题目描述

若能将无向图G=(V,E)画在平面上使得任意两条无重合顶点的边不相交,则称G是平面图。判定一个图是否为平面图的问题是图论中的一个重要问题。现在假设你要判定的是一类特殊的图,图中存在一个包含所有顶点的环,即存在哈密顿回路。

输入输出格式

输入格式:

输入文件的第一行是一个正整数T,表示数据组数(每组数据描述一个需要判定的图)。接下来从输入文件第二行开始有T组数据,每组数据的第一行是用空格隔开的两个正整数N和M,分别表示对应图的顶点数和边数。紧接着的M行,每行是用空格隔开的两个正整数u和v(1<=u,v<=n),表示对应图的一条边(u,v),输入的数据保证所有边仅出现一次。每组数据的最后一行是用空格隔开的N个正整数,从左到右表示对应图中的一个哈密顿回路:V1,V2,…,VN,即对任意i≠j有Vi≠Vj且对任意1<=i<=n-1有(Vi,Vi-1)
∈E及(V1,Vn) ∈E。输入的数据保证100%的数据满足T<=100,3<=N<=200,M<=10000。

输出格式:

包含T行,若输入文件的第i组数据所对应图是平面图,则在第i行输出YES,否则在第i行输出NO,注意均为大写字母

输入输出样例

输入样例#1:
复制

2
6 9
1 4
1 5
1 6
2 4
2 5
2 6
3 4
3 5
3 6
1 4 2 5 3 6
5 5
1 2
2 3
3 4
4 5
5 1
1 2 3 4 5
输出样例#1: 复制
YES懒得写了链接
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Node
{
int next,to;
}edge[];
struct Edge
{
int u,v;
}e[];
int head[],num,n,m,id[],cnt;
int vis[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
bool dfs(int x,int pa,int k)
{int i;
vis[x]=k^;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (vis[v]==-)
{
if (!dfs(v,x,k^)) return ;
}
else
{
if (vis[v]==(k^))
return ;
}
}
return ;
}
int main()
{int T,i,j,x;
cin>>T;
while (T--)
{
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d",&e[i].u,&e[i].v);
}
memset(id,,sizeof(id));
for (i=;i<=n;i++)
{
scanf("%d",&x);
id[x]=i;
}
if (m>*n-)
{
printf("NO\n");
continue;
}
num=;
memset(head,,sizeof(head));
for (i=;i<=m;i++)
{
int u=e[i].u,v=e[i].v;
if (id[u]>id[v]) swap(u,v);
for (j=;j<i;j++)
{
int p=e[j].u,q=e[j].v;
if (id[p]>id[q]) swap(p,q);
if (id[u]<id[p]&&id[v]<id[q]&&id[p]<id[v]) add(i,j),add(j,i);
if (id[p]<id[u]&&id[q]<id[v]&&id[u]<id[q]) add(i,j),add(j,i);
}
}
memset(vis,-,sizeof(vis));
for (i=;i<=m;i++)
if (vis[i]==-)
{
if (!dfs(i,,)) break;
}
if (i>m) printf("YES\n");
else printf("NO\n");
}
}

[HNOI2010]PLANAR的更多相关文章

  1. BZOJ 1997: [Hnoi2010]Planar( 2sat )

    平面图中E ≤ V*2-6.. 一个圈上2个点的边可以是在外或者内, 经典的2sat问题.. ----------------------------------------------------- ...

  2. [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)

    开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...

  3. bzoj千题计划231:bzoj1997: [Hnoi2010]Planar

    http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...

  4. 1997: [Hnoi2010]Planar

    1997: [Hnoi2010]Planar 链接 分析: 首先在给定的那个环上考虑进行操作,如果环内有有两条边相交,那么可以把其中的一条放到环的外面去.所以转换为2-sat问题. 像这样,由于1-4 ...

  5. 【BZOJ1997】[Hnoi2010]Planar 2-SAT

    [BZOJ1997][Hnoi2010]Planar Description Input Output Sample Input 2 6 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 ...

  6. [BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图

    1997: [Hnoi2010]Planar Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2317  Solved: 850[Submit][Stat ...

  7. Bzoj 1997 [Hnoi2010]Planar题解

    1997: [Hnoi2010]Planar Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2224  Solved: 824[Submit][Stat ...

  8. [BZOJ 1997][HNOI2010]Planar(2-SAT)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1997 分析: 考虑每条边是在圈子里面还是圈子外面 所以就变成了2-SAT判定问题了= ...

  9. bzoj 1997: [Hnoi2010]Planar

    #include<cstdio> #include<cstring> #include<iostream> #define M 20005 #define N 20 ...

  10. 【BZOJ 1997】[Hnoi2010]Planar

    Description Input Output   找到哈密尔顿环之后找到不在哈密尔顿环上的边 这些边如果同时在里面相交那他们同时在外面也相交,所以只能一外一内,这就变成了2-SAT,判一下就好了 ...

随机推荐

  1. 刚入大学B. http://mp.weixin.qq.com/s/ORpKfX8HOQEJOYfwvIhRew

    自己对计算机还是比较感兴趣的,经过不断的努力,我相信我可以在这一专业中显露头角,我会努力向博主学习.理想的大学是自由,快乐,可以学到很多知识的地方,未来我想在lt行业进行软件开发等项目,为了梦想我会不 ...

  2. 福州大学W班 软件工程课中期调查

    问卷地址:https://www.wjx.cn/jq/17054810.aspx

  3. C作业--初步

    第一周: 知识点:第一个c程序 练习:printf 第二周: 知识点:常量变量,数据类型和运算符 练习:数学公式的求解:比如重力加速度,华氏温度与摄氏温度的转换,汇率等. 第三周: 知识点:print ...

  4. C语言博客作业--函数嵌套调用

    一.实验作业(6分) 本周作业要求: 选一题PTA题目介绍. 学习工程文件应用,设计实现学生成绩管理系统. 学生成绩管理系统要求 设计一个菜单驱动的学生成绩管理程序,管理n个学生m门考试科目成绩,实现 ...

  5. JAVA_SE基础——编码规范&代码编写规则

    这次我来给大家说明下编码规范&代码编写规则  ↓ 编码规范可以帮助程序员在编程时注意一些细节问题,提高程序的可读性,让程序员能够尽快地理解新的代码,并帮助大家编写出规范的利于维护的Java代码 ...

  6. RocketMQ(二):RPC通讯

    匠心零度 转载请注明原创出处,谢谢! RocketMQ网络部署图 NameServer:在系统中是做命名服务,更新和发现 broker服务. Broker-Master:broker 消息主机服务器. ...

  7. MySQL 避免重复数据的批量插入与批量更新

    [转发] 导读 我们在向数据库里批量插入数据的时候,会遇到要将原有主键或者unique索引所在记录更新的情况,而如果没有主键或者unique索引冲突的时候,直接执行插入操作. 这种情况下,有三种方式执 ...

  8. Python内置函数(2)——divmod

    英文文档: divmod(a, b) Take two (non complex) numbers as arguments and return a pair of numbers consisti ...

  9. Docker学习笔记 - Docker容器与外部网络的连接

    学习目的: ip_forward 包过滤防护墙 iptables 允许端口映射访问 限制ip访问容器 1.ip_forward 控制系统是否会转发流量 检查linux系统转发是否开启命令:sysctl ...

  10. YML(2)yml 语法

    YAML 语法 来源:yaml 这个页面提供一个正确的 YAML 语法的基本概述, 它被用来描述一个 playbooks(我们的配置管理语言). 我们使用 YAML 是因为它像 XML 或 JSON ...