bzoj 4710: [Jsoi2011]分特产
Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任
何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
解题报告:
用时:2h,1WA
首先要想到容斥,那么总方案是什么?对于每一种物品分给N个同学,那么就是可重组合\(C(n+a[i]-1,a[i])\),然后再将每一个物品分给同学的方案相乘,但是可重组合公式中的方案并不保证每一个位置都有至少一个,所以我们要减去不合法方案,也就是存在有空位的方案,根据容斥原理:减去一个空位的,再加上两个空位的,再减去三个空位的,加上四个空位的.....,注意有\(i\)个空位的方案还需要乘上\(C(n,i)\),因为空位可以是任意位置
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=1005,mod=1000000007;
int a[N],n,m;ll c[N<<1][N<<1];
void work()
{
int mx=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d",&a[i]);
mx=Max(a[i],mx);
}
mx+=n;
for(int i=0;i<=mx;i++){
c[i][0]=1;
for(int j=1;j<=i;j++){
c[i][j]=c[i-1][j-1]+c[i-1][j];
if(c[i][j]>=mod)c[i][j]-=mod;
}
}
ll ans=1,tmp;
for(int i=1;i<=m;i++){
ans*=c[a[i]+n-1][a[i]];
ans%=mod;
}
int t=-1;
for(int i=1;i<n;i++){
tmp=1;
for(int j=1;j<=m;j++){
tmp*=c[a[j]+n-i-1][a[j]];
tmp%=mod;
}
tmp=tmp*c[n][i]%mod;
ans+=tmp*t;ans=((ans%mod)+mod)%mod;
t*=-1;
}
printf("%lld\n",ans);
}
int main()
{
work();
return 0;
}
bzoj 4710: [Jsoi2011]分特产的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- ●BZOJ 4710 [Jsoi2011]分特产
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...
- BZOJ 4710: [Jsoi2011]分特产(容斥)
传送门 解题思路 首先所有物品是一定要用完的,那么可以按照物品考虑,就是把每种物品分给\(n\)个人,每个人分得非负整数,可以用隔板法计算.设物品有\(m\)个,方案数为\(C(n+m-1,n-1)\ ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
随机推荐
- (原创)带模板的OLE输出EXCEL
其实带模板的OLE输出EXCEL就是将要输出的EXCEL中一些拥有固定值(如标题,表头行等)的单元格先填充好数据和设置好格式后作为模板上传到SAP 中.这样后续在输出EXCEL时只需从SAP中将模板下 ...
- window.showModalDialog
//新版本谷歌没有window.showModalDialog,创建一个window.openif(window.showModalDialog == undefined){ window.show ...
- Junit 4 测试中使用定时任务操作
难度:测试中执行线程操作 package com.hfepc.job.dataCollection.test; import java.util.Date; import java.util.List ...
- PHP冒泡排序、选择排序、插入排序
$arr = [1, 8, 7, 5, 4, 2, 11, 9, 20]; 冒泡排序: for ($i = 0; $i < count($arr); $i ++) { for ($j = 0; ...
- python全栈开发-json和pickle模块(数据的序列化)
一.什么是序列化? 我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flat ...
- mqtt paho ssl java端代码
参考链接:http://blog.csdn.net/lingshi210/article/details/52439050 mqtt 的ssl配置可以参阅 http://houjixin.blog.1 ...
- kubernetes进阶(02)kubernetes的node
一.Node概念 Node是Pod真正运行的主机,可以物理机,也可以是虚拟机. 为了管理Pod,每个Node节点上至少要运行container runtime(比如docker或者rkt). kube ...
- C#日志文件
写日志文件是一个很常用的功能,以前都是别人写好的,直接调用的,近期写了一个小工具,因为比较小,所以懒得引用dll文件了,直接上网找了一个,很方便,现在记录下 public class LogClass ...
- CentOS7从U盘中拷贝文件
1. 要想从U盘中拷贝文件,必须要将U盘挂载到一个目录中,所以必须新建一个目录,一般建在/mnt下.我们执行:mkdir /mnt/usb来新建一个目录. 2. 查看U盘是否已经被识别.执行:df - ...
- Python 生成随机验证码
Python生成随机验证码 Python生成随机验证码,需要使用PIL模块. 安装: 1 pip3 install pillow 基本使用 1. 创建图片 1 2 3 4 5 6 7 8 9 fro ...