Description

Little Y finds there is a very interesting formula in mathematics:

XY mod Z = K

Given XYZ, we all know how to figure out K fast. However, given XZK, could you figure out Y fast?

Input

Input data consists of no more than 20 test cases. For each test case, there would be only one line containing 3 integers XZK (0 ≤ XZK ≤ 109). 
Input file ends with 3 zeros separated by spaces. 

Output

For each test case output one line. Write "No Solution" (without quotes) if you cannot find a feasible Y (0 ≤ Y < Z). Otherwise output the minimum Y you find.

Sample Input

5 58 33
2 4 3
0 0 0

Sample Output

9
No Solution

转载自:Navi

当模数 $c$ 不是质数的时候,显然不能直接使用 $BSGS$ 了,考虑它的扩展算法。

前提:同余性质。

令 $d = gcd(a, c)$ , $A = a \cdot d,B = b \cdot d, C = c \cdot d$

则 $a \cdot d \equiv b \cdot d \pmod{c \cdot d}$

等价于 $a \equiv b \pmod{c}$

因此我们可以先消除因子。

对于现在的问题 $(A \cdot d)^x \equiv B \cdot d \pmod{C \cdot d}$ 当我们提出 $d = gcd(a, c)$ ($d \neq 1$)后,原式化为 $A \cdot (A \cdot d)^{x-1} \equiv B \pmod{C}$ 。

即求 $D \cdot A^{x-cnt} \equiv B \pmod{C}$ ,令 $x = i \cdot r-j+cnt$ 。之后的做法就和 $BSGS$ 一样了。

值得注意的是因为这样求出来的解 $x \geq cnt$ 的,但有可能存在解 $x < cnt$ ,所以一开始需要特判。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int MOD=;
lol hash[],id[];
lol gcd(lol a,lol b)
{
if (!b) return a;
return gcd(b,a%b);
}
void insert(lol x,lol d)
{
lol pos=x%MOD;
while ()
{
if (hash[pos]==-||hash[pos]==x)
{
hash[pos]=x;
id[pos]=d;
return;
}
pos++;
if (pos>=MOD) pos-=MOD;
}
}
bool count(lol x)
{
lol pos=x%MOD;
while ()
{
if (hash[pos]==-) return ;
if (hash[pos]==x) return ;
pos++;
if (pos>=MOD) pos-=MOD;
}
}
lol query(lol x)
{
lol pos=x%MOD;
while ()
{
if (hash[pos]==x) return id[pos];
pos++;
if (pos>=MOD) pos-=MOD;
}
}
lol qpow(lol x,lol y,lol Mod)
{
lol res=;
while (y)
{
if (y&) res=res*x%Mod;
x=x*x%Mod;
y>>=;
}
return res;
}
lol exBSGS(lol a,lol b,lol Mod)
{lol i;
if (b==) return ;
memset(hash,-,sizeof(hash));
memset(id,,sizeof(id));
lol cnt=,d=,t;
while ((t=gcd(a,Mod))!=)
{
if (b%t) return -;
cnt++;
b/=t;Mod/=t;
d=d*(a/t)%Mod;
if (d==b) return cnt;
}
lol tim=ceil(sqrt((double)Mod));
lol tmp=b%Mod;
for (i=;i<=tim;i++)
{
insert(tmp,i);
tmp=tmp*a%Mod;
}
t=tmp=qpow(a,tim,Mod);
tmp=tmp*d%Mod;
for (i=;i<=tim;i++)
{
if (count(tmp))
return i*tim-query(tmp)+cnt;
tmp=tmp*t%Mod;
}
return -;
}
int main()
{lol p,a,b,ans;
while (scanf("%lld%lld%lld",&a,&p,&b))
{
if (p==) return ;
if ((ans=exBSGS(a,b,p))==-) printf("No Solution\n");
else printf("%lld\n",ans);
}
}

BZOJ 3243 Clever Y的更多相关文章

  1. 【POJ】3243 Clever Y

    http://poj.org/problem?id=3243 题意:求$a^y \equiv b \pmod{p}$最小的$y$.(0<=x, y, p<=10^9) #include & ...

  2. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  3. POJ 3243 Clever Y 扩展BSGS

    http://poj.org/problem?id=3243 这道题的输入数据输入后需要将a和b都%p https://blog.csdn.net/zzkksunboy/article/details ...

  4. poj 3243 Clever Y && 1467: Pku3243 clever Y【扩展BSGS】

    扩展BSGS的板子 对于gcd(a,p)>1的情况 即扩展BSGS 把式子变成等式的形式: \( a^x+yp=b \) 设 \( g=gcd(a,p) \) 那么两边同时除以g就会变成: \( ...

  5. POJ 3243 Clever Y(离散对数-拓展小步大步算法)

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

  6. poj 3243 Clever Y 高次方程

    1 Accepted 8508K 579MS C++ 2237B/** hash的强大,,还是高次方程,不过要求n不一定是素数 **/ #include <iostream> #inclu ...

  7. [POJ 3243]Clever Y

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

  8. POJ 3243 Clever Y | BSGS算法完全版

    题目: 给你A,B,K 求最小的x满足Ax=B (mod K) 题解: 如果A,C互质请参考上一篇博客 将 Ax≡B(mod C) 看作是Ax+Cy=B方便叙述与处理. 我们将方程一直除去A,C的最大 ...

  9. POJ 3243 Clever Y Extended-Baby-Step-Giant-Step

    题目大意:给定A,B,C,求最小的非负整数x,使A^x==B(%C) 传说中的EXBSGS算法0.0 卡了一天没看懂 最后硬扒各大神犇的代码才略微弄懂点0.0 參考资料: http://quarter ...

随机推荐

  1. pjax实例demo(c#,iis)

    pjax 百度都是api 也没找到demo 自己写了一个 C#写的 需要iis架设 测试ie10 和 火狐 成功 ie10不要用兼容模式 不然不好使 iis 可以直接架设webDemo1文件夹(源码) ...

  2. (转)如何在Eclipse中查看JDK类库的源代码

    在Eclipse中查看JDK类库的源代码!!! 设置: 1.点 “window”-> "Preferences" -> "Java" -> & ...

  3. SQL的介绍及MySQL的安装

    基础篇 - SQL 介绍及 MySQL 安装               SQL的介绍及MySQL的安装 课程介绍 本课程为实验楼提供的 MySQL 实验教程,所有的步骤都在实验楼在线实验环境中完成, ...

  4. Xen Server虚拟机数据恢复的方法和数据恢复过程

    在服务器运行过程中如果出现意外情况突然断电很容易引起服务器故障,服务器中的硬件设备损坏可以修复或者购买,但是服务器中的数据一旦发生故障丢失,对于企业来说将是不可估量的损失.那么服务器数据一旦丢失就除了 ...

  5. socket , 套接口还是套接字,傻傻分不清楚

    socket 做网络通信的朋友大都对socket这个词不会感到陌生,但是它的中文翻译是叫套接口还是套接字呢,未必大多数朋友能够分清,今天我们就来聊聊socket的中文名称. socket一词的起源 在 ...

  6. js 从一个函数中传递值到另一个函数

    一个函数的调用大家都会用 我今天在调接口的时候突然发现需要引用个另一个函数中拿到的值 举个栗子 刚开始 我是这样调用的 alert弹出的是 hello world . 但是我a函数内部还有一个函数 画 ...

  7. JAVA_SE基础——48.多态

    面向对象程序设计的三个特点是封装.继承和多态.前面已经学习了前两个特点.本章节将介绍多态性. 多态:一个对象具备多种形态.(父类的引用类型变量指向了子类的对象)或者是接口 的引用类型变量指向了接口实现 ...

  8. 一个诚实的孩纸选Python的原因

    我之所以会选择python语言程序设计这门课,是因为我一开始预选选的选修课都没选上,然后在补选的时候,在别人选剩的课里面选择了python. 上了两节课之后,我发现python还挺有意思的,挺喜欢py ...

  9. 微信小程序如何动态增删class类名

    简述 由于微信小程序开发不同于以往的普通web开发, 因此无法通过js获取wxml文件的dom结构, 因此从js上直接添加一个类名应该不可能了. 可是我们可以通过微信小程序数据绑定以及view标签的& ...

  10. Python内置函数(38)——zip

    英文文档: zip(*iterables) Make an iterator that aggregates elements from each of the iterables. Returns ...