Description

  求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m。n, m<=1e5。

Solution

  f(n)为gcd正好是n的(x,y)的个数

  F(n)为gcd是n的倍数的(x,y)的个数

  我们要求的就是f(i)

  然而这个不好直接算,可F(i)可以直接用(n/i)*(m/i)得到

  那么有F(n)=sigma n|i f(i)

  于是有f(n)=sigma n|i mu(i)*F(i)

  这就是莫比乌斯反演,不过这道题直接用容斥的思想想也很容易得到上面那个式子

  那么考虑每一个gcd的贡献

  把n和m除以gcd后,就相当于要求n次f(1)

  每次均摊logn

Code

  也有不用反演的做法,大概是从后往前算,每一步都严格定义,用容斥做。

  这道题是我做的BZOJ第三题,不过当时只会80/90暴力然后去看的题解的容斥,那时候觉得把每一个gcd分开考虑贡献真是神奇,不过对于现在是再自然不过的想法了。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=1e5+; int flag[maxn],prime[maxn],cnt;
int mu[maxn];
int N,M; int getmu(){
mu[]=;
for(int i=;i<=N;i++){
if(!flag[i]){
mu[i]=-;
prime[++cnt]=i;
}
for(int j=;i*prime[j]<=N&&j<=cnt;j++){
flag[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
} ll work(int x){
ll ret=;
int n=N/x,m=M/x;
for(int i=;i<=n;i++)
ret+=1ll*mu[i]*(n/i)*(m/i);
return ret;
} int main(){
scanf("%d%d",&N,&M);
if(N>M) swap(N,M);
getmu(); ll ans=;
for(int i=;i<=N;i++)
ans+=work(i)*(*i-);
printf("%lld\n",ans);
return ;
}

【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集的更多相关文章

  1. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

  2. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  3. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  4. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  5. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  7. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  8. BZOJ2005: [Noi2010]能量采集(欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

  9. 【数论】【莫比乌斯反演】【线性筛】bzoj2005 [Noi2010]能量采集

    http://blog.csdn.net/Clove_unique/article/details/51089272 Key:1.连接平面上某个整点(a,b)到原点的线段上有gcd(a,b)个整点. ...

随机推荐

  1. Flask-email 发送邮件的配置,发送附件的方法,以及os.environ.get('MAIL_USERNAME')为None的解决办法

    一.发送邮件的配置 在学习flask-mail来发送电子邮件的时候遇到了一些问题,其实都是些小问题,现在记录下来以便于以后查看. 1.首先flask-mail的安装 pip install flask ...

  2. MTCNN人脸检测 附完整C++代码

    人脸检测 识别一直是图像算法领域一个主流话题. 前年 SeetaFace 开源了人脸识别引擎,一度成为热门话题. 虽然后来SeetaFace 又放出来 2.0版本,但是,我说但是... 没有训练代码, ...

  3. unity零基础开始学习做游戏(三)鼠标输入,来个虚拟摇杆怎么样?

    -------小基原创,转载请给我一个面子 现在移动游戏越来越火,大家都拿手机平板玩游戏,没有键盘和手柄输入,所以就不得不看看虚拟摇杆怎么搞?(小基对于没有实体反馈不是很喜欢呢) 首先要清楚,鼠标操作 ...

  4. Angular为什么选择TypeScript?

    原文地址:https://vsavkin.com/writing-angular-2-in-typescript-1fa77c78d8e8 本文转自:http://www.chinacion.cn/a ...

  5. eclipse3.7+resin4.0集成配置小结

    1.插件不要用improve公司的了,那个太老了.直接用resin官方的,用eclipse的help->install new software功能,地址用:http://www.caucho. ...

  6. 今年暑假不AC - HZNU寒假集训

    今年暑假不AC "今年暑假不AC?" "是的." "那你干什么呢?" "看世界杯呀,笨蛋!" "@#$%^&a ...

  7. 面试(三)---volatile

    一.前言       最近去成都玩了一圈,整体感觉还不错,辞职以后工作找的也很顺利,随着年龄增加自己也考虑定居和个人长期发展的问题,反正乱七八糟的事,总之需要好好屡屡思路,不能那么着急下定论,当然我对 ...

  8. java之Spring(IOC)注解装配Bean详解

    在这里我们要详细说明一下利用Annotation-注解来装配Bean. 因为如果你学会了注解,你就再也不愿意去手动配置xml文件了,下面就看看Annotation的魅力所在吧. 先来看看之前的bean ...

  9. eclipse配置tomcat后启动报内存错误解决方法

    一.双击tomcat服务,打开配置界面 二.打开launch configuration窗口,在Argument最后面加入:-Xms256m -Xmx512m -XX:PermSize=256M -X ...

  10. leetCode刷题(找到最长的回文字符串)

    Given a string, find the length of the longest substring without repeating characters. Examples: Giv ...