sum() 函数性能堪忧,列表降维有何良方?
本文原创并首发于公众号【Python猫】,未经授权,请勿转载。
原文地址:https://mp.weixin.qq.com/s/mK1nav2vKykZaKw_TY-rtw
Python 的内置函数 sum() 可以接收两个参数,当第一个参数是二维列表,第二个参数是一维列表的时候,它可以实现列表降维的效果。
在上一篇《如何给列表降维?sum()函数的妙用》中,我们介绍了这个用法,还对 sum() 函数做了扩展的学习。
那篇文章发布后,猫哥收到了一些很有价值的反馈,不仅在知识面上获得了扩充,在思维能力上也得到了一些启发,因此,我决定再写一篇文章,继续跟大家聊聊 sum() 函数以及列表降维。若你读后有所启发,欢迎留言与我交流。
有些同学表示,没想到 sum() 函数竟然可以这么用,涨见识了!猫哥最初在交流群里看到这种用法时,也有同样的想法。整理成文章后,能得到别人的认可,我非常开心。
学到新东西,进行分享,最后令读者也有所获,这鼓舞了我——应该每日精进,并把所学分享出去。
也有的同学早已知道 sum() 的这个用法,还指出它的性能并不好,不建议使用。这是我不曾考虑到的问题,但又不得不认真对待。
是的,sum() 函数做列表降维有奇效,但它性能堪忧,并不是最好的选择。
因此,本文想继续探讨的话题是:(1)sum() 函数的性能到底差多少,为什么会差?(2)既然 sum() 不是最好的列表降维方法,那是否有什么替代方案呢?
在 stackoverflow
网站上,有人问了个“How to make a flat list out of list of lists”问题,正是我们在上篇文章中提出的问题。在回答中,有人分析了 7 种方法的时间性能。
先看看测试代码:
import functools
import itertools
import numpy
import operator
import perfplot
def forfor(a):
return [item for sublist in a for item in sublist]
def sum_brackets(a):
return sum(a, [])
def functools_reduce(a):
return functools.reduce(operator.concat, a)
def functools_reduce_iconcat(a):
return functools.reduce(operator.iconcat, a, [])
def itertools_chain(a):
return list(itertools.chain.from_iterable(a))
def numpy_flat(a):
return list(numpy.array(a).flat)
def numpy_concatenate(a):
return list(numpy.concatenate(a))
perfplot.show(
setup=lambda n: [list(range(10))] * n,
kernels=[
forfor, sum_brackets, functools_reduce, functools_reduce_iconcat,
itertools_chain, numpy_flat, numpy_concatenate
],
n_range=[2**k for k in range(16)],
logx=True,
logy=True,
xlabel='num lists'
)
代码囊括了最具代表性的 7 种解法,使用了 perfplot
(注:这是该测试者本人开发的库)作可视化,结果很直观地展示出,随着数据量的增加,这几种方法的效率变化。
从测试图中可看出,当数据量小于 10 的时候,sum() 函数的效率很高,但是,随着数据量增长,它所花的时间就出现剧增,远远超过了其它方法的损耗。
值得注意的是,functools_reduce 方法的性能曲线几乎与 sum_brackets 重合。
在另一个回答中,有人也做了 7 种方法的性能测试(巧合的是,所用的可视化库也是测试者自己开发的),在这几种方法中,functools.reduce 结合 lambda 函数,虽然写法不同,它的时间效率与 sum() 函数也基本重合:
from itertools import chain
from functools import reduce
from collections import Iterable # or from collections.abc import Iterable
import operator
from iteration_utilities import deepflatten
def nested_list_comprehension(lsts):
return [item for sublist in lsts for item in sublist]
def itertools_chain_from_iterable(lsts):
return list(chain.from_iterable(lsts))
def pythons_sum(lsts):
return sum(lsts, [])
def reduce_add(lsts):
return reduce(lambda x, y: x + y, lsts)
def pylangs_flatten(lsts):
return list(flatten(lsts))
def flatten(items):
"""Yield items from any nested iterable; see REF."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def reduce_concat(lsts):
return reduce(operator.concat, lsts)
def iteration_utilities_deepflatten(lsts):
return list(deepflatten(lsts, depth=1))
from simple_benchmark import benchmark
b = benchmark(
[nested_list_comprehension, itertools_chain_from_iterable, pythons_sum, reduce_add,
pylangs_flatten, reduce_concat, iteration_utilities_deepflatten],
arguments={2**i: [[0]*5]*(2**i) for i in range(1, 13)},
argument_name='number of inner lists'
)
b.plot()
这就证实了两点:sum() 函数确实性能堪忧;它的执行效果实际是每个子列表逐一相加(concat)。
那么,问题来了,拖慢 sum() 函数性能的原因是啥呢?
在它的实现源码中,我找到了一段注释:
/* It's tempting to use PyNumber_InPlaceAdd instead of
PyNumber_Add here, to avoid quadratic running time
when doing 'sum(list_of_lists, [])'. However, this
would produce a change in behaviour: a snippet like
empty = []
sum([[x] for x in range(10)], empty)
would change the value of empty. */
为了不改变 sum() 函数的第二个参数值,CPython 没有采用就地相加的方法(PyNumber_InPlaceAdd),而是采用了较耗性能的普通相加的方法(PyNumber_Add)。这种方法所耗费的时间是二次方程式的(quadratic running time)。
为什么在这里要牺牲性能呢?我猜想(只是浅薄猜测),可能有两种考虑,一是为了第二个参数(start)的一致性,因为它通常是一个数值,是不可变对象,所以当它是可变对象类型时,最好也不对它做修改;其次,为了确保 sum() 函数是个 纯函数
,为了多次执行时能返回同样的结果。
那么,我要继续问:哪种方法是最优的呢?
综合来看,当子列表个数小于 10 时,sum() 函数几乎是最优的,与某几种方法相差不大,但是,当子列表数目增加时,最优的选择是 functools.reduce(operator.iconcat, a, []),其次是 list(itertools.chain.from_iterable(a)) 。
事实上,最优方案中的 iconcat(a, b) 等同于 a += b,它是一种就地修改的方法。
operator.iconcat(a, b)
operator.__iconcat__(a, b)
a = iconcat(a, b) is equivalent to a += b for a and b sequences.
这正是 sum() 函数出于一致性考虑,而舍弃掉的实现方案。
至此,前文提出的问题都找到了答案。
我最后总结一下吧:sum() 函数采用的是非就地修改的相加方式,用作列表降维时,随着数据量增大,其性能将是二次方程式的剧增,所以说是性能堪忧;而 reduce 结合 iconcat 的方法,才是大数据量时的最佳方案。
这个结果是否与你所想的一致呢?希望本文的分享,能给你带来新的收获。
相关链接:
如何给列表降维?sum()函数的妙用 :https://mp.weixin.qq.com/s/cr_noDx6s1sZ6Xt6PDpDVQ
stackoverflow 问题:https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists
公众号【Python猫】, 本号连载优质的系列文章,有喵星哲学猫系列、Python进阶系列、好书推荐系列、技术写作、优质英文推荐与翻译等等,欢迎关注哦。后台回复“爱学习”,免费获得一份学习大礼包。
sum() 函数性能堪忧,列表降维有何良方?的更多相关文章
- 如何给列表降维?sum()函数的妙用
上个月,学习群里的 S 同学问了个题目,大意可理解为列表降维 ,例子如下: oldlist = [[1, 2, 3], [4, 5]] # 想得到结果:newlist = [1, 2, 3, 4, 5 ...
- linq 对Sum()函数的支持
首先看一段SQL语句: SELECT SUM(TASKAPPR) AS APPRCOUNT, SUM(TASKLOCKED) AS LOCKEDCOUNT, SUM(TASKCHECKED) AS C ...
- PHP函数可变参数列表的具体实现方法介绍
PHP函数可变参数列表可以通过_get_args().func_num_args().func_get_arg()这三个函数来实现.我们下面就对此做了详细的介绍. AD:2014WOT全球软件技术峰会 ...
- 关于SQL语句中SUM函数返回NULL的解决办法
SUM 是SQL语句中的标准求和函数,如果没有符合条件的记录,那么SUM函数会返回NULL. 但多数情况下,我们希望如果没有符合条件记录的情况下,我们希望它返回0,而不是NULL,那么我们可以使用例如 ...
- Python sum() 函数
Python sum() 函数 Python 内置函数 描述 sum() 方法对系列进行求和计算. 语法 以下是 sum() 方法的语法: sum(iterable[, start]) 参数 ite ...
- sql 中sum函数返回null的解决方案
SUM 是SQL语句中的标准求和函数,如果没有符合条件的记录,那么SUM函数会返回NULL. 但多数情况下,我们希望如果没有符合条件记录的情况下,我们希望它返回0,而不是NULL,那么我们可以使用例如 ...
- 【原创】从 列表的重复 到 用sum展开二层嵌套列表将子元素合并
转载请注明出处:https://www.cnblogs.com/oceanicstar/p/9517159.html ★像R语言里头有rep函数可以让向量的值重复,在python里面可以直 ...
- python 运行sum函数的使用
sum(iterable[, start]) ,iterable为可迭代对象,如: sum([ ], start) , #iterable为list列表. sum(( ), start ) , #it ...
- python 中的sum( )函数 与 numpy中的 sum( )的区别
一. python sum函数 描述: sum() 对序列进行求和 用法: sum(iterable[, start]) iterable:可迭代对象,例如,列表,元组,集合. start:指定相加的 ...
随机推荐
- jquery文本框内容实时监控
$("#A").bind("input propertychange", function () { $("#B").val($(this) ...
- C++ 进制转换 十进制十六进制八进制二进制相互转换
思路: 下面我把相互转换的所有类型都写出来了.实际上都是通过十进制中转的,这样比较简单,写出X进制转成十进制和从十进制转成X进制的两份代码直接拷贝就完成了剩余的部分.哦,对,自己封装了一个charTo ...
- C++神奇算法库——#include<algorithm>
算法(Algorithm)为一个计算的具体步骤,常用于计算.数据处理和自动推理.C++ 算法库(Algorithms library)为 C++ 程序提供了大量可以用来对容器及其它序列进行算法操作的函 ...
- Spring Boot 发送邮件
需求 最近因为业务的变更,需要对老用户进行发送邮件处理.目前市面上也有很多代发邮件的接口,可以接入.由于量不是特别大,放弃了这个途径.改用我们自己通过 smtp 发送邮件来处理. 技术选择 Java ...
- 前端leader找我谈心:我是如何从刚毕业的前端菜鸟一步步成长为前端架构师的?
谈谈学习 我做前端已经有五年的时间了,从大学刚毕业的时候,我是一个完全什么都不懂的小白.虽然我大学里学的是软件工程专业,但是因为在大学里荒废学业,每天只知道打游戏,基本上到大学毕业之前我是什么都不会的 ...
- 【定时器】Quartz初步实验
第一步:创建项目 创建一个新项目,可以是ASP.NET MVC,WebForms,Winforms等多种.Net项目,这里使用的是VS2017,创建了一个MVC项目 创建完成后大致项目层级为: 第二部 ...
- __BEGIN_DECLS 和 __END_DECLS
扩充C语言在编译的时候按照C++编译器进行统一处理,使得C++代码能够调用C编译生成的中间代码. 由于C语言的头文件可能被不同类型的编译器读取,因此写C语言的头文件必须慎重. 我们编写代码,经常需要c ...
- linux中查看和开放端口
装好Tomcat7后,发现除了本机能访问外界访问不了,岂有此理.于是请教百度大神,在费一番周折后,总结步骤如下: 1.修改文件/etc/sysconfig/iptables [root@bogon ~ ...
- CentOS 7安装Python3.6过程(让linux系统共存Python2和Python3环境)
CentOS 7系统自带了python2,不过可以不用2版本,直接使用python3运行python脚本就可以,但是千万别去动系统自带的python2,因为有程序依赖目前的python2环境,比如yu ...
- BootStrap 专题
验证码的输入框和验证码图片在一行,用bootstrap原生的怎么写呢? 看了教程,没有完全一样的可以让右侧的按钮“输入验证码”固定大小.左侧的输入框动态大小吗? <div class=&qu ...