终于抽出时间来学了学,比FFT不知道好写到哪里去。

#include <cstdio>

typedef long long ll;
const int N=,p=1e9+;
int k,m,n,a[N],pi[N];
bool pr(int x) {for(int i=;i*i<=x;i++) if(x%i==) return ; return ;}
ll pw(ll a,int b) {ll r=; for(;b;b>>=,a=a*a%p) if(b&) r=r*a%p; return r;} void fwt(int *a,ll f) {
for(int i=,x,y;i<n;i<<=) for(int j=;j<n;j+=i<<) for(int k=;k<i;k++)
x=a[j+k],y=a[j+k+i],a[j+k]=(x+y)*f%p,a[j+k+i]=(x-y+p)*f%p;
} int main() {
for(int i=;i<;i++) if(pr(i)) pi[i]=;
while(~scanf("%d%d",&k,&m)) {
for(n=;n<=m;n<<=);
for(int i=;i<=m;i++) a[i]=pi[i];
for(int i=m+;i<n;i++) a[i]=;
fwt(a,);
for(int i=;i<n;i++) a[i]=pw(a[i],k);
fwt(a,),printf("%d\n",a[]);
}
return ;
}

BZOJ4589 Hard Nim(快速沃尔什变换模板)的更多相关文章

  1. LG4717 【模板】快速沃尔什变换

    题意 题目描述 给定长度为\(2^n\)两个序列\(A,B\),设\(C_i=\sum_{j\oplus k}A_jB_k\)分别当\(\oplus\)是or,and,xor时求出C 输入输出格式 输 ...

  2. Fast Walsh-Hadamard Transform——快速沃尔什变换

    模板题: 给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求 $$C_i = \sum_{j \oplus k = i} A_j B_k$$ 其中$\oplus$ ...

  3. [学习笔记]FWT——快速沃尔什变换

    解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...

  4. 快速沃尔什变换(FWT)学习笔记

    概述 FWT的大体思路就是把要求的 C(x)=A(x)×B(x)  即 \( c[i]=\sum\limits_{j?k=i} (a[j]*b[k]) \) 变换成这样的:\( c^{'}[i]=a^ ...

  5. 初学FWT(快速沃尔什变换) 一点心得

    FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi​=j⊕k=i∑​Aj​∗Bk​此处乘号为普通乘法 ...

  6. 关于快速沃尔什变换(FWT)的一点学习和思考

    最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...

  7. FWT快速沃尔什变换学习笔记

    FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...

  8. 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

    一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...

  9. 89. a^b【快速幂模板】

    a^b Description 求 aa 的 bb 次方对 pp 取模的值. 输入格式 三个整数 a,b,pa,b,p ,在同一行用空格隔开. 输出格式 输出一个整数,表示a^b mod p的值. 数 ...

随机推荐

  1. 关于collectionView和tableView的两种cell的出列方法的区别

    相信好多人一定会对collectionView和tableView的两种cell出列方法有所疑问,下面以UICollection为例子进行举例说明 假设我们已经创建了一个collectionView, ...

  2. MSSQL 2000 错误823恢复案例

    一.故障描述 MSSQL Server 2000 附加数据库错误823,附加数据库失败.数据库没有备份,不能通过备份恢复数据库,急需恢复数据库中的数据. 二.故障分析SQL Server数据库 823 ...

  3. vuex在项目中使用的一点总结

    以下为vue后台管理项目中使用vuex的一点总结,截取了其中部分代码,如有什么错误,还望指出. 1. token 存储 登陆成功之后,需要把获取到的 token 存储到 vuex 中,配合 axios ...

  4. Docker学习笔记 - Docker容器内部署redis

    Docker学习笔记(2-4)Docker应用实验-redist server 和client的安装使用 一.获取redis容器(含客户端和服务端) 二.创建服务端容器 1.在终端A中运行redis- ...

  5. Linux网络配置(仅主机模式)

    1.启动虚机,网络选择:仅主机模式 2.命令行输入 rm -rf /etc/udev/rules.d/70-persistent-net.rules 3.修改虚机中的网络配置 >>vim ...

  6. JAVA通过注解处理器重构代码,遵循单一职责

    前言:最近在看一个内部网关代码的时候,发现处理Redis返回数据这块写的不错,今天有时间好好研究下里面的知识点. 业务流程介绍: #项目是采用Spring Boot框架搭建的.定义了一个@Redis注 ...

  7. MVC、MVP以及MVVM分析

    网上现在MVC.MVP以及MVVM的讲解一搜一箩筐,根据了网上大多数的文章,根据我的思考习惯进行了总结. MVC介绍及分析: 各层的职责如下所示: Models: 数据层,负责数据的处理和获取的数据接 ...

  8. React-Native(二):React Native开发工具vs code配置

    从网上翻阅了一些开发react-native的开发工具时,发现其实可选的工具还是比较多的Sublime Text,WebStrom,Atom+Nuclide,vs code 等.因为我用.net生态环 ...

  9. Spring源码情操陶冶-任务定时器ConcurrentTaskScheduler

    承接前文Spring源码情操陶冶#task:scheduled-tasks解析器,本文在前文的基础上讲解单核心线程线程池的工作原理 应用附例 承接前文的例子,如下 <!--define bean ...

  10. java 连接mysql

    目前还沉浸在java自动化测试中不能自拔! 自动化过程中免不了要从数据库取值与期望值比较,目前我项目刚开始就需要用到了. 下面我把操作过程写下来: 我的项目框架是java+maven+testNG,所 ...