Portal

Description

给出一个\(n(n\leq3\times10^5)\)个数的序列,进行\(m(m\leq3\times10^5)\)次操作,操作有两种:

  • 给区间\([L,R]\)加上一个斐波那契数列,即\(\{a_L,a_{L+1},...,a_R\} \rightarrow \{a_L+F_1,a_{L+1}+F_2,...,a_R+F_{R-L+1}\}\)
  • 询问区间\([L,R]\)的和,对\(10^9+9\)取模。

    斐波那契数列:\(F_1=1,F_2=2\)且满足\(F_{n+2}=F_n+F_{n+1}\)。

Solution

容易知道,满足\(a_{n+2}=a_n+a_{n+1}\)的数列具有以下性质:

  • 若\(c_n=a_n+b_n\),则\(c_1=a_1+b_1,c_2=a_2+b_2,c_{n+2}=c_n+c_{n+1}\)。
  • 有通项公式\(a_n=F_{n-2}a_1+F_{n-1}a_2\)。
  • 有前缀和公式\(\sum_{i=1}^n a_i=a_{n+2}-a_2\)。

    下面依次进行证明。

    证明1

    \(c_{n+2}=a_{n+2}+b_{n+2}=(a_n+a_{n+1})+(b_n+b_{n+1})=(a_n+b_n)+(a_{n+1}+b_{n+1})=c_n+c_{n+1}\)

    证明2

    若当\(n\leq k\)时,\(a_n=F_{n-2}a_1+F_{n-1}a_2\),则

    \(a_{k+1}=a_{k-1}+a_k=(F_{k-3}a_1+F_{k-2}a_2)+(F_{k-2}a_1+F_{k-1}a_2)=F_{k-1}a_1+F_ka_2\)

    因为\(a_1=F_{-1}a_1+F_0\)(可以认为\(F_0=F_2-F_1=0,F_{-1}=F_1-F_0=1\)),\(a_2=F_0a_1+F_1a_2\)

    所以\(\forall n\in\mathbb{Z},a_n=F_{n-2}a_1+F_{n-1}a_2\)。

    证明3

    \(\begin{align} 2\Sigma_{i=1}^n a_i &= (a_1+a_2+...+a_n)+(a_1+a_2+...+a_n) \\ &=a_1+(a_1+a_2)+(a_2+a_3)+...+(a_{n-1}+a_n)+a_n \\ &=a_1+a_n+(a_3+a_4...+a_{n+1}) \\ &=(a_1+a_2+...+a_n)-a_2+a_n+a_{n+1} \\ &=\Sigma_{i=1}^n a_i+a_{n+2}-a_2 \\ \Sigma_{i=1}^n a_i &=a_{n+2}-a_2 \end{align}\)

    我们现在就可以用线段树维护这个序列了。线段树中的每个节点记录三个值\(f_1,f_2,sum\),表示该区间被加上了一个以\(f_1,f_2\)开头的数列,区间和为\(sum\)。

    通过性质1,我们知道\(f_1,f_2\)可以叠加;

    通过性质2,我们可以\(O(1)\)地将\(f_1,f_2\)下放;

    通过性质3,我们可以\(O(1)\)地更新\(sum\)。

    时间复杂度\(O(nlogn)\)。

Code

//DZY Loves Fibonacci Numbers
#include <cstdio>
inline char gc()
{
    static char now[1<<16],*S,*T;
    if(S==T) {T=(S=now)+fread(now,1,1<<16,stdin); if(S==T) return EOF;}
    return *S++;
}
inline int read()
{
    int x=0,f=1; char ch=gc();
    while(ch<'0'||'9'<ch) {if(ch=='-') f=-1; ch=gc();}
    while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x*f;
}
typedef long long lint;
int const N=3e5+10;
lint const P=1e9+9;
int n,m; lint F[N],a[N];
#define s sg[s0]
struct seg{lint f1,f2,sum;} sg[N*20];
void update(int s0,int len)
{
    s.f1%=P,s.f2%=P;
    s.sum=sg[s0<<1].sum+sg[s0<<1|1].sum+(s.f1*F[len]+s.f2*F[len+1]-s.f2),s.sum%=P;
}
void pushdown(int s0,int L0,int R0)
{
    if(s.f1==0&&s.f2==0) return;
    int mid=L0+R0>>1,Ls0=s0<<1,Rs0=Ls0|1;
    sg[Ls0].f1+=s.f1; sg[Rs0].f1+=s.f1*F[mid-L0]+s.f2*F[mid-L0+1];
    sg[Ls0].f2+=s.f2; sg[Rs0].f2+=s.f1*F[mid-L0+1]+s.f2*F[mid-L0+2];
    s.f1=s.f2=0;
    update(Ls0,mid-L0+1); update(Rs0,R0-mid);
}
void ins(int s0,int L0,int R0,int L,int R)
{
    if(L<=L0&&R0<=R) {s.f1+=F[L0-L+1],s.f2+=F[L0-L+2],update(s0,R0-L0+1); return;}
    pushdown(s0,L0,R0);
    int mid=L0+R0>>1;
    if(L<=mid) ins(s0<<1,L0,mid,L,R);
    if(mid<R) ins(s0<<1|1,mid+1,R0,L,R);
    update(s0,R0-L0+1);
}
lint query(int s0,int L0,int R0,int L,int R)
{
    if(L<=L0&&R0<=R) return s.sum;
    pushdown(s0,L0,R0);
    lint res=0; int mid=L0+R0>>1;
    if(L<=mid) res+=query(s0<<1,L0,mid,L,R);
    if(mid<R) res+=query(s0<<1|1,mid+1,R0,L,R);
    return res%P;
}
lint sumA[N];
int main()
{
    n=read(),m=read();
    F[1]=F[2]=1; for(int i=3;i<=n+1;i++) F[i]=(F[i-2]+F[i-1])%P;
    for(int i=1;i<=n;i++) a[i]=read(),sumA[i]=sumA[i-1]+a[i];
    int rt=1;
    for(int i=1;i<=m;i++)
    {
        int opt=read(),L=read(),R=read();
        if(opt==1) ins(rt,1,n,L,R);
        else printf("%lld\n",(query(rt,1,n,L,R)+sumA[R]-sumA[L-1])%P);
    }
    return 0;
}

P.S.

CF怎么是个题就要开long long!?

不知道为什么要求对\(10^9+9\)取模,而不是\(10^9+7\)。

Codeforces446C - DZY Loves Fibonacci Numbers的更多相关文章

  1. 『题解』Codeforces446C DZY Loves Fibonacci Numbers

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description In mathematical terms, the sequence \( ...

  2. Codeforces446C DZY Loves Fibonacci Numbers(线段树 or 分块?)

    第一次看到段更斐波那契数列的,整个人都不会好了.事后看了题解才明白了一些. 首先利用二次剩余的知识,以及一些数列递推式子有下面的 至于怎么解出x^2==5(mod 10^9+9),我就不知道了,但是要 ...

  3. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  4. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  5. cf446C DZY Loves Fibonacci Numbers

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  6. Codeforces Round #FF 446 C. DZY Loves Fibonacci Numbers

    參考:http://www.cnblogs.com/chanme/p/3843859.html 然后我看到在别人的AC的方法里还有这么一种神方法,他预先设定了一个阈值K,当当前的更新操作数j<K ...

  7. [CodeForces - 447E] E - DZY Loves Fibonacci Numbers

    E  DZY Loves Fibonacci Numbers In mathematical terms, the sequence Fn of Fibonacci numbers is define ...

  8. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  9. 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers

    我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...

随机推荐

  1. Log4j源码解析--框架流程+核心解析

    OK,现在我们来研究Log4j的源码: 这篇博客有参照上善若水的博客,原文出处:http://www.blogjava.net/DLevin/archive/2012/06/28/381667.htm ...

  2. junit源码解析--初始化阶段

    OK,我们接着上篇整理.上篇博客中已经列出的junit的几个核心的类,这里我们开始整理junit完整的生命周期. JUnit 的完整生命周期分为 3 个阶段:初始化阶段.运行阶段和结果捕捉阶段. 这篇 ...

  3. POI--HSSFCellStyle类

    通过POI来进行单元格格式的设定 设定格式使用「HSSFCellStyle」类.它有一个构造方法: protected HSSFCellStyle(short index, ExtendedForma ...

  4. 字段的参数 -- Django从入门到精通系列教程

    该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. Python及Django学习QQ群:453 ...

  5. mysql添加用户和密码

    首先要声明一下:一般情况下,修改MySQL密码,授权,是需要有mysql里的root权限的.   注:本操作是在WIN命令提示符下,phpMyAdmin同样适用.     用户:phplamp  用户 ...

  6. DRBD的主备安装配置

    drbd软件包链接:https://pan.baidu.com/s/1eUcXVyU 密码:00ul 1.使用的资源:1.1 系统centos6.9 mini1.2 两台节点主机node1.node2 ...

  7. 前端通过Nginx反向代理解决跨域问题

    在前面写的一篇文章SpringMVC 跨域,我们探讨了什么是跨域问题以及SpringMVC怎么解决跨域问题,解决方式主要有如下三种方式: JSONP CORS WebSocket 可是这几种方式都是基 ...

  8. Entity Framework VS Mybatis 不同点剖析

    大家都知道Entity Framework是.NET系统当中的一个重量级的ORM框架 ,它采用了延迟加载的技术,使得服务端不用每次都去尝试连接数据库,从而增加了使用效率和 减少了不必要的开销.而myb ...

  9. ABAP更换请求

    当创建的程序或表操作失误存储在其他的请求下边如何更换请求呢? 事务代码:SE09 双击请求号,复制存储错误的对象 打开一个新窗口,双击正确的请求,点击修改,将复制的对象粘贴在正确的请求下 将错误的请求 ...

  10. 2.Ray-消息发布器与消息存储器

    消息发布器: Ray是基于Event Sourcing设计的ES/Actor框架,ESGrain状态(State)的修改.ESGrain之间的通信默认使用RabbitMQ通信.消息的发布器主要是Rab ...