[HNOI2010]PLANAR
题目描述
若能将无向图G=(V,E)画在平面上使得任意两条无重合顶点的边不相交,则称G是平面图。判定一个图是否为平面图的问题是图论中的一个重要问题。现在假设你要判定的是一类特殊的图,图中存在一个包含所有顶点的环,即存在哈密顿回路。
输入输出格式
输入格式:
输入文件的第一行是一个正整数T,表示数据组数(每组数据描述一个需要判定的图)。接下来从输入文件第二行开始有T组数据,每组数据的第一行是用空格隔开的两个正整数N和M,分别表示对应图的顶点数和边数。紧接着的M行,每行是用空格隔开的两个正整数u和v(1<=u,v<=n),表示对应图的一条边(u,v),输入的数据保证所有边仅出现一次。每组数据的最后一行是用空格隔开的N个正整数,从左到右表示对应图中的一个哈密顿回路:V1,V2,…,VN,即对任意i≠j有Vi≠Vj且对任意1<=i<=n-1有(Vi,Vi-1)
∈E及(V1,Vn) ∈E。输入的数据保证100%的数据满足T<=100,3<=N<=200,M<=10000。
输出格式:
包含T行,若输入文件的第i组数据所对应图是平面图,则在第i行输出YES,否则在第i行输出NO,注意均为大写字母
输入输出样例
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Node
{
int next,to;
}edge[];
struct Edge
{
int u,v;
}e[];
int head[],num,n,m,id[],cnt;
int vis[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
bool dfs(int x,int pa,int k)
{int i;
vis[x]=k^;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (vis[v]==-)
{
if (!dfs(v,x,k^)) return ;
}
else
{
if (vis[v]==(k^))
return ;
}
}
return ;
}
int main()
{int T,i,j,x;
cin>>T;
while (T--)
{
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d",&e[i].u,&e[i].v);
}
memset(id,,sizeof(id));
for (i=;i<=n;i++)
{
scanf("%d",&x);
id[x]=i;
}
if (m>*n-)
{
printf("NO\n");
continue;
}
num=;
memset(head,,sizeof(head));
for (i=;i<=m;i++)
{
int u=e[i].u,v=e[i].v;
if (id[u]>id[v]) swap(u,v);
for (j=;j<i;j++)
{
int p=e[j].u,q=e[j].v;
if (id[p]>id[q]) swap(p,q);
if (id[u]<id[p]&&id[v]<id[q]&&id[p]<id[v]) add(i,j),add(j,i);
if (id[p]<id[u]&&id[q]<id[v]&&id[u]<id[q]) add(i,j),add(j,i);
}
}
memset(vis,-,sizeof(vis));
for (i=;i<=m;i++)
if (vis[i]==-)
{
if (!dfs(i,,)) break;
}
if (i>m) printf("YES\n");
else printf("NO\n");
}
}
[HNOI2010]PLANAR的更多相关文章
- BZOJ 1997: [Hnoi2010]Planar( 2sat )
平面图中E ≤ V*2-6.. 一个圈上2个点的边可以是在外或者内, 经典的2sat问题.. ----------------------------------------------------- ...
- [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)
开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...
- bzoj千题计划231:bzoj1997: [Hnoi2010]Planar
http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...
- 1997: [Hnoi2010]Planar
1997: [Hnoi2010]Planar 链接 分析: 首先在给定的那个环上考虑进行操作,如果环内有有两条边相交,那么可以把其中的一条放到环的外面去.所以转换为2-sat问题. 像这样,由于1-4 ...
- 【BZOJ1997】[Hnoi2010]Planar 2-SAT
[BZOJ1997][Hnoi2010]Planar Description Input Output Sample Input 2 6 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 ...
- [BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图
1997: [Hnoi2010]Planar Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2317 Solved: 850[Submit][Stat ...
- Bzoj 1997 [Hnoi2010]Planar题解
1997: [Hnoi2010]Planar Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2224 Solved: 824[Submit][Stat ...
- [BZOJ 1997][HNOI2010]Planar(2-SAT)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1997 分析: 考虑每条边是在圈子里面还是圈子外面 所以就变成了2-SAT判定问题了= ...
- bzoj 1997: [Hnoi2010]Planar
#include<cstdio> #include<cstring> #include<iostream> #define M 20005 #define N 20 ...
- 【BZOJ 1997】[Hnoi2010]Planar
Description Input Output 找到哈密尔顿环之后找到不在哈密尔顿环上的边 这些边如果同时在里面相交那他们同时在外面也相交,所以只能一外一内,这就变成了2-SAT,判一下就好了 ...
随机推荐
- 敏捷开发每日报告--day4
1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285) Git链接:https://github.com/WHUSE2017/C-team 2 ...
- localhost访问不了的解决方法
c:\windows\system32\drivers\etc\hosts 用记事本打开,加入一行 127.0.0.1 localhost
- 团队作业4——第一次项目冲刺(Alpha版本)11.14
a. 提供当天站立式会议照片一张 举行站立式会议,讨论项目安排: PM对整个项目的需求进行讲解: 全队对整个项目的细节进行沟通: 对整个项目的开发计划进行分析,分配每天的任务: 统一确定项目的开发环境 ...
- JAVA委托事件处理机制
1)事件:用户对程序的某一种功能性操作. Java中的事件主要有两种: 1.组件类事件 componentEvent.ContainerEvent.WindowEvent.FocusEvent.Pai ...
- Node入门教程(4)第三章:第一个 Nodejs 程序
第一个 Nodejs 程序 本教程仅适合您已经有一定的JS编程的基础或者是后端语言开发的基础.如果您是零基础,建议您先学一下老马的前端免费视频教程 第一步:创建项目文件夹 首先创建 demos 文件夹 ...
- vue 在已有的购买列表中(数据库返回的数据)修改商品数量
连续加班一个月 连续通宵三天 到最后还是少了一个功能 心碎 简介:一个生成好的商品列表(数据库返回的数据) 首先拿到我们需要渲染的数组 在data中定义 我是在测试的时候 直接写了两条数据 下面开始 ...
- 学习ASP.NET Core Razor 编程系列四——Asp.Net Core Razor列表模板页面
学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...
- 构建自己的PHP框架--构建模版引擎(3)
之前我们实现了最简单的echo命令的模版替换,就是将{{ $name }}这样一段内容替换成<?php echo $name ?>. 现在我们来说下其他的命令,先来回顾下之前的定义 输出变 ...
- 谈谈ASP.NET Core中的ResponseCaching
前言 前面的博客谈的大多数都是针对数据的缓存,今天我们来换换口味.来谈谈在ASP.NET Core中的ResponseCaching,与ResponseCaching关联密切的也就是常说的HTTP缓存 ...
- java基础复习(1)
用记事本写java文件 打开记事本,编写java文件,需要注意文件名与类名要相同 注意文件的后缀名(也叫拓展名)改为.java java对大小写是敏感的 public class nihao{\ pu ...