Description

小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345

小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也

是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素

数7的倍数。

solution

正解:莫队

知道结论还是比较容易的,但是细节贼多啊.

首先 \(p\) 是质数,所以满足结论:如果 \(s[i-n]\%p=s[k-n]\%p\),那么 \(s[i-k]\) 满足是 \(p\) 的倍数

第一个细节就是,特判 \(p=2,p=5\),这个时候结论不成立

然后就变成了查找区间内相同的数两两配对的方案数,莫队解决即可,另外这个模数没有给范围,实际上很大,需要离散化

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=100005;
int n,m,block;char s[N];ll mod;
namespace solve1{
ll sum[N],c[N];
void main(){
for(int i=1;i<=n;i++){
sum[i]=sum[i-1],c[i]=c[i-1];
if((s[i]-'0')%mod==0)sum[i]+=i,c[i]++;
}
int m,x,y;cin>>m;
while(m--){
scanf("%d%d",&x,&y);
printf("%lld\n",(sum[y]-sum[x-1])-(x-1)*(c[y]-c[x-1]));
}
}
}
struct node{
int l,r,b,id;
bool operator <(const node &pr)const{
if(b!=pr.b)return b<pr.b;
return r<pr.r;
}
}q[N];
ll v[N],t[N],b[N];ll ans[N],ret=0;
inline void add(int x){ret+=t[v[x]];t[v[x]]++;}
inline void delet(int x){t[v[x]]--;ret-=t[v[x]];}
void solve(){
scanf("%d",&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].r++;q[i].id=i;
q[i].b=q[i].l/block;
}
sort(q+1,q+m+1);
ll str=0,tot=1;
for(int i=n;i>=1;i--){
str+=tot*(s[i]-48);str%=mod;
tot*=10;tot%=mod;
v[i]=b[i]=str;
}
b[0]=0;
sort(b,b+n+1);
int to=unique(b,b+n+1)-b-1;
for(int i=1;i<=n+1;i++)v[i]=lower_bound(b,b+to+1,v[i])-b;
int l=1,r=0;
for(int i=1;i<=m;i++){
while(r<q[i].r)r++,add(r);
while(l>q[i].l)l--,add(l);
while(r>q[i].r)delet(r),r--;
while(l<q[i].l)delet(l),l++;
ans[q[i].id]=ret;
}
for(int i=1;i<=m;i++)printf("%lld\n",ans[i]);
}
void work()
{
scanf("%lld%s",&mod,s+1);
n=strlen(s+1);block=sqrt(n);
if(mod==2 || mod==5)solve1::main();
else solve();
} int main()
{
work();
return 0;
}

bzoj 4542: [Hnoi2016]大数的更多相关文章

  1. BZOJ.4542.[HNOI2016]大数(莫队)

    题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...

  2. bzoj 4542 [Hnoi2016]大数 (坑)

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4542 题解 Code #include<bits/stdc++.h> using ...

  3. bzoj 4542: [Hnoi2016]大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  4. 4542: [Hnoi2016]大数

    4542: [Hnoi2016]大数 链接 分析: 如果p等于2或者5,可以根据最后一位直接知道是不是p的倍数,所以直接记录一个前缀和即可. 如果p不是2或者5,那么一个区间是p的倍数,当且仅当$\f ...

  5. 【BZOJ】4542: [Hnoi2016]大数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4542 给定一个由数字构成的字符串${S_{1,2,3,...,n}}$,一个正素数$P$, ...

  6. 4542: [Hnoi2016]大数

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  7. 【LG3245】[HNOI2016]大数

    [LG3245][HNOI2016]大数 题面 洛谷 题解 60pts 拿vector记一下对于以每个位置为右端点符合要求子串的左端点, 则每次对于一个询问,扫一遍右端点在vector里面二分即可, ...

  8. BZOJ 3110 K大数查询 | 整体二分

    BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...

  9. 【BZOJ4542】[Hnoi2016]大数 莫队

    [BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...

随机推荐

  1. 利用Python爬取新浪微博营销案例库并下载到本地

    from bs4 import BeautifulSoup import requests,urllib.request,urllib.parse import json import time im ...

  2. 学习ASP.NET Core Razor 编程系列四——Asp.Net Core Razor列表模板页面

    学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...

  3. python之路--day13-模块

    1,什么是模块 模块就是系统功能的集合体,在python中,一个py文件就是一个模块, 例如:module.py 其中module叫做模块名 2,使用模块 2.1 import导入模块 首次带入模块发 ...

  4. JAVA_SE基础——70.Math类

    package cn.itcast.other; /*  Math 数学类, 主要是提供了很多的数学公式.    abs(double a)  获取绝对值  ceil(double a)  向上取整 ...

  5. Hadoop安装-部署-测试

    一:准备Linux环境[安装略]        a.修改主机名                vim /etc/sysconfig/network                NETWORKING= ...

  6. SpringCloud的EurekaClient : 客户端应用访问注册的微服务(无断路器场景)

    演示客户端应用如何访问注册在EurekaServer里的微服务 一.概念和定义 采用Ribbon或Feign方式访问注册到EurekaServer中的微服务.1.Ribbon实现了客户端负载均衡,2. ...

  7. OAuth2.0学习(1-4)授权方式1-授权码模式(authorization code)

    参与者列表: (1) Third-party application:第三方应用程序,又称客户端(client),如:"云冲印".社交应用. (2)HTTP service:HTT ...

  8. Spring Boot面试题

    Spring Boot 是微服务中最好的 Java 框架. 我们建议你能够成为一名 Spring Boot 的专家. 问题一 Spring Boot.Spring MVC 和 Spring 有什么区别 ...

  9. 阿里云下Linux服务器安装Mysql、mongodb

    阿里云下Linux服务器安装Mysql.mongodb 一.MySQL的安装和配置 1.安装rpm包 rpm -Uvh http://dev.mysql.com/get/mysql-community ...

  10. [Luogu1801] 黑匣子 - Treap

    Description Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命 ...