 1.在内部创建依赖的对象 2.通过全局变量引用这个依赖对象 3.通过参数进行传递(在这里是通过函数参数) AngularJs通过$injector注 ...
- 从前端开发看HTTP协议的应用
一.Chrome Developer Network Tab Cheome Developer作为现在前端开发者最常用的开发调试工具,其具有前端可以涉及到的各方面的强大功能,为我们的开发和定位问题提供 ...
- ubuntu导入公钥的方法
导入公钥的办法: #方法1: gpg --keyserver subkeys.pgp.NET --recv 6E871C4A881574DEgpg --export --armor 6E871C4A8 ...
- laravel 5.5 安装
PHP要求 PHP> = 7.0.0 OpenSSL PHP扩展 PDO PHP扩展 Mbstring PHP扩展 Tokenizer PHP扩展 XML PHP扩展 通过Composer创建项 ...
- 文本分类学习(六) AdaBoost和SVM
直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文本分类用于识别垃圾文本的短处.自己学习文本分类就是为了识别垃圾文本. 中间的博客待自己研究透彻后再补上吧. 因为获 ...